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Edge states of semi-infinite nanowires in the tight-binding limit are examined. We argue that understanding
these edge states provides a pathway to generic comprehension of surface states in many semi-infinite physical
systems. It is shown that the edge states occur within the gaps of the corresponding bulk spectrum(thus also
called the midgap states). More importantly, we show that the presence of these midgap states reflects an
underlying generalized supersymmetry. This supersymmetric structure is a generalized rotational symmetry
among sublattices and results in a universal tendency: all midgap states tend to vanish with periods commen-
surate with the underlying lattice. Based on our formulation, we propose a structure with superlattice in
hopping to control the number of localized electronic states occurring at the ends of the nanowires. Other
implications are also discussed. In particular, it is shown that the ordinarily recognized impurity states can be
viewed as disguised midgap states.
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I. INTRODUCTION

The one-dimensional(1D) wire has been of great theoret-
ical and experimental interest in the past. This is because of
not only the wide variety of fascinating phenomena it exhib-
its, but also the testing grounds it offers for ideas that may
become applicable in higher dimensions. In practice, 1D
wires needs not be physically one dimension. They may re-
sult from projection after a partial Fourier transformation
from higher-dimensional models. For instance, a superlattice
structure can be reduced to an equivalent 1D structure after a
partial Fourier transformation along the direction normal to
the layers. Similar examples included-wave superconduct-
ors, graphite sheet, and many other systems. Therefore, un-
derstanding the 1D wire is an ideal first step toward the un-
derstanding of any higher-dimensional problems. Further
boost for studying 1D wires comes from recent advances
achieved in nanotechnology. Here the feasibility for
bottom-up assembly of single nanowires1 has made direct
investigation of finite 1D wires possible. Nevertheless, con-
ventional studies of the 1D wire have mostly been focused
on its bulk properties, whereas assembled nanowires can
only have finite lengths and must terminate at some sites(the
ends, or the edges). It is therefore desirable to reconsider the
effects of the ends to the properties of the nanowires.

The commonly recognized edge(or surface) effects in the
physics of nanostructures are concerned with the large vol-
ume fraction of the boundaries. However, from either funda-
mental or practical viewpoints, the possible occurrence of
edge modes and their influences on the properties of the sys-
tem poses a much more interesting problem. For example,
when applying carbon nanotubes as emitters for screen dis-
plays, the occurrence of edge states may change the density
of electrons at the edge and thus affects the threshold work-
ing potential. It would therefore be of great technological
interest if one could devise a way to engineer the number of
edge states. From the fundamental viewpoint, the elegant
role of edge excitations in the physics of quantum Hall

systems2 is a well known example that illustrates the impor-
tance of edge states. Generally speaking, the edge states oc-
cur within the gap of the bulk energy spectrum and are called
the midgap states. The existence of these states causes
anomalous properties near the end, which can manifest in
tunneling measurements. A recently discovered example is
the zero-bias conductance peak observed in thedI /dV mea-
surement of the metal-d-wave superconductor junctions.3

When electron-electron interactions are present, as occurs for
an externally implemented magnetic impurity, “intrinsic”
Kondo effects may also arise due to these localized states,
causing a zero-bias anomaly near the Fermi energies.4 Fur-
thermore, if the system is finite, coupling between edge
states cannot be neglected. An example is the anomalous
paramagnetic behavior observed in carbon nanoribbons,5

where we have recently shown that there are residual antifer-
romagnetic couplings between edge spins in this system.6 All
these examples clearly illustrate the important role of edge
states in the physics and applications of nanostructures.

In previous work, applying the Green’s-function ap-
proach, we have shown that broken reflection symmetry is a
necessary condition for the occurrence of edge states, and the
energies of edge states are the roots to the Green’s function.3

In this work, resorting to the supersymmetric method, we
further develop a systematic way to determine the wave
functions and the precise energies of the edge states.

Conventionally, the usage of the supersymmetric method
in the condensed-matter physics has been focused on apply-
ing the supersymmetry(SUSY) quantum field theory to dis-
order systems.7 The application of the corresponding
s0+1d-dimensional limit, namely the SUSY quantum
mechanics,8 however, is quite limited. Nevertheless, it has
been realized9 that the zero-bias anomaly ind-wave super-
conductors is closely related with the SUSY quantum me-
chanics. These studies, however, are done in the continuum
limit, using the semiclassical approximation, while the more
relevant limit for high-Tc superconductors and many other
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systems is the tight-binding limit. Furthermore, the zero-
energy state was the primary focus, while not all the states
localized at the edge have zero energy. It is therefore impor-
tant to see if the idea of SUSY quantum mechanics can be
generalized to understand the finite-energy midgap states, in
particular those in the discrete condensed-matter systems, as
well. In this work, we shall show that this is indeed possible.
We shall first show that the semi-infinite tight-binding
d-wave superconductors belong to a more general class, the
bipartite system, and which can be well described by the
conventional SUSY quantum mechanics.8 Here the super-
symmetric partners are two sublattices of the same system
and the SUSY is characterized by a Hermitian superchargeQ
and the SUSY HamiltonianHS=hQ,Qj /2 with fHS,Qg=0.
For bipartite systems with nearest-neighbor hoppings,Q is
identical to the physical Hamiltonians;H2d and henceHS is
a quadratic functional ofH2. Furthermore, the zero-energy
state is annihilated by the supercharge, which then consti-
tutes one of the conditions for determining the zero-energy
state, while the other condition is to require it to decay from
the edge. It is found that this conventional SUSY quantum
mechanics can be appropriately extended to describe the
semi-infinite p-partite systems with nearest-neighbor hop-
pings. First, whenpù3, the original supercharge splits into
two: In addition to the physical HamiltonianHp, a second
superchargeQp can be formed. They both commute with the
SUSY HamiltonianHS. Furthermore, only whenp=2 is HS
<HS a quadratic functional ofHp. In general,HS is a poly-
nomial functional ofHp. This is reminiscent of the fractional
SUSY quantum mechanics10 in which the SUSY Hamil-
tonian is generalized to be an integer power of the super-
charge. Nevertheless, our model is different and provides
more a realistic generalization of the conventional SUSY.
The upshot of this generalization shows that, in addition to
the zero-energy state, all the midgap states, including finite-
energy ones, are annihilated by the superchargeQp. The
wave functions of the midgap states thus obtained tend to
vanish with the same period commensurate withp: C0
<s. . . ,0 , . . . ,0 , . . . ,0 , . . .d. These zeros cut the original
Hamiltonian into smaller ones so that the energies of the
midgap states are determined by the eigenvalues of the
Hamiltonian within each period. As a result, the matrix for
determining the energies of midgap states is of a size much
smaller than that of the original Hamiltonian. This reduction
in matrix size heavily reduces the computation for determin-
ing the occurrence of the midgap states and provides a way
to control the occurrence of the midgap states. As an appli-
cation, we propose a structure with a superlattice in hopping
with period p to control the number of localized electronic
states occurring at the end of nanowires. In that case, the
number of edge states is simplyp−1.

