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Midgap states and generalized supersymmetry in semi-infinite nanowires
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Edge states of semi-infinite nanowires in the tight-binding limit are examined. We argue that understanding
these edge states provides a pathway to generic comprehension of surface states in many semi-infinite physical
systems. It is shown that the edge states occur within the gaps of the corresponding bulk sgacisuatso
called the midgap statgesMore importantly, we show that the presence of these midgap states reflects an
underlying generalized supersymmetry. This supersymmetric structure is a generalized rotational symmetry
among sublattices and results in a universal tendency: all midgap states tend to vanish with periods commen-
surate with the underlying lattice. Based on our formulation, we propose a structure with superlattice in
hopping to control the number of localized electronic states occurring at the ends of the nanowires. Other
implications are also discussed. In particular, it is shown that the ordinarily recognized impurity states can be
viewed as disguised midgap states.
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I. INTRODUCTION system$is a well known example that illustrates the impor-

The one-dimensiondlLD) wire has been of great theoret- t@nce of edge states. Generally speaking, the edge states oc-
ical and experimental interest in the past. This is because &ur within the gap of the bulk energy spectrum and are called
not only the wide variety of fascinating phenomena it exhib-the midgap states. The existence of these states causes
its, but also the testing grounds it offers for ideas that may@nomalous properties near the end, which can manifest in
become applicable in higher dimensions. In practice, 10unneling measurements. A recently discovered example is
wires needs not be physically one dimension. They may rethe zero-bias conductance peak observed indiidV mea-
sult from projection after a partial Fourier transformationsurement of the metal-wave superconductor junctiofs.
from higher-dimensional models. For instance, a superlattic¥/hen electron-electron interactions are present, as occurs for
structure can be reduced to an equivalent 1D structure afteran externally implemented magnetic impurity, “intrinsic”
partial Fourier transformation along the direction normal toKondo effects may also arise due to these localized states,
the layers. Similar examples includewave superconduct- causing a zero-bias anomaly near the Fermi enefgfes:
ors, graphite sheet, and many other systems. Therefore, uthermore, if the system is finite, coupling between edge
derstanding the 1D wire is an ideal first step toward the unstates cannot be neglected. An example is the anomalous
derstanding of any higher-dimensional problems. Furtheparamagnetic behavior observed in carbon nanoribbons,
boost for studying 1D wires comes from recent advancesvhere we have recently shown that there are residual antifer-
achieved in nanotechnology. Here the feasibility forromagnetic couplings between edge spins in this syStatin.
bottom-up assembly of single nanowitésas made direct these examples clearly illustrate the important role of edge
investigation of finite 1D wires possible. Nevertheless, con-states in the physics and applications of nanostructures.
ventional studies of the 1D wire have mostly been focused In previous work, applying the Green’s-function ap-
on its bulk properties, whereas assembled nanowires cgproach, we have shown that broken reflection symmetry is a
only have finite lengths and must terminate at some gites  necessary condition for the occurrence of edge states, and the
ends, or the edggslt is therefore desirable to reconsider the energies of edge states are the roots to the Green’s furiction.
effects of the ends to the properties of the nanowires. In this work, resorting to the supersymmetric method, we

The commonly recognized edger surfacg effects in the  further develop a systematic way to determine the wave
physics of nanostructures are concerned with the large vokunctions and the precise energies of the edge states.
ume fraction of the boundaries. However, from either funda- Conventionally, the usage of the supersymmetric method
mental or practical viewpoints, the possible occurrence ofn the condensed-matter physics has been focused on apply-
edge modes and their influences on the properties of the syig the supersymmetr§SUSY) quantum field theory to dis-
tem poses a much more interesting problem. For exampl@rder system$. The application of the corresponding
when applying carbon nanotubes as emitters for screen dig0+1)-dimensional limit, namely the SUSY quantum
plays, the occurrence of edge states may change the densityechanics$, however, is quite limited. Nevertheless, it has
of electrons at the edge and thus affects the threshold worlbeen realizelithat the zero-bias anomaly @hwave super-
ing potential. It would therefore be of great technologicalconductors is closely related with the SUSY quantum me-
interest if one could devise a way to engineer the number ofhanics. These studies, however, are done in the continuum
edge states. From the fundamental viewpoint, the elegadimit, using the semiclassical approximation, while the more
role of edge excitations in the physics of quantum Hallrelevant limit for highT. superconductors and many other
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systems is the tight-binding limit. Furthermore, the zero-
energy state was the primary focus, while not all the states

localized at the edge have zero energy. It is therefore impor4a) p p
tant to see if the idea of SUSY quantum mechanics can be

generalized to understand the finite-energy midgap states, il tl t2 €1 €2 €l e -
particular those in the discrete condensed-matter systems, ¢

well. In this work, we shall show that this is indeed possible. tl 2 3 t1 2 t3 tloe-

We shall first show that the semi-infinite tight-binding

d-wave superconductors belong to a more general class, th(b) tl 2 t3 t4 tl t2 t3 t4 tl oo
bipartite system, and which can be well described by the
conventional SUSY quantum mechanfcsiere the super- FIG. 1. Schematic plot ofa) an assembled atomic chain i

symmetric partners are two sublattices of the same systeffie corresponding models with small periogs:2, 3, and 4.
and the SUSY is characterized by a Hermitian superch@rge

and the SUSY HamiltoniatiS={Q,Q}/2 with [HS,Q]=0.
For bipartite systems with nearest-neighbor hoppir@gss
identical to the physical Hamiltoniai=H,) and henced® is

the bulk case where the DOS at zero energy has no spatial
dependence, the enhanced DOS at zero energy for semi-

