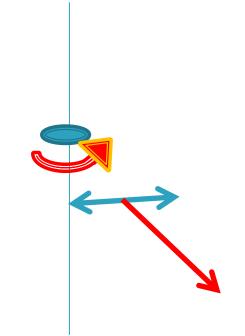
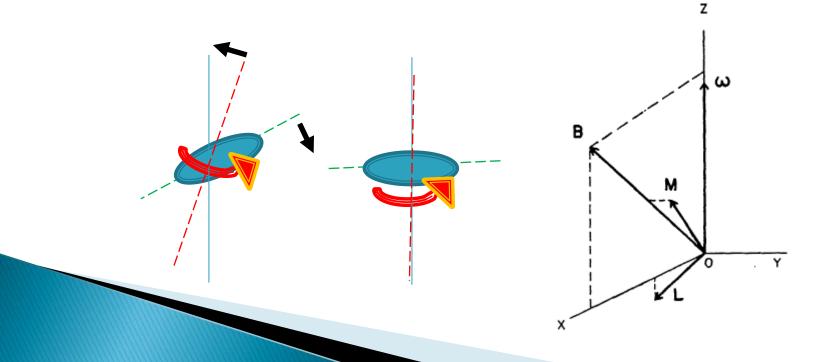

Linear Polarization in the Molecular Clouds

Polarization: measure B field perpendicular to line of sight, B


- Reason: grains are aligned by B
- Polarization from extinction of starlight passing through dust.
- Polarization from dust continuum emission.
- How to estimate the strength of B?

Polarization

Extinction


Emission

Grain Alignment

Davis-Greenstein Mechanism(1951)

- paramagnetic material
 ->"paramagnetic absorption"
- Make the rotation energy as small as possible ->rotation along short axis

Grain Alignment

Davis-Greenstein Mechanism(1951)

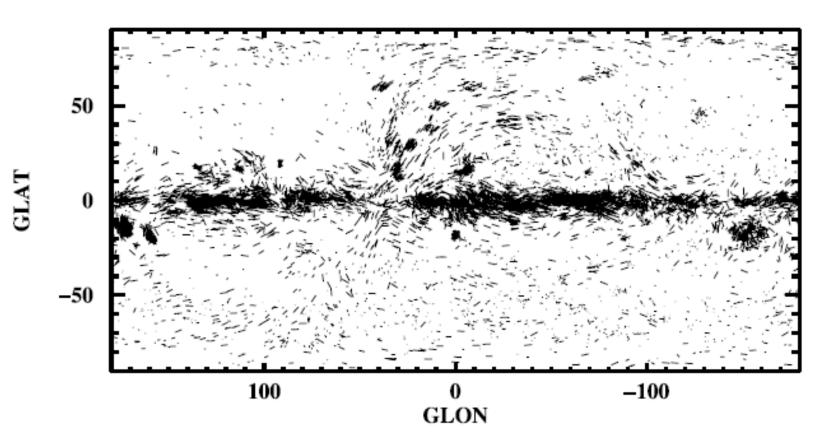
• Timescale:

~10^7-10^12 years [long!]

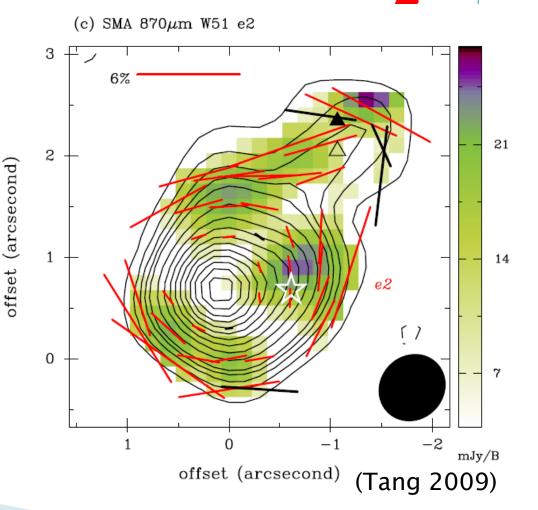

$$\tau_{DG} \approx 1.6 \times 10^{11} \frac{a_{eff}^2 \rho_{gr} T_{gr}}{B^2}$$
 seconds