As the periodp goes to infinity, the ensemble of configu-
rations of hopping forms a semi-infinite disorder chain. This
limit has been extensively investigated during the past11

since Dyson’s seminal work,12 in which it was pointed out
that the average density of states(DOS) is enhanced at zero
energy. From our point of view, this enhancement also re-
flects that the system has high probabilities to take the
above-mentioned form for the ground state. The presence of
the boundary breaks translational invariance. Thus, unlike

the bulk case where the DOS at zero energy has no spatial
dependence, the enhanced DOS at zero energy for semi-
infinite disordered wires has the largest amplitude near the
edge. Even for slight disorders, the effects of enhanced DOS
at zero energy are still observable. This offers a possible
explanation for many unexpected zero-bias anomalies ob-
served in tunneling experiments because, unless extremely
carefully controlled, junction qualities are usually rather poor
and disorders can easily set in near the junctions.13

Other implications and extensions of our generalized
SUSY quantum mechanics will also be discussed. In particu-
lar, we shall demonstrate that by appropriate mappings, the
ordinarily recognized impurity state can be viewed as a dis-
guised midgap state. Such mapping provides a simple way to
construct the impurity wave function and the corresponding
energy. In addition to this application, possible extension to
include the electron-electron interactions will also be dis-
cussed at the end of this paper.

This paper is organized as follows. In Sec. II, we lay
down the basic tight-binding model considered in this work
and illustrate the SUSY quantum mechanics for the bipartite
systems. In Sec. III, we generalize the supercharge and su-
persymmetric Hamiltonian to thep-partite systems and dis-
cuss the disorder limit. We also point out how to engineer the
number of edge states by using a superlattice structure. By
applying the SUSY quantum mechanics, we illustrate in Sec.
IV how an impurity state can be viewed as a midgap state. In
Sec. V, we conclude and discuss possible generalization to
include electron-electron interactions. Appendixes A and B
are devoted to technical details of superalgebra and compu-
tation of commutators.

II. THEORETICAL FORMULATION AND
SUPERSYMMETRIC QUANTUM MECHANICS

We start by considering the 1D atomic chain as illustrated
in Fig. 1(a). This is the most general 1D atomic chain in
which reflection symmetry with respect to the edge point is
broken and, consequently, edge states might arise.3 In the
tight-binding limit, we consider the following Hamiltonian to
model this system:

Hp = o
i=1

`

tici
†ci+1 + H.c. +yici

†ci . s1d

Here the subscriptp indicates the period of the lattice andi is
the site index;ti is the hopping amplitude between sitei and

FIG. 1. Schematic plot of(a) an assembled atomic chain and(b)
the corresponding models with small periods:p=2, 3, and 4.
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its nearest neighbors,ci sci
†d is the electron annihilation(cre-

ation) operator, andyi is the local potential at sitei. We shall
assume that bothti andyi are periodic with periodp, namely
tp+i = ti and yp+i =yi. In real systems, this Hamiltonian may
correspond to an assembly ofp different atoms repeatedly
arranged into a line(see Fig. 1). For wires composed of
atoms of a single species,Hp may describe systems which
exhibit density-wave order. This includes polyacetylene,14

which has a dimerized structure and corresponds top=2, and
polymers with higher commensurability charge-density
waves.17 In the following, we shall callp=2 thet1-t2 model,
and similarly for models with higher periods. As mentioned
in the Introduction,Hp may also represent the reduced model
of a higher-dimensional structure after partial Fourier trans-
formation. For example, for a semi-infinite graphite sheet
with zigzag edge, since the system is translationally invariant
along the edge, a partial Fourier transformation can be ap-
plied along this direction, leading to an effective 1D model.
In this case, it is identical to thet1-t2 model except that now
t1 andt2 arek-dependent:3 t1=2t0 cossÎ3kya/2d, t2= t0, where
a is the lattice constant andky represents the Fourier mode.
This approach has been successfully applied to understand
the anomalous properties near the edge in carbon ribbons.6

As a final example, we note that the operatorci in Hp need
not be restricted to be the electron annihilation operator. For
example, after applying the Jordan-Wigner transformation,
one can map a 1D quantumXY spin chain to a 1D model
described byHp. Specifically, we haveti replaced by the
exchange coupling for nearest neighborsJi /2, and yi re-
placed by the local magnetic fieldhi. It is clear from these
examples thatHp is quite general and captures the physics of
many interesting systems.