a quadratic functional of,. Furthermore, the zero-energy infinite disordere(_j Wire_s has the largest amplitude near the
state is annihilated by the supercharge, which then constf?dge' Even for slight d!sorders, the effech of enhanced D.OS
tutes one of the conditions for determining the zero-energyt Z&ro energy are still observable. This offers a possible
state, while the other condition is to require it to decay fromeXPlanation for many unexpected zero-bias anomalies ob-
the edge. It is found that this conventional SUSY quanturrServed in tunneling experiments because, unless extremely
mechanics can be appropriately extended to describe tr@refqlly controlled,Jun_ctlon q_ual|t|e3 are _usually rather poor
semi-infinite p-partite systems with nearest-neighbor hop-and disorders can easily set in near the junctidns. _
pings. First, wherp= 3, the original supercharge splits into _ Other implications and extensions of our generalized
two: In addition to the physical HamiltoniaH,, a second SUSY quantum mechanics will also be dlspussed. In particu-
supercharg€, can be formed. They both commute with the lar, we shall demonstrate that by appropriate mappings, the
SUSY HamiltonianHs, Furthermore, only whep=2 is Hg orc_jmanly_ recognized impurity state can l_)e wewed as a dis-
~HS a quadratic functional of,. In generalHg is a poly- ~ 9uised midgap state. Such mapping provides a simple way to
nomial functional oH,,. This is reminiscent of the fractional Construct the impurity wave function and the corresponding
SUSY quantum mechani&in which the SUSY Hamil- €nergy. In addition to this app[|cat|on,_ possﬂqle extension to
tonian is generalized to be an integer power of the Supermclude the electron—elt_actron interactions will also be dis-
charge. Nevertheless, our model is different and provide§ussed at the end of this paper.

more a realistic generalization of the conventional SUSY. This paper is organized as follows. In Sec. Il, we lay
The upshot of this generalization shows that, in addition tg#own the basic tight-binding model considered in this work
energy ones, are annihilated by the supercha@ge The systems. In.Sec. i, we generalize the supercharge aqd Su-
wave functions of the midgap states thus obtained tend t§€rsymmetric Hamiltonian to the-partite systems and dis-
vanish with the same period commensurate withWw,  CUSS the disorder limit. We alsp point out how_ to engineer the
~(...,0,...,0,...,0,.). These zeros cut the original numb_er of edge states by using a sgperlattl_ce structure. By
Hamiltonian into smaller ones so that the energies of théPPlying the SUSY quantum mechanics, we illustrate in Sec.
midgap states are determined by the eigenvalues of th&/ how animpurity state can be viewed as a midgap state. In
Hamiltonian within each period. As a result, the matrix for S€C. V, we conclude and discuss possible generalization to
determining the energies of midgap states is of a size mucinclude electron-elec'_tron interactions. Appendixes A and B
smaller than that of the original Hamiltonian. This reduction&'€ devoted to technical details of superalgebra and compu-
in matrix size heavily reduces the computation for determin{fation of commutators.

ing the occurrence of the midgap states and provides a way
to control the occurrence of the midgap states. As an appli-
cation, we propose a structure with a superlattice in hopping

with period p to control the number of localized electronic W start by considering the 1D atomic chain as illustrated
states occurring at the end of nanowires. In that case, th@ Fig. 1(a). This is the most general 1D atomic chain in
number of edge states is simpby- 1. which reflection symmetry with respect to the edge point is
As the periodp goes to infinity, the ensemble of configu- broken and, consequently, edge states might &rlsethe
rations of hopping forms a semi-infinite disorder chain. Thistight-binding limit, we consider the following Hamiltonian to
limit has been extensively investigated during the Past model this system:
since Dyson’s seminal work, in which it was pointed out
that the average density of sta{@0OS) is enhanced at zero
energy. From our point of view, this enhancement also re-
flects that the system has high probabilities to take the
above-mentioned form for the ground state. The presence ¢lere the subscrigt indicates the period of the lattice anis
the boundary breaks translational invariance. Thus, unlikeéhe site index}; is the hopping amplitude between sitand

Il. THEORETICAL FORMULATION AND
SUPERSYMMETRIC QUANTUM MECHANICS

©

Hp= > ticcig + H.c. +ucc. (1)
i=1
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its nearest neighbors; (ciT) is the electron annihilatio(cre- 03
ation) operator, ands is the local potential at site We shall 4,1
assume that both and v are periodic with periogh, namely '
to+i=t; and yp,;=y. In real systems, this Hamiltonian may ~ °'|
correspond to an assembly pfdifferent atoms repeatedly

arranged into a lingsee Fig. 1 For wires composed of 03
atoms of a single speciebl, may describe systems which
exhibit density-wave order This includes polyacetyléhe, « o2}
which has a dimerized structure and correspongs=a, and
polymers with higher commensurability charge-density
waves!’ In the following, we shall calp=2 thet;-t, model, 0

and similarly for models with higher periods. As mentioned ©°3
in the IntroductionH, may also represent the reduced model 0zl
of a higher-dimensional structure after partial Fourier trans—§ '
formation. For example, for a semi-infinite graphite sheet= o1
with zigzag edge, since the system is translationally invariant . .
-3 -1 1 3 5
E

LDOS

o

LDOS

01t

along the edge, a partial Fourier transformation can be ap- -5

plied along this direction, leading to an effective 1D model.

