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Generalized method of image and the tunneling spectroscopy in high-Tc superconductors
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A generalized method of image is developed to investigate the tunneling spectrum from the metal into a class
of states, with the tight-binding dispersion fully included. The broken reflection symmetry is shown to be the
necessary condition for the appearance of the zero-bias conductance peak~ZBCP!. Applying this method to the
d-wave superconductor yields results in agreement with experiments regarding the splitting of ZBCP’s in
magnetic fields. Furthermore, a ZBCP is predicted for tunneling into the~110! direction of thed-density-wave
state, providing a signature to look for in experiments.
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The current transport through a heterojunction consis
of a normal metal and another different material~X! has been
a subject of interest for many years. In this setup, the nor
metal with known spectral properties is used as a prob
analyze the electronic states of the materialX.1 Although
such measurements have provided useful insights into
bulk spectral properties ofX, it has been also realized that th
presence of the interface matters. The zero-bias conduct
peak~ZBCP! observed in the tunneling spectra whenX is a
d-wave superconductor~ND junction! in the ~110! direction2

is a well-known example of interface effects. However, t
issue of exactly how the tunneling measurements are rel
to the bulk properties has never been answered satisfact
Conventionally, the ND junction is analyzed in the mea
field level, using the Bogoliubov–de Gennes~BdG! equa-
tions in which continuum and quasiclassical approximatio
are often invoked. While these approximations are valid
conventional superconductors, they are certainly not justi
for high-Tc cuprates where proximity to the Mott insulato
entails fully consideration of the tight-binding natur
Previously,3 this was done by numerically solving the di
crete BdG equation for each interface orientation individ
ally without elucidating their relations to the bulk propertie
This technical inconvenience makes it difficult to inclu
fluctuations systematically in this approach.

In this work, we shall adopt a different approach based
the nonequilibrium Keldysh-Green’s function formalis
which enables one to construct systematically higher-or
corrections from the mean-field lattice Green’s functions.4–6

In this approach, becauseX extends over a semi-infinite
space, one shall need the half-space Green’s functions.
simple configurations such as the~100! orientation of a
d-wave superconductor, it turns out that these half-sp
Green’s functions only differ from the bulk ones by sin
soidal factors. This relation certainly does not hold for oth
orientations as it predicts no ZBCP in the~110! direction. We
shall develop a generalized method of image which ena
us to construct half-space Green’s functions from the b
ones.We emphasize the generality of this method and
ability to account for the low-energy features in the tunneli
spectrum for a whole class of states. As a demonstration, in
this paper we will focus mostly on the study of ND junctio
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and only briefly mention the applications to other system
The effects of interactions and fluctuations will be addres
elsewhere.

Our results indicate broken reflection symmetry is nec
sary for the emergence of ZBCP’s. For ND junctions o
method can reproduce earlier results on the ZBCP in
continuous-wave approximation.2,7 In a full tight-binding
calculation for~110! and~210! directions, we obtain the dop
ing dependence of ZBCP’s which exhibits its sensitivity
the Fermi surface topology. In particular, the splitting of t
ZBCP in the current-carrying state is also calculated and
shown to be in agreement with experiments. At the end,
analyze the case whenX is thed-density-wave~DDW! state
in ~110! direction and the semi-infinite graphene sheet wit
zigzag-type interface. The former state was recently p
posed as a possible normal state for high-Tc cuprates.8 Con-
ductance peaks are found for both states.

We start by considering a junction consisting of a tw
dimensional~2D! normal metal on the left~L! hand side
(2`,x<2d, whered is the lattice constant of the meta
side! and ad-wave superconductor (0<x,`) on the right
~R! hand side~see Fig. 1!, governed by the HamiltoniansHL
andHR , respectively. At the mean-field level, we have

HR52 (
^ i j &,s

tRcis
† cj s2 (

^ i j &8,s

tR8cis
† cj s

1(̂
i j &

D i j ~ci↑cj↓2ci↓cj↑!1H.c., ~1!