To investigate the behavior ofHp near the edge, as a first
step we calculate the local density of states at the end point
using the generalized method of image developed in Ref. 3.
Figure 2 shows the typical local density of states at the end
point for small periods. The parameters are carefully chosen
so that all possible midgap states are present. In particular,
we have setyi =0, which amounts to choosing the energy
zero as the origin. These results show that midgap states are
indeed the most prominent features at the end point. To un-
derstand how the midgap states arise, we first investigate the
t1− t2 model withyi =0 in detail. In this case, since the lattice
is bipartite, it is convenient to distinguish the amplitudes at
the odd and the even sites by writing the wave function as
C=sfo,fed. The Hamiltonian then becomes

H2 = S 0 A

A† 0
D . s2d

Here0 is the null matrix andA is a non-Hermitian matrix,

A =1
t1 0 0 ¯

t2 t1 0 ¯

0 t2 t1 ¯

¯ ¯ ¯ ¯

2 . s3d

It is interesting to note that the adjoint ofA satisfies

A† = «A« with « =1
0 0 ¯ 1

0 ¯ 1 0

¯ ¯ ¯ ¯

1 0 ¯ 0
2 . s4d

Here the operator« effectively reflects the wave function
with respect to the midpoint of the lattice.

In the case of infinite chains, it is not hard to check that
the corresponding matricesA and A† commute with each
other and hence can be diagonalized simultaneously in Fou-
rier space. For semi-infinite chains, however,A and A† do
not commute and the spectrum of thet1− t2 model can be
best understood in terms of the supersymmetric quantum
mechanics.8 For this purpose, we first identifyH2 as thesu-
percharge Q2, which connects even and odd sites. The block-
diagonal matrixsH2d2 s;HSd is then identified as(up to a
factor of 2) the corresponding supersymmetric Hamiltonian,
whose diagonal blocksHo

S;AA † andHe
S;A†A are, respec-

tively, the effective Hamiltonians for the odd and the even
sites. Note that becauseA and A† do not commute,Ho

S

ÞHe
S. We will show below that the difference betweenHo

S

and He
S is the origin of the midgap states. Obviously,HS is

positive definite with the possibility when its spectrum
touches zero. When the latter happens, the ground-state en-
ergy ofHS vanishes, and the ground-state wave functionsfe
andfo fC0=sfo,fedg have to be the zero-energy eigenfunc-
tion of A andA†, i.e., Afe=0 andA†fo=0. In other words,
the supercharge annihilates the ground-state wave function
C0,

Q2C0 = H2C0 = 0. s5d

Clearly, in this case, the system has good supersymmetry
because the ground state is invariant under “rotation” be-
tween even and odd sites,

FIG. 2. The local density of states at the end point for small
periods:p=2, 3, and 4. The parameters are carefully chosen so that
the midgap states are manifested. Top:t1=2.0, t2=3.0 sp=2d;
middle: t1=2.5, t2=1.8, t3=3.0 sp=3d; bottom: t1=2.4, t2=2.8, t3
=1.3, t4=3.4 sp=4d. All potential yi =0, and we have included a
lifetime d=0.02.
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eiuQ2C0 = C0, s6d

whereu is any real number. The non-Hermiticity ofA and
A† implies that forward and backward hopping amplitudes
between two sites are different, and hence the eigenfunctions
have to either grow or decay from the end point. Obviously,
because of the relationA†=«A«, any nontrivial eigenfunc-
tions satisfyfe=«fo. Therefore, iffo decays from the edge,
fe must grow from the edge(and vice versa). For semi-
infinite chains, only the even sites are connected with the
hard-wall boundary point. Thusfe is forced to vanish while
fo decays into the bulk, so thatC0=sfo,0d. Note that the
other possible stateC0=s0,fed resides on the other end of
the chain and is pushed to infinity. Therefore, speaking over-
all, there is only half a chance for the existence of the ground
statesfo,0d. This is also reflected in the hopping strength
difference. Indeed, we find thatfo decays only whent1, t2.
In this case,Ho

S has a nontrivial zero energy eigenfunction,
while He

S does not. Therefore, the system has good super-
symmetry withthe ground stateC0 being a localized state.
For finite energies, however,fe and fo need not be eigen-
functions ofA andA†. Nevertheless, the supersymmetry al-
lows a simple and elegant way to find the whole spectrum for
the casep=2. This is becauseHe

S has the exact form asH1
sp=1d with ti = t1t2 andvi =st1

2+ t2
2d. Since this is just the or-

dinary uniform hopping model, one can easily write down
the eigenstate:fesnd=sin 2nk. The wave function at odd site
can then be found by using the supercharge operator. We find
that fo=Afe/E, with E being the spectrum ofH2 which
satisfiesE2= t1

2+ t2
2+2t1t2 cos 2k. SinceE2ù st1− t2d2, an en-

ergy gap opens up aroundE=0 whent1Þ t2. In the case of
t1, t2, the ground stateC0 then arises as a midgap state.
Note thatHo

S is almost identical toHe
S except for the potential

energyv1= t1
2 at the end point; the deficit energyt2

2 is entirely
due to the missing bond cut off by the boundary. We will
elaborate on this in Sec. IV.

We now address the effects of the potentialvi. For p=2, it
is convenient to denote the potentials over the even sitesve
and the odd sitesvo. This decomposition, however, renders
the particle-hole symmetry invalid at the level of the super-
charge H2. Nonetheless, the spectrumsEd of H2 can be
mapped to the original spectrum ofHS with vi =0 s;ES

0d. For
ES

0Þ0, this mapping is given byES
0=sE−vedsE−vod, while

for ES
0=0, sincefe=0 still holds, one hasE=vo. Hence even

though the physical spectrumE may have no particle-hole
symmetry, after appropriate transformations, the symmetric
structure can be restored inES

0; in particular, the midgap state
survives, as clearly demonstrated in Fig. 3. For higher peri-
ods, the same manipulations as above can lead to similar
conclusions. Therefore, unless explicitly needed, we shall ig-
norevi in the following.