In this case, it is identical to thig-t, model except that now FIG. 2. The local density of states at the end point for small
t, andt, arek-dependent:t, = 2t, COS(\Bkya/Z) t,=to, where  periods:p=2, 3, and 4. The parameters are carefully chosen so that
a is the lattice constant arkj, represents the Fourier mode. the midgap states are manifested. Tap=2.0, t,=3.0 (p=2);

This approach has been successfully applied to understamdiddle: t;=2.5,t,=1.8, t3=3.0 (p=3); bottom:t;=2.4,1,=2.8, t3

the anomalous properties near the edge in carbon ridbonss1.3, t,=3.4 (p=4). All potential 4=0, and we have included a
As a final example, we note that the operatom H, need lifetime 6=0.02.
not be restricted to be the electron annihilation operator. For

example, after applying the Jordan-Wigner transformation,

one can map a 1D quantuXy spin chain to a 1D model $_ . (0 -1 0

described byH,. Specifically, we have; replaced by the Al=eAe withe=| [ (4)
exchange coupling for nearest neighbdfs2, and v re- 1 0 - 0
placed by the local magnetic fiely. It is clear from these

examples thal, is quite general and captures the physics ofHere the operatoe effectively reflects the wave function
many interesting systems. with respect to the midpoint of the lattice.

To investigate the behavior ¢f, near the edge, as a first  In the case of infinite chains, it is not hard to check that
step we calculate the local den5|ty of states at the end poirthe corresponding matrices and AT commute with each
using the generalized method of image developed in Ref. 3pther and hence can be diagonalized simultaneously in Fou-
Figure 2 shows the typical local density of states at the endier space. For semi-infinite chains, howevarand A" do
point for small periods. The parameters are carefully chosenot commute and the spectrum of the-t, model can be
so that all possible midgap states are present. In particulabest understood in terms of the supersymmetric quantum
we have set;=0, which amounts to choosing the energy mechanics$.For this purpose, we first identifi1, as thesu-
zero as the origin. These results show that midgap states apercharge @, which connects even and odd sites. The block-
indeed the most prominent features at the end point. To urdiagonal matrix(H,)? (=H9) is then identified agup to a
derstand how the midgap states arise, we first investigate tHactor of 2 the corresponding supersymmetric Hamiltonian,
t;—t, model withv, =0 in detail. In this case, since the lattice whose diagonal bIockBI(S,EAAJr and HﬁEATA are, respec-
is bipartite, it is convenient to distinguish the amplitudes attively, the effective Hamiltonians for the odd and the even
the odd and the even sites by writing the wave function asites. Note that becausé and AT do not commuteHS

V=(¢,, Pps). The Hamiltonian then becomes #HS. We will show below that the difference betwe
and HS is the origin of the midgap states. Obvioushy; is
[0 A posmve definite with the possibility when its spectrum
Hy = AT 0 2 touches zero. When the latter happens, the ground-state en-

ergy of HS vanishes, and the ground-state wave functiggs

Here0 is the null matrix andA is a non-Hermitian matrix, —and e, [¥o=(¢,, b¢)] have to be the zero-energy eigenfunc-
tion of A andAT, i.e., A¢.=0 andAT¢,=0. In other words,

tt, 0 0 -- the supercharge annihilates the ground-state wave function
a0 " Yo,
o oty ) QxWo=Hy¥o=0. 5

Clearly, in this case, the system has good supersymmetry
because the ground state is invariant under “rotation” be-
It is interesting to note that the adjoint &f satisfies tween even and odd sites,
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g 9Q2\]f0 =, (6) 1.0

where 6 is any real number. The non-Hermiticity &f and

AT implies that forward and backward hopping amplitudes
between two sites are different, and hence the eigenfunction:
have to either grow or decay from the end point. Obviously,
because of the relatioAT=gAeg, any nontrivial eigenfunc-
tions satisfyp.=e¢,. Therefore, if¢, decays from the edge,
¢ must grow from the edg€and vice versp For semi-
infinite chains, only the even sites are connected with the
hard-wall boundary point. Thug, is forced to vanish while

¢, decays into the bulk, so thalty=(¢,,0). Note that the
other possible stat#;=(0,¢,) resides on the other end of
the chain and is pushed to infinity. Therefore, speaking over-
all, there is only half a chance for the existence of the ground
state(¢,,0). This is also reflected in the hopping strength
difference. Indeed, we find that, decays only whem, <t,.

In this case,Hg has a nontrivial zero energy eigenfunction, FIG. 3. The effect of the potential is to break the particle-hole
while HS does not. Therefore, the system has good supesymmetry so that two side bands are distorted. However, the mid-
symmetry withthe ground statél, being a localized state  9ap state is not changeddf=0. The parameters atg=0.7 and

For finite energies, howeved, and ¢, need not be eigen- t,=2.0. For the solid liney,=0, v,=0, while for the dashed line,
functions ofA andA'. Nevertheless, the supersymmetry al-vo=0,ve=0.5.

lows a simple and elegant way to find the whole spectrum for

the casep=2. This is becausbi2§ has the exact form ad;  Hamiltonian is Dirac-liké and can be generally written as

3
'] 05'
-

- =~

Pa ~

1.0 2.0 3.0

(p=1) with t;=t;t, andv;=(t2+15). Since this is just the or-
dinary uniform hopping model, one can easily write down Ho o= (M Q ) )
the eigenstatep.(n)=sin 2nk. The wave function at odd site BCST\Q -m /)’

can then be found by using the supercharge operator. We find o
that ¢,=Ad./E, with E being the spectrum oH, which where M corresponds to the reduced 1D Hamiltonian for

satisfiesEZ:t§+t§+2t1t2 cos X. Since E2=(t;-t,)%, an en- particles gnd@ is essentially the pairing potgntial. One can
ergy gap opens up arourt=0 whent; # t,. In the case of also _re\_N”teHBSC:M ®.UZ4.'Q®UX and treat t.hls problem as
t,<t,, the ground stateV, then arises as a midgap state. 2 SPin in the “magnetic fieldtQ,0,M) pointing in thex-z
Note thatHS is almost identical t4S except for the potential Plane. This analogy suggests that it is possible to rotate the
energyvlztf at the end point; the deficit ener@is entirely magnetic _fleld to the(-y_plane. Indeed, this can be achieved
due to the missing bond cut off by the boundary. We will PY @ rotation of 2r/3 with respect to the axiel, 1, . The
elaborate on this in Sec. IV. transformation matriis

