Testing Star Formation theories—
Zeeman splitting applied



Zeeman splitting - An Introduction
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Zeeman What ?

A particle with angular momentum
essentially is like a magnet.

With no external field, any

orientation would have same E

energy.
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Zeeman Splitting—How it works???

X Photon propagating in the z
L direction can only have
y J| polarization in the x-y plane.

Electric dipole %

transitions x +Zy

Hitl)sihr—_ Photons will be circularly

5 polarized for this case.

i - We can measure the
11,—1) Stokes’ V spectrum

| 00 ) v Vv © Wikipedia 1

http://www.tcd.ie/Physics/people/Peter.Gallagher/lectures/js atomic/JS atomic lecturel2.pdf




Zeeman Splitting—Measurement

1. In the ISM, Zeeman splitting Av/z is typically much smaller
than line broadening sv
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For better detectability, we need to choose molecules with
larger splitting Av/z at lower central frequency wo (since év is
proportional to wo).

Examples : w0 <11.26Hz -



Zeeman Splitting—Measurement

2. Typically we can measure £/ by using Stokes’ V parameter
which is related to the first derivative of Stokes’ I. (Technical
details omitted as it will probably take half an hour to
explain)
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Zeeman Splitting — CasA
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Zeeman Spllttlng TauA
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Stack it up!

Applying the method to different clouds, a pattern emerges...
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Star Formation Theories



Star Formation—Ambipolar Diffusion

Gravity Magnetic Tension Gas Pressure
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compressed by gravity supported hourglass shape



Star Formation—Ambipolar Diffusion

3 Gravit Gas Pressure
Within the hourglass shape, there eutra }f)articles eventuafly
is relative motion between the degoerghTersomset of
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Star Formation—Turbulence

Scattered turbulent compression events (e.g. SN driven) might at some point
have different streams converge and form dense Molecular Clouds that
collapse.

Projections of the density field in a simulation of MC formation by the collision of
convergent streams, each at a Mach number M = 2.4.

The panels illustrate how the collision first forms a thin sheet that then fragments,
becomes turbulent, and thickens, until it becomes a fully three-dimensional cloud.
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Ambipolar Diffusion Wins???
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Which is dominant in the CNM?

Magnetic
Energy

Turbulent
Energy

Thermal
Energy

Thermal T=50K nkT
Turbulent Av/turb =1.2km/s pAviturb72

_____

Magnetic Bltot =6xiuG B2 /81X

Magnetic

Energy Magnetic

Energy



Equipartition... is it expected?

Ambipolar Diffusion :

Ambipolar diffusion is a model with slow steady evolution (until collapse)
therefore the forces are in near static equilibrium.

Turbulent -

Since CNM are regions of converging turbulent flows, with magnetic fields being
the main halting mechanism, it is natural that magnetic and turbulent energy
densities are in Equipartition...

Both theories can explain the result!



Mass to Flux (M/®) ratio

Ambipolar Diffusion = M/® should gradually increase from <1 to =1

Turbulence Seems to be very model dependent?? (I have no idea...)
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Turning tides ?

In 2009... it was found that for 4 regions, the M/® seems to be higher for the envelope!

Relative Mass/Flux Crutcher 2009 M core / (DCOI‘G
Cloud R R/ Probability R or R/ > 1 R =
L1448CO 0.02 £0.36 0.07 £0.34 0.005 Menvelope /(Denvelope
B217-2 0.154+0.43 0.19+0.41 0.05
L1544 0.42 +£0.46 0.46 £0.43 0.11 R = Mcore/q)core
Bl 0-41£0.20 0.44£0.19 0.010 M core+envelope / (I)core+envelope

| Model | Core | Reference | _Prediction _

Ambipolar L1544 Ciolek&Basu 2000 R'~1.25
Ambipolar B1 Crutcher+ 1994 R'~2.4
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Turbulent general Lunttil-~"
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que sera, sera

“The observational interpretation and conclusions of Crutcher+ 2010b are sharply
criticized by Mouschovias and Tassis (2009), and a rather severe controversy has
erupted; the situation is not yet resolved Crutcher+ 2010a.”

“Perhaps some clouds form and evolve via turbulence and some via the quasi-
equilibrium models, as implied by the discussion of Crutcher et al. (2010b).”

Zn »n

“As they say, “que sera, sera”.



So much for SF theories...

And they fxxin’ formed... And no one knows why...

© Youtube




Astrophysical Masers
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Examples of OH-line spectra at 1,665, 1,667 and 1,720 Me/s.

The antenna temperatures are shown as a function of velocity relative
to the local standard of rest. The data presented in Table 1 are, in some
cases, of longer integration time and higher rezolution than the examples

presented in this figure

Weinreb+ 1965] N h h ’ L

*Line width shows temperature way
below the brightness temperature.

*Polarization is exceedingly high.

Table 1. SUMMARY OF PRINCIPAL OH SPECTRAL FEATURES
Average
Fea- Velocity Feature antenna Polar- Position
ture (OH) width temp. ization angle Comments
No. (km/s) (ke/s)* (°K)  (percent)
1,665 Mc/s, 1 ke/s resolution:
1 —491 1'3+03 61+066| 30+12] 145°+10°
2 —46'5 3-0+04 143+15) 26 Appecars as two or
more blended lines
3 ~452 3:0+02 354+30] 37+6 65° + 4° Line profile
changes with fecd
position angle
4 —445 1'7+08 7T0+07|22+16| 107°%22° Line blended with
adjacent lines
5 —437 1:6+02 148+15|22+10| 140°+16°
6 —431 1'2+04 31+03]10+10
7 —417 16+08 72+07| 16+16
1,667 Me/s, 1 ke/s resolution:
1 —455 30+05 2:2+03|10+10
2 —438 12+056 13+03
3 —430 16+x05 1:7+03
1,720 Me/s, 3 ke/s resolution: -
~ - 0-856+0-3 Spectrum not re-

solvoed due to poor
gignal-to-noise
ratio



How?

Pump, cascade, and population inversion.
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OH Masers - Probing the galactic field

Assuming that SFRs somehow preserve their initial field

directions, then we can use these star forming regions to probe
the galactic magnetic field structure
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Reversal in field direction!

Rotation measure shows similar results and again...
no one knows why ... yet.
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For more details about B fields in galaxies http://arxiv.org/ftp/arxiv/papers/1302/1302.5663.pdf
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