Let us now apply the supersymmetric method to semi-
infinite superconductors.9 After partial Fourier transforma-
tion along the interface, the problem becomes 1D supercon-
ductors with an end point. In this case, it is convenient to
write the wave function as C=su,vd, with u
=su1,u2,u3, . . .d being particlelike andv=sv1,v2,v3, . . .d be-
ing holelike wave functions. The reduced mean-field(BCS)

Hamiltonian is Dirac-like8 and can be generally written as

HBCS= SM Q

Q − M
D , s7d

where M corresponds to the reduced 1D Hamiltonian for
particles andQ is essentially the pairing potential. One can
also rewriteHBSC=M ^ sz+Q ^ sx and treat this problem as
a spin in the “magnetic field”sQ ,0 ,M d pointing in thex-z
plane. This analogy suggests that it is possible to rotate the
magnetic field to thex-y plane. Indeed, this can be achieved
by a rotation of 2p /3 with respect to the axis(1, 1, 1). The
transformation matrix9 is

U =
1
Î2

S1 1

i − i
D , s8d

where1 and i are semi-infinite matrices. The rotated Hamil-
tonian then takes the form of a supercharge likeH2,

HBCS8 = U†HBCSU = S 0 M − iQ

M + iQ 0
D . s9d

The wave function is rotated accordingly:C8=U†C. There-
fore, in the supersymmetric form, particles and holes are
mixed. As an illustration, we consider the mean-field Hamil-
tonian ford-wave superconductors,

HR = − o
ki j l,s

t0cis
† cjs + Di jsci↑cj↓ − ci↓cj↑d + H.c., s10d

whereki j l denotes the nearest-neighbor bonds, andt0 andDi j

are, respectively, the corresponding hopping andd-wave
pairing amplitudes. For the(1, 1, 0) interface, after Fourier
transformation along the interface(which is taken to be they
direction), we obtain3

FIG. 3. The effect of the potential is to break the particle-hole
symmetry so that two side bands are distorted. However, the mid-
gap state is not changed ifvo=0. The parameters aret1=0.7 and
t2=2.0. For the solid line,vo=0, ve=0, while for the dashed line,
vo=0, ve=0.5.
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A = M − iQ =1
− m − t + d 0 ¯

− t − d − m − t + d ¯

0 − t − d − m ¯

¯ ¯ ¯ ¯

2 , s11d

where m is the chemical potential,t=2t0 cosskya/Î2d, and
d=2D0 sinskya/Î2d. The model for tight-bindingd-wave su-
perconductors is unique in the sense that the non-Hermiticity
of A andA† can be removed by a gauge transformation. For
this purpose, we writet−d= t̃eg and t+d= t̃e−g with t̃
=Ît2−d2 ande2g=st−dd / st+dd. The eigenfunctionCE of A
is thus the gauge transformation of the eigenfunctionfE of

A0 =1
− m − t̃ 0 ¯

− t̃ − m − t̃ ¯

0 − t̃ − m ¯

¯ ¯ ¯ ¯

2 . s12d

Specifically, we obtainCEsnd=e−ngfE [for A†, one obtains
CEsnd=engfE]. Furthermore,CE and fE have the same ei-
genvalueE. This implies that the calculation of the zero
mode is related to the spectrum ofA0. If we restrict our
discussion to the propagating modes, the spectrum ofA0 is
simply the ordinary cosine band. We find that when
−2Ît2−d2,m,2Ît2−d2 is satisfied,A andA† can, respec-
tively, support zero modes of the forms0,e−ngfE=0d and
sengfE=0,0d. In this case, the ground state ofHS is selected
by the sign ofg, and thus the zero-energy midgap state is
given by

usnd =
1
Î2

S t − udu
t + uduD

n/2

sinskFnad, s13d

vsnd = sgnsdd
i

Î2
S t − udu

t + uduD
n/2

sinskFnad. s14d

HerekF is determined by −2Ît2−d2 cosskFad=m and depends
on ky; therefore, even though the midgap states for different

ky’s have the same zero energy, their wave functions have a
ky dependence. Note that for demonstration, we have only
considered the case whenkF is real. Complete solutions,
however, require us to include the situation whenkF is
complex.15 In both cases, the supersymmetry structure en-
ables one to write down the explicit form of the zero-energy
mode near the interface(1, 1, 0).

III. GENERALIZED SUPERCHARGE
AND ITS CONSEQUENCES

We now generalize the above results to higher periodsp
ù3. It is useful to decompose the wave function asC
=sf1,f2, . . . ,fpd, wherefn denotes the sub-wave-function
formed by hCskp+nd ;k=0,1,2, . . .j. The Hamiltonian is
then cast in the form

Hp =1
0 A12 0 ¯ A1p

A12
† 0 A23 ¯ 0

0 A23
† 0 ¯ ¯

¯ ¯ ¯ ¯ Ap−1,p

A1p
† 0 ¯ Ap−1,p

† 0
2 . s15d

Again, here0 and Anm are block matrices; for allnÞp,
Anm= tn1 are diagonal, while forsm,nd=s1,pd,

A1p =1
0 0 0 ¯

tp 0 0 ¯

0 tp 0 ¯

¯ ¯ ¯ ¯

2 . s16d

To understand what happens for the semi-infinite chain, it is
useful to start from the infinite chain with HamiltonianHp

`.
In this case,Hp

` also takes the same form except thatAnm are
further extended toi =−`. If we remove the hopping strength
tn and combine the remainingAnm with Anm

† into Qnm for all
m andn pairs,Qnm form a superalgebra if modulop is per-
formed (see Appendix A for mathematical details). The en-
ergy bands ofHp

` are determined by

PsE,kd = det1
E − t1e

ik 0 ¯ − tpe
−ik

− t1e
−ik E − t2e

ik
¯ 0

0 − t2e
−ik E ¯ ¯

¯ ¯ ¯ ¯ − tp−1e
ik

− tpe
ik 0 ¯ − tp−1e

−ik E
2 = 0, s17d

whereE is the energy andk is the Fourier mode. In general,
there are at mostp energy bands. However, since in the
polynomial PsE,kd, s−1dp+12t1t2t3¯ tp cosspkd is the only
term that depends on k, the function PsE,kd
−s−1dp+12t1t2t3¯ tp cosspkd maps p bands into one single

band: 2t1t2t3¯ tp cosspkd. This important observation im-
plies that when Hp=Hp

`, the operator HS; PsHp,0d
−s−1dp+12t1t2t3¯ tp is block-diagonal[there arep blocks
with one for eachfi, see Eqs.(B1) and (B2)] and folds the
spectrum ofHp