We now address the effects of the potengialForp=2, it
. . . . 1(1 1
is convenient to denote the potentials over the even sijes u=—=|. " | (8)
and the odd sites,. This decomposition, however, renders V23—

the particle-hole symmetry invalid at the level of the super- , L ) .
charge H,. Nonetheless, the spectruf) of H, can be wherel andi are semi-infinite matrices. The rotated Hamil-

mapped to the original spectrum P with v;=0 (=E2). For tonian then takes the form of a supercharge ke
E2+#0, this mapping is given b¥E2=(E-v.)(E-v,), while 0 M-i0

for Eg:O, sinceg,=0 still holds, one haE=v,. Hence even Hecs= UHgcdU = , .

though the physical spectrui may have no particle-hole M+iQ 0

symmetry, after appropriate transformations, the symmetricl-he wave function is rotated accordingh’ =U'W. There-

structure can be restoredlﬁ@; in part?cule_lr, the midggp state fore, in the supersymmetric form, particles and holes are
survives, as clearly Qemopstrated in Fig. 3. For higher P€iixed. As an illustration, we consider the mean-field Hamil-
ods, thg same manipulations as a_b_ove can lead to S'm,”%nian ford-wave superconductors,
conclusions. Therefore, unless explicitly needed, we shall ig-
norew; in the following.

Let us now apply the supersymmetric method to semi-
infinite superconductors After partial Fourier transforma-
tion along the interface, the problem becomes 1D supercorwhereij) denotes the nearest-neighbor bonds, tgreghd A
ductors with an end point. In this case, it is convenient toare, respectively, the corresponding hopping ahdave
write  the wave function as W=(u,v), with u pairing amplitudes. For thél, 1, 0 interface, after Fourier
=(ug,Up,Us, ...) being particlelike and=(v{,v,,v3, ...) be-  transformation along the interfa¢ehich is taken to be thg
ing holelike wave functions. The reduced mean-fi@CS)  direction), we obtair

9

Hr=— 2 toCl,Cjs + Ajj(Circj, — i Cj) + H.c.,  (10)
(ijho
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-u  —t+d 0 k,'s have the same zero energy, their wave functions have a
—t-d -u —t+d - ky de_pendence. Note that for demonstration, we ha_ve only
, (11)  considered the case whég is real. Complete solutions,

0 ~-t-d -u - however, require us to include the situation whign is
complex®® In both cases, the supersymmetry structure en-
ables one to write down the explicit form of the zero-energy
mode near the interfaad, 1, O.

A=M-iQ=

where u is the chemical potentiat=2t, cogk,a/ V2), and
d=2Aq sin(k,a/ v2). The model for tight-bindingl-wave su-

perconductors is unique in the sense that the non-Hermiticity IIl. GENERALIZED SUPERCHARGE

of A andA™ can be removed b~y a gauge trarlsformatlorl. For AND ITS CONSEQUENCES

this_purpose, we writet—-d=teY and t+d=te™¥ with t _ ) _
=\2-d? and eX9=(t—d)/(t+d). The eigenfunction¥c of A We now generalize the above results to higher perjpds

=3. It is useful to decompose the wave function s
~ =(¢1, ¢z, ..., ¢p), Where ¢, denotes the sub-wave-function
- -t 0 - formed by {¥(kp+n);k=0,1,2,..}. The Hamiltonian is
then cast in the form

is thus the gauge transformation of the eigenfunctigrof

- -p -1
Ay= ® _ (12)
0 -t Y 2 0 A12 0 e Alp
AIz 0 Ay - 0
Specifically, we obtain¥c(n)=e "¢ [for A, one obtains Hp=| 0 Al 0 -+ - | (15
We(n)=e"9¢]. FurthermoreWe and ¢ have the same ei- Apip
genvalueE. This implies that the calculation of the zero AI 0o --- Af . 0
P p-1p

mode is related to the spectrum Af,. If we restrict our
discussion to the propagating modes, the spectrum s  Again, here0 and A, are block matrices; for alh#p,
simply the ordinary cosine band. We find that whenA,,=t,1 are diagonal, while fotm,n)=(1,p),

—2\P-dP< u<2\t?-d? is satisfied A andA' can, respec-

tively, support zero modes of the forii®,e"9¢e-,) and 000
(€"%be-0,0). In this case, the ground state l@f is selected Ar = t, 0 O (16
by the sign ofg, and thus the zero-energy midgap state is LI ) ty, O
given by .
1 t_|d| n/2 ) T L L
un)=-—=(—— ] sin(kena), (13) 0 understand what happgns for th.e semi |nf|n|.te chaln, it is
v2\t+[d| useful to start from the infinite chain with Hamﬂtomdutfj.