where ^ i j & denotes the nearest-neighbor~NN! bond, ^ i j &8
the next-NN bond, andD i j possessesd-wave symmetry. The
tunneling Hamiltonian connects the interface points atx
52d and x50, and is given byHT5(yt(uyL2yRu)(cL

†cR

1cR
†cL), where the summation is over lattice points alo

the interface, chosen to be in they direction. We shall assume
that both sides are square lattices and characterize the o
tation of right-hand side~RHS! by the Miller indices (hk0).
The total grand Hamiltonian is then given byK5(HL
2mLNL)1(HR2mRNR)1HT[K01HT . Here mL and mR
are the chemical potentials and their differencemL2mR is
fixed to be the voltage dropeV across the junction.
©2002 The American Physical Society12-1
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In the nonequilibrium Keldysh-Green’s function forma
ism, HT is adiabatically turned on.4,5 As a result, the bare
Green’s function is defined only on a half-plane. Since
nearest-neighboring bonds to the interface sites are cut, t
is effectively a hard wall located at say, for the~110! inter-
face,x52d/2. This hard-wall boundary condition promp
the application of the method of image. However, beca
lattice points in the half-plane usually do not form a simp
Bravais lattice and thed-wave gap changes sign under refle
tion, the implementation of the conventional method of i
age appears problematic. To overcome these difficultie
Fourier transform in they direction is performed first. Con
sider the case of~110! orientations; the Hamiltonian with
only NN hopping becomes

HR5 (
i ,s,ky

22tRcosS kyd

2 D cis
† ~ky!ci 11s~ky!

1(
i ,ky

2iD0sinS kyd

2 D @ci↑~ky!ci 11↓~2ky!

1ci↓~2ky!ci 11↑~ky!#1H.c., ~2!

where 2p/d,ky<p/d and 2D0 is the gap value. The
whole problem is now one dimensional, and the hard w
becomes a point. Note that the suppression of the gap
the interface can be taken into account by adding s
consistentdD0( i ) to Eq.~2! and can be treated perturbative
later. In the presence oftR8 , additional terms ( i ,s,ky

22tR8cos(kyd)cis
† (ky)cis(ky)1tR8cis

† (ky)ci12s(ky)1H.c. appear.
Since at the boundary, bothtR and tR8 are cut and become
dangling bonds, one needs to introduce two hard wallsx
52d/2 andx52d. For clear presentation, we shall first s

FIG. 1. Schematic plot of the ND junction in the~110! and~210!
directions. Here two hard walls for the~210! case are atA
522d/A5 and B522d/A5. The dots on thex axis are the re-
duced 1D lattice points.
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tR850. In this case, we are looking for the Green’s functi

Ḡ0(v,ky,x,x8) ~which is a 232 matrix in Nambu’s nota-
tion!, which satisfies the boundary conditionḠ050 at x
52d/2. We shall suppress the dependence onv and ky .
Here, sincex8 is the location of the point source and i
image point is at2d2x8,9 the method of image can b
employed by constructing

Ḡ0~x,x8!5G0~x2x8!2G0~x1d1x8!a~x8!, ~3!

whereG0 is the bulk bare Green’s function anda is a matrix
to be determined. The first term is the direct propagat
from x8 to x, while the second term will reduce to the prop
gation from the image point tox in special situations~see
below!. In fact, sinceḠ0 has to vanish atx52d/2, we ob-
tain a(x8)5G0

21(d/21x8)G0(2d/22x8). Therefore, the
second term describes the propagation fromx8 to x via the
reflection of the hard wall. The matrixa, apart from fitting
the boundary condition, carries important information abo
the gap structure along the reflected path fromx8 to x. Note
that in calculating the tunneling current, sinceHT only con-
nects points along the interface, only the surface Gree
function ḡ0(v,ky)[Ḡ0(x50,x850) is needed.4,10 Writing
G0 in the Fourierkx space, we find

ḡ0~v,ky![E
22p/d

2p/d dkx

2p
G0~v,ky,kx!@12exp~ ikxd!a0#,

~4!