` into one single band.16 Therefore,HS is simi-
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lar to the supersymmetry HamiltonianHS. Indeed, forp=2,
we find HS=H2

2−st1
2+ t2

2d, which is essentiallyHS.
For infinite chains,HS is highly symmetric. In fact, it

commutes with allQmn. This reflects that it is symmetric
under the permutation ofn and m, but it is more than that
because any linear combination ofotmnQmn also commutes
with HS. For semi-infinite chains, however, the above sym-
metry is broken: Not allQmn commute withHS. Physically,
this is obvious because nowfp is special and is the only
component that connects with the boundary pointi =0 di-
rectly. As a result,HS is not completely block-diagonalized.
In fact, because even for the infinite chainsfpsnd
=sinsknpad is a solution for thepth block and it satisfies the
hard-wall boundary condition ati =0, the pth block is not
affected. Therefore, there are only two blocks: one is for the
space formed byfp; the other mixesf1, f2, . . . andfp−1.
This is demonstrated in Eq.(B1), where we denote the block
Hamiltonians byH+ andH−.

Clearly, thet1− t2 model is special becauseH+ andH− are
of the same size so thatHS is completely block-diagonal.
This is where the usual SUSY quantum mechanics applies.
For pù3, H+ andH− are not of the same size; a generaliza-
tion of SUSY quantum mechanics is needed. First, it is im-
portant to see if one can find an operator, similar to the
superchargeQ2, that commutes withHS. Hp is obviously a
solution becauseH2=Q2. However, in analogy to the case of
p=2, a second supercharge by collecting all block matrices
in Hp that connectsfp to other components can be formed:

Qp =1
0 0 ¯ ¯ A1p

0 0 ¯ ¯ 0

¯ ¯ 0 ¯ ¯

¯ ¯ ¯ ¯ Ap−1,p

A1p
† 0 ¯ Ap−1,p

† 0
2 for p ù 3.

s18d

Note that the above definition can also includep=2. In that
case, one squeezes the blockA1p into A12 to obtain the form
of H2 in Eq. (2). BecauseA12= t11 andA1p is given by Eq.
(16) with tp being replaced byt2, addingA12 andA1p repro-
ducesA defined in Eq.(3) precisely. Hence Eq.(18) can be
regarded as an “analytical continuation” ofQ2 to pù3. Fur-
thermore, as shown in Appendix B,fHS,Qpg=0 is satisfied,
thusQp provides a faithful generalization ofQ2. It coincides
with Hp only when p=2. Note that from Appendix B, one
can actually see that out ofQmn contained inHp, Qp andHp
(and their linear combinations) are the only two generators
that commute withHS for generalp.

Applying the condition that the supercharge annihilates
midgap statesC0, one finds that

fp = 0 andA1p
† f1 + Ap−1,p

† fp−1 = 0. s19d

fp=0 implies that the wave function has the formC0
<s. . . ,0 , . . . ,0 , . . . ,0 , . . .d as pointed out earlier,18 while the
second condition relatesfp−1 to f1. It is important to realize
that becauseQp no longer coincides withHp for pù3, Qp
alone does not determine the energies and wave functions of
the midgap states. Instead, becauseQpC0=0, the operator

Hp−Qp determines the energies and further provides rela-
tions betweenf2, . . . ,fp−1, andf1. This analysis shows that
the energiesEm of midgap states can be different from zero
and must satisfy

det1
− Em t1 0 ¯ 0

t1 − Em t2 ¯ 0

0 t2 − Em ¯ ¯

¯ ¯ ¯ ¯ tp−2

0 0 ¯ tp−2 − Em

2 = 0. s20d

Therefore, there are at mostp−1 midgap states. To stabilize
the midgap states, one further requiresC0 to decay away
from the edge. In the case ofp=2, this results in the condi-
tion t1, t2. For p=3, one first obtains from Eq.(20) Em
= ± t1 and f1= ±f2, which, when combined with Eq.(19),
results inCs3k+nd= ± t3/ t2Cs3k−3+nd. Thus midgap states
exist only whent2, t3. In general, one needs to relatecp−1 to
c1. This further reduces the matrix in Eq.(20), and by de-
fining the sp−2d3 sp−2d matrix,

h =1
− Em t1 0 ¯ 0

t1 − Em t2 ¯ 0

0 t2 − Em ¯ ¯

¯ ¯ ¯ ¯ tp−3

0 0 ¯ tp−3 − Em

2 , s21d

we find thatc1=−tp−2h1,p−2
−1 cp−1. When combined with Eq.

(19), we obtainc1= tp−2tp/ tp−1h1,p−2
−1 cp+1. Hence the midgap

state with energyEm exists only whentp−2tph1,p−2
−1 . tp−1.

19

Note that for higher periods, commensurate structures may
appear in sublattices. These structures resemble the SUSY
structures in lower periods. For example, whenp=4, there
are at most three midgap states atEm=0, ±Ît1

2+ t2
2. In this

case, the HamiltonianH4
2 is already block-diagonal in even

and odd sites. For even sites,H4
2 is a period of two and

belongs toH2 with t18= t1t4, t28= t2t3, m18= t1
2+ t2

2, and m28= t3
2

+ t4
2 with the midgap energy given byEm8 =m18= t1

2+ t2
2. It is

clear thatEm8 is precisely the square ofEm= ±Ît1
2+ t2

2, and
thus ±Ît1

2+ t2
2 are the midgap states resulting from the super-

symmetry within the even sublattice. The remaining midgap
state atEm=0 originates from the same supersymmetric
structure as that forp=2 between even and odd sites. Hence
fe vanishes forEm=0. Obviously, the same effects may oc-
cur for anyp that is not a prime number.