In this caseH:, also takes the same form except tAgt, are
i (t=1]d[\"? further extended to=—. If we remove the hopping strength
v(n) = sgr(d)E t+[d sin(kena). (14 ¢ and combine the remaining,, with Al into Qqp, for all
m andn pairs, Q,,, form a superalgebra if modulp is per-
Herek is determined by —2t?-d? cogkea) = and depends formed (see Appendix A for mathematical detailThe en-
onk,; therefore, even though the midgap states for differenergy bands oH; are determined by

E -t 0 e ek
-te™® B —tek - 0
PEk=def 0 -te* E =0, (17)
_tp—leik
~te® 0 e —tgEe® E

whereE is the energy andt is the Fourier mode. In general, band: 2;t,t;---t, cogpk). This important observation im-
there are at mosp energy bands. However, since in the plies that when H,=H_, the operator Hs=P(H,,0)
polynomial P(E,K), (-1)P*2itpts:--t,codpK) is the only  —(-1)P*12t,t,t5---t, is block-diagonal[there arep blocks
term that depends onk, the function P(E,k)  with one for each;, see Eqs(B1) and(B2)] and folds the
—(—1)"+12t1t2t3---tp cogpk) mapsp bands into one single spectrum OH; into one single banéf Therefore Hgis simi-
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lar to the supersymmetry Hamiltoniats. Indeed, forp=2,  H,-Q, determines the energies and further provides rela-

we find Hg=H3— (t2+13), which is essentially+HS. tions betweenp,, ... ,¢,-1, and¢;. This analysis shows that
For infinite chains,Hg is highly symmetric. In fact, it the energie€,, of midgap states can be different from zero

commutes with allQ,,, This reflects that it is symmetric and must satisfy

under the permutation af and m, but it is more than that

because any linear combination ®f,,Q,, also commutes “En 4 0 0
with Hg. For semi-infinite chains, however, the above sym- tt -En to - 0
metry is broken: Not alQ,,, commute withHs. Physically, del O t, -E, -~ - |=0. (20
this is obvious because now, is special and is the only t,
o

component that connects with the boundary pom0 di-
rectly. As a resultHg is not completely block-diagonalized. 0 0 - tho —En

In _fact, b_ecause even for the infinite_ Cha‘_m_ﬁp(”) Therefore, there are at mgst-1 midgap states. To stabilize
=sin(knpa is a solution for thepth block and it satisfies the o midgap states, one further requings to decay away

hard-wall boundary condition at=0, the pth block is not  from the edge. In the case pE2, this results in the condi-
affected. Therefore, there are only two blocks: one is for thgjon t, <t,. For p=3, one first obtains from Eq20) E,,

space formed byp,; the other mixese;, ¢,... anddy1. =+, and ¢, =+ ¢y, which, when combined with Eq19),
This is dgmonstra&ed in E¢B1), where we denote the block regyjts inW (3k+n) = +t5/t,%(3k-3+n). Thus midgap states
Hamiltonians byH" andH". exist only whert, <ts. In general, one needs to relatg ; to

Clearly, thet; ~t, model is special becaus¢” andH™ are , This further reduces the matrix in E(R0), and by de-
of the same size so thadg is completely block-diagonal. fining the (p—2) X (p—2) matrix

This is where the usual SUSY quantum mechanics applies.

Forp=3,H" andH™ are not of the same size; a generaliza- -En 4 o -~ 0
tion of SUSY quantum mechanics is needed. First, it is im- t. -E t w0
. . L 1 m 2
portant to see if one can find an operator, similar to the B
supercharge®,, that commutes wittHs. H,, is obviously a h=1 O b —En oo (21)
solution becauskl,=Q,. However, in analogy to the case of AL o
p=2, a second supercharge by collecting all block matrices 0 0 - tys —Ep

in H, that connectsp, to other components can be formed:
we find thatys =ty i} ,i-1. When combined with Eq.

o0 0 - - Ap (19), we obtainwl:tp_ztp/tp_lhli_2¢p+1. Hence the midgap
0O 0 - - 0 state with energyE,, exists only whent, ptohy >t 1.1
Q=] - - 0 - for p= 3. Note that for higher periods, commensurate structures may
P appear in sublattices. These structures resemble the SUSY
Ap-1p structures in lower periods. For example, when4, there
Al, 0 -~ AL, O are at most three midgap statesEy=0, \ts+t3. In this

(18) case, the Hamiltoniahif1 is already block-diagonal in even
and odd sites. For even sited? is a period of two and
Note that the above definition can also inclyse2. In that  pelongs toH, with t=tyty, th=tots, Mi:ti+’[§, and Mé:tg
case, one squeezes the bldtk, into Ay, to obtain the form  +¢2 with the midgap energy given bl =u;= EZL It is
of Hy in Eq. (2). BecauseAp=t;1 and A,y is given by EQ.  clear thatE! is precisely the square d,,=+\t2+t2, and
(16) with t, being replaced by, addingA1, andAy, repro- s +i2+12 are the midgap states resulting from the super-
ducesA defined In Eq(3) precisely. Hence Eq18) can be  symmetry within the even sublattice. The remaining midgap
regarded as an “analytical continuation"@f to p=3. Fur-  giate atE, =0 originates from the same supersymmetric
thermore, as shown in Appendix Bts,Q]=0 is satisfied, gy cture as that fop=2 between even and odd sites. Hence

th.ust provides a faithful generalization @J,. It C(_)incides #. vanishes folE,,=0. Obviously, the same effects may oc-
with H, only whenp=2. Note that from Appendix B, one ¢ for anyp that is not a prime number.

can actually see that out @, contained inH,, Q, andH, As an application, we point out that a simple way to en-
(and their Ilnear. combinatiopare the only two generators gineer localized edge states in a nanow@ach as carbon
that commute wittHs for generalp. _ nanotubepis to introduce impurity bonds periodically and
‘Applying the condition that the supercharge annihilatesorm a semi-infinite superlattice structure. In this case, one
midgap statesV,, one finds that hast,=t,="--=t, 1=t while t,=t'. It is known that in the
$,=0 andAIp¢1+A;_1,p¢p-1:0- (19) infinite case, there arp energy bands. However, when it

becomes semi-infinitep—1 localized edge states may arise
¢,=0 implies that the wave function has the forl,  simultaneously and they are located exactly inphel gaps
~(...,0,...,0,...,0,.).as pointed out earliéf while the among these energy bands. The proposed superlattice struc-
second condition relatas, ; to ¢,. It is important to realize ture thus provides a convenient way to control the number of
that becaus®, no longer coincides withH, for p=3, Q,  edge states. The above result can be quite easily derived in
alone does not determine the energies and wave functions otuir formulation. First of all, Eq(20) implies that the ener-
the midgap states. Instead, beca@glV(=0, the operator gies of edge modes are exactly the energies of a finite atomic
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chain with uniform hoppingt. In other words, E 0.4 ' - ' ' '
=2t cogka) with ka=m#/p, m=1,2,... p—1. Note that

thesek’s occur exactly at the zone boundaries of the energy
bands, hence they appear within the energy gaps. Equatio