In fact

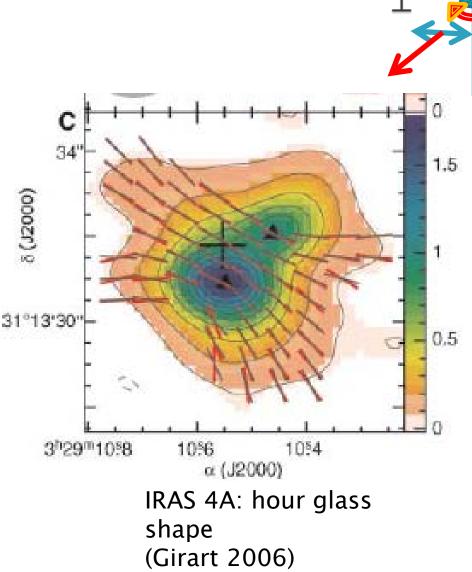
- Predict B~100 μ G but typically ~1 μ G
- Predict small grains are greater aligned than big ones.
 But in fact it's opposite


Grain Alignment

- Superparamagnetic grains (Purcell & Spitzer 1971)
 - bigger dust has more metallicity-> aligned faster
 - Correct the much more aligned big grains
- Superthermal spins
 Consider be embedded in a hot gas
 - H₂ formation on the grain surface gives a torque (Purcell 1979)
 - Radiation also gives a torque (Draine 1996)


Extinction: parallel to B

- Only could use to map the region where there are stars behind
- Map of our Milky Way (Heiles, 2000a)


Emission: perpendicular to B

- Emit in infrared, submillimeter
- Radio: different! The direction can be either perpendicular or parallel (Heiles 2005)

Emission: perpendicular to B

- Emit in infrared, submillimeter
- Radio: different! The direction can be either perpendicular or parallel (Heiles 2005)

So far, we just know the direction. How about the field strength?

- Chandrasekhar-Fermi relation (1953)
 - The fact: B is frozen into the matter in matter
 - Thus, dispersion of the direction of the polarization decreases as the field strengths.

 $\frac{\delta B}{B_0} \simeq \frac{\sigma(v)}{V_{\rm A}},$

- But the source causes dispersion is different:
 - In the galactic arms: MHD waves
 - ->perpendicular to the direction of propagation
 - In molecular clouds: Turbulence
 - ->random

Dispersion of magnetic field in molecular clouds

- Roger H. Hildbrand 2009
- Diffuse ISM -> molecular clouds
 - Need to concern gravitation, rotation...
- Assumption: $B(x)=B_0(x)+B_t(x)$, $\Phi(x)=angle between B, B_0$ x is a point on sky-plane
- $\Delta \Phi(l) = \Phi(x) \Phi(x+l), \ l < d \ (local measure)$ $< \Delta \Phi^2(l) > \sim b^2 + m^2 l^2$

R

Thus we can estimate

 $B_0 \sim \text{sqrt}(8\pi\rho) \frac{\sigma(\nu)}{r}$

					60		
					40		-
		Table 1			20	M17	
Results for the Dispersion, the Turbulent-to-Mean Magnetic Field Strength Ratio, the Line Widths, and the Mean Field Strength					. 0	[·····································	4
Object	b ^a (deg)	$\langle B_{\rm t}^2\rangle^{1/2}/B_0{}^{\rm b}$	$\sigma(v)$ (km s ⁻¹)	B0° (mG)	40	╞╴╴╱ _{╍╍┹} ╋	1
OMC-1 M17	8.3 ± 0.3 10.4 ± 0.6	0.10 ± 0.01 0.13 ± 0.01	1.85 1.66	3.8			
DR21(Main)	6.8 ± 1.3	0.08 ± 0.02	4.09	2.9 \$ 10.6	20		1
ON M	ld method MG–1, 26. 17, 27.2 R21, 21			Dispersion <(DR21 Main	•
(Roger H. Hildbrand 2009)				20	OMC-1	5	

Zeeman splitting v.s. Polarization

- Polarization is easier to measure than Zeeman splitting
- Disadvantage of polarization:

We can't measure everywhere

Reference

- Heiles, Carl 2005
 Magnetic Fields in Diffuse HI and Molecular Clouds
- Davis & Greenstein 1951
 The Polarization of Starlight by Aligned Dust Grains
- Purcell 1971
 Orientation of rotating grains
- Purcell 1979
 Suprathermal rotation of interstellar grains
- Draine 1996
 Radiative Torques on Interstellar Grains
- Hildebrand 2009
 Dispersion of Magnetic Fields in Molecular Clouds. I
- Tang 2009

Evolution of magnetic fields in high-mass star formation:

hinking field geometry and collapse for the W51 e2/e8 cores