As an application, we point out that a simple way to en-
gineer localized edge states in a nanowire(such as carbon
nanotubes) is to introduce impurity bonds periodically and
form a semi-infinite superlattice structure. In this case, one
has t1= t2=¯ = tp−1; t while tp; t8. It is known that in the
infinite case, there arep energy bands. However, when it
becomes semi-infinite,p−1 localized edge states may arise
simultaneously and they are located exactly in thep−1 gaps
among these energy bands. The proposed superlattice struc-
ture thus provides a convenient way to control the number of
edge states. The above result can be quite easily derived in
our formulation. First of all, Eq.(20) implies that the ener-
gies of edge modes are exactly the energies of a finite atomic
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chain with uniform hopping t. In other words, E
=2t cosskad with ka=mp /p, m=1,2, . . . ,p−1. Note that
thesek’s occur exactly at the zone boundaries of the energy
bands, hence they appear within the energy gaps. Equation
(19) further implies that for any edge mode, their wave func-
tion satisfiesCsp+1d=−t / t8Csp−1d. SinceCs1d and Csp
−1d have the same amplitude, we getuCsp+1du
= ut / t8uuCs1du. Therefore, as long asut / t8u,1, all midgap
wave functions decay and hence thep−1 midgap states ap-
pear at the same time.

Another example is to consider the limit whenp goes to
infinity. Since for any given configuration ofhti , i
=1,2,3, . . .j, ti s1ø i øp=`d is allowed to be any number,
effectively the wire is a disordered semi-infinite wire. It is
well known that the density of states at zero energy becomes
enhanced11,12 in the disordered wires. In the following, we
will find that such enhancement can also be understood from
the above point of view. Essentially, this is because for any
given ti configuration, the system has a high probability to
settle into the form of the ground-state wave function dis-
cussed above. First, because the boundary breaks the trans-
lational invariance, if one decomposes the wave function as
C=sfo,fed, it is still true that only the even sites are con-
nected to the hard-wall boundary point. In this case, for any
set of htij, the non-Hermitian matrixA that enters Eq.(2) is
given by

A =1
t1 0 0 ¯

t2 t3 0 ¯

0 t4 t5 ¯

¯ ¯ ¯ ¯

2 . s22d

For the zero-energy state, becauseAfe=0, it is easy to see
thatfe=0, while the wave function at odd sites is determined
by A†fo=0. If we setC0

1=1, the wave function at site 2N
+1 is given byC0

2N+1<st1t3t5¯ t2N−1d / st2t4t6¯ t2Nd. Let xi

;ut2i−1/ t2iu, then lnuC0
2N+1u<oi=1

N ln xi. Clearly, because
lnuC0

2N+1u−lnuC0
2N−1u< ln xN, the logarithm of the wave func-

tion at odd sites behaves effectively as a random walker.
Since a random walker has a large probability to go to ±`,
C0 has a high probability of decaying to zero far from the
edge and becomes a localized zero-energy mode. This anal-
ogy leads tokslnuC0

2N+1ud2l=ÎNs, with s being the standard
deviation of lnx. In other words,uC0

2N+1u,e±sÎN, where6
correspond to states localized at either ends, respectively. We
emphasize that this analysis indicates thatonly the standard
deviation of ln x is relevantand there is no need for the
assumption of Gaussian-type randomness, which is often in-
voked in previous works. Furthermore, the random-walk na-
ture makes the zero-energy peak much more easily formed.
This is illustrated in Fig. 4, where we show that even slight
disorders near the edge may induce features resembling zero-
bias peaks in tunneling measurements. In this case, the zero-
energy state tends to decay from the edge but will not be-
come localized. Instead, after joining the nondisorder bulk
region, it becomes a resonant state.20 Such phenomena may
have already been seen in experiments.13

IV. IMPURITY STATES AS MIDGAP STATES

In this section, we demonstrate that in the supersymmetric
approach the ordinarily recognized impurity states can be
viewed as disguised midgap states. Let us consider the
Goodwin model for the surface state.21 In this model, it was
proposed that the surface state arises because the potential
suddenly changes near the surface or the edge. In the tight-
binding limit, the Hamiltonian is given by21

HG = o
i=1

`

tci
†ci+1 + H.c. +Uc1

†c1. s23d

In other words, there is an impurity potential localized at the
first site. It is commonly recognized that under appropriate
conditions, an impurity state(in this case it is the Goodwin
edge state) may arise and appear as an isolated line in the
spectrum, as illustrated in Fig. 5(b). Clearly, we see from
Fig. 5 that the spectrum with an impurity state is essentially
the square of the spectrum shown in Fig. 5(a), i.e., the spec-
trum with a midgap state.

To establish the relation described above, we go back to
the previous analysis on thet1− t2 model. As is obvious, the
spectrum ofHS f;sH2d2g is the square of that forH2, fulfill-
ing the relation indicated in Fig. 5. It is hence useful and
more transparent if we explicitly write downHS

HS= SAA † 0

0 A†A
D , s24d

where

FIG. 4. Averaged local density of states over 10 000 samples at
the end point for semi-infinite wires with disorders near the edge
point. Only five lattice points are imposed with disorders. Here
random bonds and potentials are imposed on a uniform hopping
model witht=1.0, and for the solid line, the amplitudes of disorders
aredt=0.2 anddy=0.2, while for the dashed line, the amplitudes of
disorders aredt=0.3 anddy=0.3. One sees that slight disorders can
induce a peaklike structure at zero energy.
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Ho
S= AA † =1

t1
2 t1t2 0 ¯

t1t2 t1
2 + t2

2 t1t2 ¯

0 t1t2 t1
2 + t2

2
¯

¯ ¯ ¯ ¯

2 s25d

is the effective Hamiltonian for the odd sites and

He
S= A†A =1

t1
2 + t2

2 t1t2 0 ¯

t1t2 t1
2 + t2

2 t1t2 ¯

0 t1t2 t1
2 + t2

2
¯

¯ ¯ ¯ ¯

2 s26d

is the effective Hamiltonian for the even sites. One sees that
Ho

S andHe
S differ by the potential at site 1. As mentioned, this

is entirely due to the missing bond cut off by the boundary.
On the other hand, even thoughHS is block-diagonal, it does
not imply that even and odd sites are independent from each
other. In fact, they are connected by the superchargeH2. The
point is that except for the zero energy, which is an eigen-
value ofHo