(19) further implies that for any edge mode, their wave func- 0.3¢

tion satisfies¥(p+1)=-t/t'¥(p-1). Since¥(1) and ¥ (p

-1) have the same amplitude, we get¥(p+1)| -

=[t/t'[|w(1)]. Therefore, as long a#/t'|<1, all midgap & 0.2
—

wave functions decay and hence thel midgap states ap-
pear at the same time.

Another example is to consider the limit whengoes to
infinity. Since for any given configuration of{t;,i 0.1}
=1,2,3,..}, t (1<i<p=«) is allowed to be any number,
effectively the wire is a disordered semi-infinite wire. It is
well known that the density of states at zero energy become: 0 . \ . . .
enhancett!? in the disordered wires. In the following, we -3 -2 -1 0 1 2 3
will find that such enhancement can also be understood fromn. Energy

the above point of view. Essentially, this is because for any _
FIG. 4. Averaged local density of states over 10 000 samples at

iven t; configuration, the system has a high probability to
gettle ilnto thg form of the éround—state We?vepfunction ydis—the end point for semi-infinite wires with disorders near the edge

cussed above. First, because the boundary breaks the tralﬁ)g-int' Only five lattice points are imposed with disorders. Here
. . e Y . random bonds and potentials are imposed on a uniform hopping
lational invariance, if one decomposes the wave function as

B . . . model witht=1.0, and for the solid line, the amplitudes of disorders
W=(o, e, it is still true that only the even sites are con- arest=0.2 andév=0.2, while for the dashed line, the amplitudes of

nected to the hard-wall boundary point. In this case, for anyjisorgers arest=0.3 andsv=0.3. One sees that slight disorders can
set of{t;}, the non-Hermitian matriA that enters Eq(2) is induce a peaklike structure at zero energy.

given by

IV. IMPURITY STATES AS MIDGAP STATES

t;, 0 O
In this section, we demonstrate that in the supersymmetric
tz t3 0 M . . . . .
A= . (22) approach the ordinarily recognized impurity states can be
0ty t5 - viewed as disguised midgap states. Let us consider the

Goodwin model for the surface stafeln this model, it was
proposed that the surface state arises because the potential
suddenly changes near the surface or the edge. In the tight-

For the zero-energy state, becausé.=0, it is easy to see dbinding limit, the Hamiltonian is given B§

that ¢».=0, while the wave function at odd sites is determine
by AT¢,=0. If we set\Ifézl, the wave function at siteN?
+1 iS given by‘{'%Nﬁl% (t1t3t5' * .tZN—l)/(t2t4t6‘ ° 'tZN)' Let X
=|ty_i/ty|, then If¥NY=~3N Inx. Clearly, because
In|WaN*Y - In|w3N~Y = In xy, the logarithm of the wave func-
tion at odd sites behaves effectively as a random Walkerl.
Since a random walker has a large probability to go 4g +
V¥, has a high probability of decaying to zero far from the
edge and becomes a localized zero-energy mode. This an

2N+1\2y — [N ; ;
ogy leads to((In[¥5™"))%)=VNo, with o being the standard spectrum, as illustrated in Fig.(l5. Clearly, we see from

Fati 2N+1| __ *+o\N ) ) K 3 i X
deviation of Inx. In other words|¥5™"| ~e*"™, where = Fig. 5 that the spectrum with an impurity state is essentially

correspond to states localized at either ends, respectively. Wgq square of the spectrum shown in Fi¢g)5i.e., the spec-
emphasize that this analysis indicates tbily the standard v, with a midgap state. ’

deviation oflnx is relevantand there is no need for the To establish the relation described above, we go back to
assum_pt|on of Gaussian-type randomness, which is often inyq previous analysis on the-t, model. As is obvious, the
voked in previous works. Furthermore, the random-walk na-

, spectrum oHS [=(H,)?] is the square of that fdH,, fulfill-
ture makes the zero-energy peak much more easily formeg, e yejation indicated in Fig. 5. It is hence useful and

Th|s is illustrated in Fig. 4, where we show that even slight ore transparent if we explicitly write dowS
disorders near the edge may induce features resembling zero-

)

Hg = tc'ci,q + H.c. +Uclc;. (23)
i=1

n other words, there is an impurity potential localized at the
first site. It is commonly recognized that under appropriate
(i(_)nditions, an impurity stat@n this case it is the Goodwin

%dge statemay arise and appear as an isolated line in the

bias peaks in tunneling measurements. In this case, the zero- AAT 0
energy state tends to decay from the edge but will not be- HS:< ) (24)
come localized. Instead, after joining the nondisorder bulk 0 A'A

region, it becomes a resonant st&t&uch phenomena may
have already been seen in experiméfts. where
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(a) (a) Soliton

/\ /-\ (b) Impurity
u

(b)

—& ® ® ® L @ o

FIG. 6. The equivalence of the electronic state in a SSH soliton
backgrounda) and in an impurity backgroun¢b). The electronic
state for an impurity resides only on the black pointgdn the thin
line represents hopping amplitutle while the thick line represents
hopping amplitudé,. In (b), the hopping amplitude igt,.