where the factora05G0
21(d/2)G0(2d/2) is independent of

kx . If the reflection symmetry holds for the stateX, such as
d-wave superconductors in~100! direction ~in this case,d/2
is replaced byd), one hasa051 and hence it reduces to th
familiar form4 ḡ0(v,ky)[*22p/d

2p/d dkx /p G0(v,ky,kx)
sin2(kxd/2). Therefore, apart from modifications due to t
sinusoidal factors, the density of state almost has the s
feature as the bulk one. However, for other orientations s
as the~110! direction, reflection symmetry with respect t
the interface is broken. As a result,a0 is not the identity
matrix and as we shall see, this will give rise to the ZBC

The advantage of Eq.~4! is that it is purely based on th
bulk Green’s functions. The interface orientation is encod
in kx andky . In other words,G0(v,ky ,kx), which appears in
Eq. ~4! anda0 is simply the usual bulk BCS Green’s func
tion but with k being rotated by 45°. This technical merit
retained for other interface orientations but withk being ro-
tated by an angle in accordance with the interface orien
tion. More importantly, this also offers a scheme for studyi
fluctuations and interactions. Essentially one can take
account these effects through the bulk Green’s functionG0.
This will be explained in more detail in a separate public
tion.

When evaluatingG0(x2x8), the dominant contributions
come from the poles determined by (v1 ih)22Ek

250,
whereEk5Aek

21Dk
2. In the continuum limit, the dispersion

becomes ek5\2(kx
22kFx

2 )/2m and Dk5D0cos 2(u2u0),
where kFx

2 5kF
22ky

2 , u5sin21(ky /kF), and u0 is the angle
between the crystala axis and x direction. At the same
2-2



a
in
ur
.
re
is

fe

t
al
d

th

re
fo
d
ve

ust
For

-

gap
old
no
nu-
te
In

on
hen
,

one
er-
t

are
ote

ng

ero

cur-

fo ed
ed

BRIEF REPORTS PHYSICAL REVIEW B66, 012512 ~2002!
time, the integration range ofkx is extended to6`.
There are four poles located at6k6 with k6

[AkFx
2 62mA(v1 ih)22uD6u2/\2, representing particles

and holes along different directions. HereD6 are gaps in
directions 6u. By contour integration, one obtainsG0(x
2x8) and thusa(x8). After some algebra and assuming th
kF is large,11 indeed Eq.~3! reproduces results obtained
Ref. 7 by directly solving the equations of motion. In o
approach, the continuum approximation is not necessary
investigate any effect that is due to the tight-binding natu
the full tight-binding dispersion has to be retained. In th
case, the integration overkx cannot be extended to6`, and
thus poles are in different structure and a substantial dif
ence from the continuum approximation could result.

We now include the hoppingtR8 for the ~110! direction.
The main complication is to add a second hard wall ax
52d. This is a simple generalization of the single hard-w
problem. One simply requiresḠ0 to vanish on all these har
walls simultaneously. Therefore, we write

Ḡ0~x,x8!5G0~x2x8!2G0~x2x18!a1~x8!

2G0~x2x28!a2~x8!, ~5!

wherex1852x82d andx2852x822d are images ofx8. The
boundary conditions atx52d and x522d determinea1
and a2. The surface Green’s function thus obtained is
bare one and will get renormalized byHT , giving rise to four
different components in the differential conductance.4,11 The
strength ofHT , characterized byt, determines the relative
weight among each component. In Fig. 2, we show our
sults for the spectrum of the total differential conductance
various dopings based on Eq.~4!. The parameters adopte
are determined self-consistently from the mean-field sla
boson theory for thet-t8-J model.4 It is clear that the ZBCP’s
are the most important features at low energies.2 Since the

FIG. 2. The total differential conductance of several dopings
the ~110! interface with h50.01 andtL51.0. The weak link is
modeled by the interface hoppingt(v)5exp@2A(v02uvu)/G#
with v0511D0 andG5D0. Inset:dI/dV curve for the~210! inter-
face withd50.08.
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ZBCP arises from the existence of zero-energy states, it m
appear as poles at zero energy in the Green’s function.
the ~110! direction withouttR8 , this is entirely determined by
zeros of the denominator ina:

b~v,ky!5det@G0~d/2!#. ~6!