S, Ho
S andHe

S share the same energy eigenvalueE2,
with E being the spectrum ofH2. The supersymmetric rela-
tion between even and odd sites enables one to solve the
Goodwin modelHG as follows. One first rewrites

Ho
S= o

i=1

`

fst1t2dci
†ci+1 + H.c. +st1

2 + t2
2dci

†cig − t2
2c1

†c1.

s27d

Clearly, it shows that the effective Hamiltonian for the odd
sites is equivalent to the Goodwin model witht= t1t2, U=
−t2

2, andm=−st1
2+ t2

2d. The wave function of the midgap state
on odd sites then becomes the wave function of the impurity
state in the Goodwin model. Furthermore, the energy of the
impurity state can be easily found to beEimp=−st1

2+ t2
2d. By

solving t1 and t2 in terms of t and U, we find Eimp=U
+ t2/U. Since the midgap states exist whenut1u, ut2u, the im-
purity state appears only whenutu, uUu, consistent with the

standard approach.21 The discussion above is concerned with
the caseU,0, hence the impurity energy resides on the left
side (the solid line) in Fig. 5(b). For U.0, the Goodwin
model maps to −Ho

S. One obtains the same expression for the
impurity energyEimp=U+ t2/U except that it resides on the
right side(the dashed line) in Fig. 5(b).

In addition to the energy of the impurity states, the above
analysis also implies that the entire spectrum is simply
EG=2t coska. Furthermore, the supersymmetric relation be-
tween even and odd sites enables one to write down all wave
functions for the Goodwin model explicitly. This is entirely
due to the fact that the Hamiltonian of the supersymmetric
partner to the Goodwin model isHe

S, which is a uniform
hopping model. We obtain the wave function for the impurity
state CGsnd=st /Udn−1, while for the extended states,
when U,0, CGsnd=fÎuUusinnka+ t /ÎuUusinsn−1dkag /Ek

with Ek= ±ÎuUu+ t2/ uUu+2t coska, and when U.0,
CGsnd=fÎuUusinnka− t /ÎuUusinsn−1dkag /Ek with Ek

= ±ÎuUu+ t2/ uUu−2t coska.
One can also apply the same approach to the bulk case. In

Fig. 6(a), we show that the soliton configuration in poly-
acetylene discussed by Su, Schrieffer, and Heeger(the SSH
soliton)14,17 is essentially a bulk impurity illustrated in
Fig. 6(b). The same analysis leads to the following results:
For U,0, Eimp=−ÎU2+4t2 and Cimpsnd=fuUu / s2td
−ÎsU /2td2+1gunu, while for U.0, Eimp=ÎU2+4t2 and
Cimpsnd=f−uUu / s2td+ÎsU /2td2+1gunu. Here n is measured
from the impurity site. Note that, unlike the case for semi-
infinite chains, the impurity state for the bulk 1D chain exists
for any U and t.

The purpose of the above analysis is only for demonstra-
tion. In principle, it can also be applied to cases when the
potential extends from the first to other lattice points in the
Goodwin model. For instance, one can include an additional
term Vc2

†c2 in the Goodwin model. In that case, the first and
second bonds in the correspondingt1− t2 model have to be
different and denoted ast18 and t28. One then obtains thatt
= t1t2= t18t28, U= t18

2− t1
2− t2

2, and V= t28
2− t2

2, since for any
changes of the finite number of hoppings, the energy of the
edge mode stays at zero. The energy of the impurity state is
still given by Eimp=−st1

2+ t2
2d. Solving t1

2 and t2
2 in terms oft,

U, andV yields the energy of the impurity state.
We close this section by pointing out that the idea of

mapping impurity states to midgap states is quite general. In

FIG. 5. Schematic plots of(a) the spectrum with a midgap state
and (b) the spectrum with an impurity state, which may appear at
the position of the solid line or the dashed line. Clearly,(b) may be
viewed as the square of(a) (see text for details), i.e., if one folds(a)
with respect to the midgap state, one gets(b).

FIG. 6. The equivalence of the electronic state in a SSH soliton
background(a) and in an impurity background(b). The electronic
state for an impurity resides only on the black points. In(a), the thin
line represents hopping amplitudet1, while the thick line represents
hopping amplitudet2. In (b), the hopping amplitude ist1t2.
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addition to the simplest version of the Goodwin model dis-
cussed so far, it also works for more general cases. For in-

stance, consider the generalized Goodwin modelH̃G in
which one introduces an impurity potential at the first site of
the t1− t2 model. This model can be mapped to the effective
Hamiltonian for the odd sites of at18− t28− t38− t48 model, i.e.,

the p=4 sH4d model. Specifically, one finds thatH̃G is
equivalent to the block inH4

2 that describes the odd sites,
while its supersymmetric partner is the originalt1− t2 model

with no impurity potential. The impurity state ofH̃G is
identified as the midgap state of theH4 model at E=0.
Simple calculation then yields Eimp= t2

2/ s2Ud+U /2
+Îft2

2/ s2Ud+U /2g2+ t1
2. Thus, one concludes that in general

the impurity state ofHp can be mapped to the midgap state
of H2p.