AT

FIG. 5. Schematic plots &) the spectrum with a midgap state standard approach.The discussion above is concerned with

and (b) the spectrum with an impurity state, which may appear atthe caseU<(_), h_e”C? the impurity energy resides on the left
the [:()o)sition (E}the solid line or thpe d;{shed line. Clea(my,);na?/pbe side (the solid IIHSQ in Fig. S(b)' ForU>0, the G(_)Odwm
viewed as the square @ (see text for detailsi.e., if one folds@) ~ Model maps to Hg. One obtains the same expression for the
with respect to the midgap state, one gétg impurity energyE;,,=U+t?/U except that it resides on the
right side(the dashed lingin Fig. 5b).

In addition to the energy of the impurity states, the above

ti tit 0 analysis also implies that the entire spectrum is simply
s_ant_| tt2 t§+t§ tit, - Eg=2t coska. Furthermore, the supersymmetric relation be-
Ho=AAT= 0 tit t2+f2 --- (25 tween even and odd sites enables one to write down all wave
e functions for the Goodwin model explicitly. This is entirely
due to the fact that the Hamiltonian of the supersymmetric
is the effective Hamiltonian for the odd sites and partner to the Goodwin model islg, which is a uniform:
s hopping model. We obtain the wave function for the impurity
t+t; 4ty o - state Wg(n)=(t/U)"?, while for the extended states,
s i | e B+B tt, - when U<0, Wq(n)=[y]U]sinnka+t/\[U]sin(n-1)ka]/Ey
He=A'A= 0 tt, B+ - (20 with E=+V|U|[+t?/|U|+2t coska, and when U>0,

We(n)=[\|U[sinnka-t/\]U[sin(n-1ka]/E,  with  E
=+|U|+t?/|U| -2t coska.

is the effective Hamiltonian for the even sites. One sees that One can also apply the same approach to the bulk case. In
HS andHZ differ by the potential at site 1. As mentioned, this Fig. 6@, we show that the soliton configuration in poly-
is entirely due to the missing bond cut off by the boundary.acetylene discussed by Su, Schrieffer, and Heéter SSH
On the other hand, even thoust¥ is block-diagonal, it does ~ soliton)!*!” is essentially a bulk impurity illustrated in
not imply that even and odd sites are independent from eachig. 6(b). The same analysis leads to the following results:
other. In fact, they are connected by the supercheig@he ~ For U<0, En,=—VU?+4t? and W;,,(n)=[|U]/(2t)
point is that except for the zero energy, which is an eigen=+/(U/2t)2+1]", while for U>0, Ej,,=VU?+4t> and
value ofH$, HS andHS share the same energy eigenvaliife  W;,,(n)=[-|U|/(2t) +/(U/2t)>+1]". Here n is measured
with E being the spectrum dfi,. The supersymmetric rela- from the impurity site. Note that, unlike the case for semi-
tion between even and odd sites enables one to solve thafinite chains, the impurity state for the bulk 1D chain exists

Goodwin modeHg as follows. One first rewrites for any U andt.
o The purpose of the above analysis is only for demonstra-
HS= [(tity)c ciuq + Hoc. +(8 + d)cc] - ticlc,. tion. In principle, it can also be applied to cases when the
i=1 potential extends from the first to other lattice points in the

27) Goodwin model. For instance, one can include an additional
termVclc, in the Goodwin model. In that case, the first and

Clearly, it shows that the effective Hamiltonian for the odd second bonds in the correspondifgt, model have to be
sites is equivalent to the Goodwin model witht;t,, U= different and denoted ag andt;,. One then obtains that
—t3, and u=—(t2+13). The wave function of the midgap state =t;t,=tt;,, U=t;>-t?-t2 and V=t,2-t2, since for any
on odd sites then becomes the wave function of the impuritghanges of the finite number of hoppings, the energy of the
state in the Goodwin model. Furthermore, the energy of thedge mode stays at zero. The energy of the impurity state is
impurity state can be easily found to Bg,,=-(t{+t). By still given by Ej,,=—(tZ+t3). Solvingt; andt in terms oft,
solving t; and t, in terms oft and U, we find Ej,,=U U, andV yields the energy of the impurity state.
+t2/U. Since the midgap states exist whefn<|t,|, the im- We close this section by pointing out that the idea of
purity state appears only wheti<|U|, consistent with the mapping impurity states to midgap states is quite general. In
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addition to the simplest version of the Goodwin model dis-is known that as long as the new energy found remains inside
cussed so far, it also works for more general cases. For irthe gap, the corresponding state is a localized state. In either
stance, consider the generalized Goodwin moﬁgl in of the above-men_tipned eff_ects, our re§ults will serve as use-
which one introduces an impurity potential at the first site offul inputs for attaining the final corrections.

thet;—t, model. This model can be mapped to the effective

Hamiltonian for the odd sites of g-t,—t;—t, model, i.e., ACKNOWLEDGMENTS

the p=4 (H,) model. Specifically, one finds thatis is We gratefully acknowledge discussions with Professor
equivalent to the block |n'|‘21 that describes the odd sites, Sungkr[ Y|p’ Professor Hsiu-Hau Lin, and Professor T. K.
while its supersymmetric partner is the originatt, model | ee and support from the National Science Council of the
with no impurity potential. The impurity state dfig is  Republic of China under Grant No. NSC 92-2112-M-007-
identified as the midgap state of thé¢, model atE=0. 038.

Simple calculation then yields E,,=t3/(2U)+U/2

+1[t3/(2U)+U/2]2+t2 Thus, one concludes that in general APPENDIX A: SUPERALGEBRA IN INFINITE
the impurity state oH, can be mapped to the midgap state p-PARTITE SYSTEMS
of Hyp.