In the continuum limit (d→0), b can be evaluated analyti
cally: b'2@v2/D̄21(D1 /uD1u1D2 /uD2u)2# with D̄

5uD1uuD2u/(uD1u1uD2u). Therefore, poles ofḡ0 at v50
depend crucially on whether there is a sign change of the
on the Fermi surface. This criterion, however, does not h
as one goes to the tight-binding limit because pairing
longer only occurs on the Fermi surface. As a result, a
merical computation ofb is necessary. Our results indica
that ZBCP’s are sensitive to the Fermi surface topology.
fact, for the~110! surface, the height of the peak depends
the volume of the Fermi surface. It reaches a maximum w
mR50 and decreases whenmRÞ0. For other orientations
the ZBCP’s could even disappear.

For general orientations, there could be more than
hard wall. As a demonstration, we consider the (210) int
face. In this case, whentR850, two hard walls are located a
x52d/A5 and 22d/A5, in analogy to the~110! surface
with tR8 . A typical result for the small scale oft is shown in
the inset of Fig. 2. Ast increases, the zero-energy states
able to leak out, and thus the ZBCP’s get broadened. N
that lattice points with dangling bonds form a pair-breaki
region near the interface, resulting in the peaks around 2D0.
They are due to quasiparticle bound states with nonz
energy.12

The ZBCP’s split in the presence of magnetic fieldsH,
essentially due to the Doppler shift caused by the super
rent near the interface.13 In the tight-binding model,D i j is
shifted toD i j exp@iq•(r i1r j )#, whereq5eHl/2\c with l
being the penetration depth. By redefiningcis5cis exp(iq
•r i), the dependence onq can be absorbed intoek . Figure 3
shows the field dependence of the splitting for the~110! in-

r FIG. 3. The field dependence of the splitting for an underdop
case (d50.12). Inset: doping dependence of the splitting for a fix
magnetic field.
2-3
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terface, in agreement to recent experimental data.14 It is seen
that for largeH, the splitting deviates from linear dependen
on H due to the lattice effect in our approach. The ins
shows the doping dependence of splitting, reflecting its s
sitive dependence on the Fermi surface topology. In fact
the special case when particle-hole symmetry holds~for ex-
ample,mR50 andtR850), we find that no matter how larg

FIG. 4. A typical dI/dV curve for tunneling into the~110! di-
rection of ad-density-wave state. HeremR50 andD050.1. Inset: a
similar plot for tunneling from a wideband metal into the graphe
sheet with zigzag interface. Here the hopping amplitudeg050.1.
sh

t t
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H is, the ZBCP does not split at all, in consistent with nai
expectations.11

Finally, our approach is easily modified to deal with oth
states. WhenX is the DDW, the two-component indices a
associated with the two sublattices in this state. The form
lation presented for the ND case can then be applied w
minor modification.11 At ~110! orientation, the DDW state
does not possess reflection symmetry; one thus expects
CP’s in this case. Figure 4 shows a typical result for tunn
ing into a DDW state in the~110! direction whenmR50.
Invariably, the ZBCP is present, consistent with a rec
report.15 For finite mR , unlike thed-wave superconductor
one simply addsmR to the quasiparticle energyEk ,8 result-
ing in a shifting of the ZBCP to the bias atmR . The exis-
tence of this conductance peak thus provides a signatur
the DDW state. A similar analysis can be done for the se
infinite graphene sheet. When projected onto 1D lattices
then obvious that reflection symmetry is preserved in
case of the armchair interface while not in the zigzag ca
This results in for the latter a ZBCP in thedI/dV curve~see
the inset of Fig. 4! ~Ref. 11!—consistent with previous nu
merical work.16 These two typical examples simply sho
that how easily our formulation can tell whether there sho
be ZBCP’s or not. Further applications to other systems w
be reported elsewhere.
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