V. SUMMARY AND OUTLOOK

In summary, in this work we have shown that the proper-
ties of midgap states in semi-infinite 1D nanowires are dic-
tated by an underlying discrete supersymmetry. This super-
symmetric structure generalizes the ordinary supersymmetric
quantum mechanics and offers a new point of view toward
the origin of edge states. In the presence of the hard-wall
boundary conditionsc=0d, the sublattice which directly con-
nects to the hard wall spans the null space of the supersym-
metric ground state. As a consequence, the energies of the
midgap states are determined by the eigenvalues of a reduced
Hamiltonian, Eq.(20), whose size is much smaller than that
of the original Hamiltonian. This reduction in matrix size
significantly reduces the computation cost for determining
the occurrence of the midgap states and offers a way to ma-
nipulate them. As an application, we investigate a structure
with a superlattice in hopping. In this case, the number of
edge states is simply the period of the superlattice minus 1.
Therefore, changing the period offers a way to control the
number of localized electronic states at the edge of the
nanowires.

While so far in this work we have not considered
electron-electron interactions from adiabatic continuity, the
results obtained here should still hold for cases when the
electron-electron interactions are weak(so that quasiparticles
are well defined). Moreover, if the “1D chain” results from
the reduction of a higher-dimensional structure where inter-
actions are not important, then it is legitimate to ignore in-
teractions in its effective 1D model. This is of course not
correct in truly 1D atomic chains, where it is known that
interactions may dominate the physics and the quasiparticle
pictures may fail. In this case, however, the states we obtain
can be used as the basis to express the full Hamiltonian(with
interactions) utilizing the relationcis

† =c0sidc0s
† +oEcEsidcEs

† .
When Coulomb interaction is included, it reduces to the
Anderson model22 in which the edge state acts as an impurity
state. The scattering of extended states by the edge states
essentially causes the Kondo effect, resulting in the zero-bias
peaks near the Fermi energies.4 On the other hand, the inter-
action also corrects the localized edge state. This is conven-
tionally analyzed in the Fano-Anderson model,22 in which it

is known that as long as the new energy found remains inside
the gap, the corresponding state is a localized state. In either
of the above-mentioned effects, our results will serve as use-
ful inputs for attaining the final corrections.
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APPENDIX A: SUPERALGEBRA IN INFINITE
p-PARTITE SYSTEMS

In this appendix, detailed superalgebra behind our gener-
alized SUSY quantum mechanics is presented. For an infinite
p-partite system, after modulop, the system reduces to the
set h1,2,3, . . . ,pj with each number representing different
sublattices. The reduced system is periodic, withp+1 being
identified as 1. In this periodic space, a set of generators
hQnm;n,m=1,2, . . . ,pj can be defined. HereQnm are p3p
Hermitian matrices whose only nonvanishing elements are 1
in the nth row andmth column and themth row andnth
column. Note thatQnn has only one element, 1, in thenth
element along the diagonal. Obviously, whennÞm, Qnm per-
mutes the sub-wave-functionsfn and fm; when combined
with the hopping strengthtnm, in addition to permutation, it
also rescales the wave functions. The Lie algebra formed by
Qnm is a superalgebra because the anticommutator is neces-
sary in order to be closed. The following are nontrivial com-
mutation relations:hQlm,Qmnj=Qln for l Þn, hQnm,Qnmj
=2Qnn+2Qmm for nÞm, and fQnn,Qmmg=dnmQn; all the
other commutators are zero. It is straightforward to check
that for infinite systems, the SUSY HamiltonianHS defined
in Sec. III commutes with allQnm even if the operation of
modulop is not performed.

APPENDIX B: DERIVATION OF †HS,Qp‡=0

In this appendix, we outline the proof offHS,Qpg=0 for
semi-infinite chains. We first writeQp=qp+qp

†, whereqp is
obtained by setting the last column inQp to zero in Eq.(18).
It is then sufficient to provefHS,qpg=0. We note thatHS has
the following generic form:

HS=1
S11 S12 S13 ¯ 0

S21 S22 S23 ¯ 0

S31 S32 S33 ¯ ¯

¯ ¯ ¯ Sp−1,p−1 0

0 0 ¯ 0 0
2 + HS

0

;1
0

H+
¯

0

0¯ 0 H−
2 . sB1d

HereHS
0 has the same form as that of the SUSY Hamiltonian

MIDGAP STATES AND GENERALIZED SUPERSYMMETRY IN SEMI-… PHYSICAL REVIEW B 70, 205408(2004)

205408-9



for the corresponding infinite chain except that semi-infinite
lattice points are removed, hence it is block-diagonal with
the formsHS

0dnm=S0dnm, wheren andm are the block indices
and

S0 =1
0 t 0 ¯ 0

t 0 t ¯ 0

0 t 0 ¯ ¯

¯ ¯ ¯ ¯ t

0 0 ¯ t 0
2 sB2d

and t= t1t2t3¯ tp. The block matrixSnm representsmissing
hopping amplitudes that go between sublatticesm andn due
to the presence of the boundary point ati =0. When comput-
ing fHS,qpg, one needs to computefS0,A1p

† g, A1p
† ·S1m, and

Ap−1,p
† ·Sp−1,m, thus only S1m and Sp−1,m are needed. It is

straightforward to show thatfS0,A1p
† g has only one element

−ttp, which is the first element along the diagonals;d11d. To
obtain Snm, one needs to multiplyHp to itself by n søpd
times becauseHS is a polynomial ofHp containing at most
thepth power ofHp. Now the multiplication ofHp to itself n
times effectively hops a particlen times. Sincenøp, only
when the particle starts from the lattice points 1ø i øp−1
will it have a chance to visiti =0 and thus have missing paths
when i =0 is removed. It implies that allSnm have only one
element, which is also the first element along the diagonal. In
addition,Sp−1,m=0 for mù2. As a result, by using Eq.(16),
we obtainA1p

† ·S1m=0 and hence we only need to compute
Sp−1,1. Since the only missing path between the point 1 and
the pointp−1 is 1→0→1→2¯→p−1, we find thatSp−1,1
is −tp

2t1t2¯ tp−1d11. With this result, when combined with
fS0,A1p

† g=−ttpd11, we finally obtainfHS,Qpg=0.
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