In this appendix, detailed superalgebra behind our gener-

alized SUSY quantum mechanics is presented. For an infinite
V. SUMMARY AND OUTLOOK p-partite system, after modulp, the system reduces to the
set{1,2,3,... p} with each number representing different

In summary, in this work we have shown that the proper-gp|atiices. The reduced system is periodic, it being

ties of midgap states in semi-infinite 1D nanowires are dic yantified as 1. In this periodic space, a set of generators

tated by an underlying discrete supersymmetry. This super{Q ‘n.m=1.2 p} can be defined. Her®,, are pX p
. . . . nms !ty IR . nm
symmetric structure generalizes the ordinary supersymmetri ermitian matrices whose only nonvanishing elements are 1
quantum mechanics and offers a new point of view towar the nth row andmth column and themth row andnth
the origin of edge states. In the presence of the hard-wal olumn. Note thaf,, has only one element, 1, in theh
AP : ; _ . nn , 1,
boundary conditioriy=0), the sublattice which directly con- element along the diagonal. Obviously, whesa m, Q. per-

nects to the hard wall spans the null space of the SUPErsyMy tes the sub-wave-functions, and ¢,; when combined
m_etnc ground state. As a consequence, the energies of the the hopping strength,, in addition to permutation, it
midgap states are determined by the eigenvalues of a reducggl, rescales the wave functions. The Lie algebra formed by
Hamlltom.al.‘], Eq.(20)z Whpse Slze 1S much smaller th_an that Qnm IS @ superalgebra because the anticommutator is neces-
of the original Hamiltonian. This reduction in matrix size sary in order to be closed. The following are nontrivial com-

significantly reduces the computation cost for determiningy, tation relations:{Q, Qu=Qy, for |#n, {QnmQul
the occurrence of the midgap states and offers a way 0 mazon o0 for n<m. and (OO m]‘5, X Al the
- nn mm 1 nn» m ~ Ynm~<ns

nipulate them. As an application, we Investigate a structur ther commutators are zero. It is straightforward to check

with a superllatti_ce in hopping. In this case, the_ numper O%hat for infinite systems, the SUSY Hamiltoni&ty defined
edge states is simply the period of the superlattice minus :lin Sec. IIl commutes with alD,,, even if the operation of

Therefore, changing the period offers a way to control th :
number of localized electronic states at the edge of theém)(JIUIOp is not performed.
nanowires.

While so far in this work we have not considered
electron-electron interactions from adiabatic continuity, the |n this appendix, we outline the proof @HS,QP]:O for
results obtained here should still hold for cases when thgemi-infinite chains. We first WritQp=qp+q:,, whereq, is

electron-electron interactions are we@ah that quasiparticles optained by setting the last column@y to zero in Eq(18).

are well d_efine;d Moreover, if the_ “1D chain” results frqm It is then sufficient to provéHs, d,]=0. We note thaHs has
the reduction of a higher-dimensional structure where interthe following generic form:

actions are not important, then it is legitimate to ignore in-

APPENDIX B: DERIVATION OF [Hs,Q,]=0

teractions in its effective 1D model. This is of course not Suu Sz Siz 0
correct in truly 1D atomic chains, where it is known that S S Sis 0
interactions may dominate the physics and the quasiparticle _ 0
pictures may fail. In this case, however, the states we obtain Hs=| Sa1 S:2 Ses *Hs
can be used as the basis to express the full Hamiltamiih 0

oo Sp—l,p—l

interactions utilizing the relationc, = yo(i)cl, +eye(i)cl,. 0 0 0 0

When Coulomb interaction is included, it reduces to the

Anderson modéF in which the edge state acts as an impurity 0

state. The scattering of extended states by the edge states | H

essentially causes the Kondo effect, resulting in the zero-bias - 0 (B1)
peaks near the Fermi energie®n the other hand, the inter- 0---0 H-

action also corrects the localized edge state. This is conven-
tionally analyzed in the Fano-Anderson moéfein which it HereH2 has the same form as that of the SUSY Hamiltonian
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for the corresponding infinite chain except that semi-infinitestraightforward to show the[SO,AIp] has only one element
lattice pomts are removed, hence it is block-diagonal Wlth—tt which is the first element along the diagoK=ds; ;). To
the form(HQ)m=So8.m Wheren andm are the block indices obtaln Sim ONe needs to multiphH, to itself by n (<p)
and times becausels is a polynomial ofH, containing at most
the pth power ofH,. Now the multiplication ofH, to itselfn

0 t 0 0 times effectively hops a particle times. Sincen<p, only
t 0 0 when the particle starts from the lattice pointssi<p-1
SH=1 0 t 0 - - (B2)  will it have a chance to visit=0 and thus have missing paths
t wheni=0 is removed. It implies that a,,,, have only one
0 0 - t 0 element, which is also the first element along the diagonal. In

addition, Sp_lm 0 form=2. As a result, by using Eq16),
and t=t;t;ts - -t,. The block matrixS,, representsnissing we obtalnAlp S;»=0 and hence we only need to compute
hopping amplitudes that go between sublatticeandn due  S;_; ;. Since the only missing path between the point 1 and
to the presence of the boundary poinia0. When comput- the pointp 1 is1-0—1—2---—p-1, we find thatS,_; ;
ing [Hs,qp], one needs to compu[tSO,AIp], AIp-Slm, and -t tltz ‘tp-1012. With this result, when combined with
Ag_lvp-Sp_l,m, thus only S;,, and S, ; ,, are needed. It is [So Alp]— —ttyd15, e finally obtain[Hg, Q,]=0.
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