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Zero-bias conductance peak in tunneling spectroscopy of hybrid superconductor junctions
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A generalized method of image, incorporated with the nonequilibrium Keldysh-Green’s function formalism,
is employed to investigate the tunneling spectroscopy of hybrid systems in the configuration of planar junction.
In particular, tunneling spectroscopies of several hybrid systems that exhibit zero-bias conductance peaks
~ZBCP’s! are examined. The well-known metal–d-wave superconductor~ND! junction is examined in detail.
Both the evolution of the ZBCP versus doping and the splitting of the ZBCP in magnetic fields are computed
in the framework of the slave-boson mean field theory. Further extension of our method to analyze other states
shows that states with particle-hole pairing, such asd-density wave and graphene sheet, are all equivalent to a
simple one-dimensional model, which at the same time also describes the polyacetylene. We provide the
criteria for the emergence of ZBCP. In particular, broken reflection symmetry at the microscopic level is shown
to be a necessary condition for ZBCP to occur.
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I. INTRODUCTION

Since the pioneering work of Giaever,1 the tunneling mea-
surement has been a major experimental method for inv
gations into the electronic states of condensed ma
systems.2 In the simplest setup, a metal withknownspectral
property is made in contact with a materialX, forming anNX
junction so that the electronic states ofX can be probed. Fo
many years, despite the fact that many insights into the s
tral properties of many states have been gained from
differential conductance (dI/dV) curves obtained from tun
neling measurements, nonetheless, unlike many other ex
ments, it is fair to say that there is no clear and solid sta
ment as to exactly what bulk properties are being probe
tunneling measurements. For example, it is known tha
neutron scattering experiments, the neutron intensity i
measure of the imaginary part of the bulk spin susceptibi
Im x(k,v); no similar statement has ever been firmly est
lished for tunneling measurements.

The difficulty for establishing the relation between t
tunneling conductance and the bulk quantities can be tra
back to the very existence of the junction interface. It h
been realized that the presence of the interface can ch
the conductance curve dramatically. A well-known exam
is the zero-bias conductance peak~ZBCP! observed in the
tunneling spectra whenX is a d-wave superconductor~ND
junction! in ~110! direction.3 The appearance of the ZBCP
entirely tied up with the presence of the interface and
orientations, and therefore can not be obtained by sim
calculations based on bulk density of states.

Recent theoretical analyses of the ZBCP have been mo
concentrated on the ND junctions. Furthermore, they
based largely on the standard BTK theory.4 In the continuum
limit, analytic expressions of the differential conductance
general orientations of the interface were obtained. Num
cal calculations were later carried out for the BTK theory
the lattice version.5–7 While these works have supplied in
sights into the ZBCP, they are, however, specifically d
signed for studying the ND junction. Moreover, because
0163-1829/2003/67~2!/024503~14!/$20.00 67 0245
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relation of the conductance curve to the bulk quantities w
not clearly manifested, essentially the numerical computa
had to be done individually for each interface orientatio
Another technical inconvenience is that the BTK theory is
mean-field theory based on solving the mean-field quasi
ticle wave functions, it is thus difficult in this formulation t
take into account the effects of interaction systematically.
extend into the study of other systems, especially those w
strong correlations where almost all relevant models are
discrete lattices, it is therefore an urgent need to have a
mulation which can go beyond the mean-field BTK form
lation. As an illustration of our approach, in this paper w
will focus on mean-field analysis of several tunneling pro
lems. The effects of fluctuations and interactions will be d
cussed elsewhere.

In this paper, we shall adopt an approach that is based
the non-equilibrium Keldysh-Green’s function formalism.
the lowest order approximation, we are able to express
differential conductance entirely in terms of bulk Green
functions and include the interface effects. Thus, the rela
of the conductance curve to the bulk quantities is clea
manifested. The tunneling betweenN andX will be treated as
a perturbation, so that in the zeroth order the Green’s fu
tion is the mean-fieldhalf-spaceGreen’s function that re-
sides only on the semi-infinite plane and satisfies the bou
ary conditions to be specified later. Based on the half-sp
Green’s functiong, higher order corrections can be system
atically constructed.7–9 In particular, a class of infinite serie
in g, which consists of all elastic tunneling processes in
perturbation theory, will be considered and summed to
orders for calculating the current across the junction.7,10,11To
fully take into account the tight-binding nature of the pro
lem, we shall employ discrete models for both the mater
N andX and the tunnel junctions. Thus the essential quan
to be calculated is the half-space lattice Green’s function
the X state. In resemblance to the conventional method
image, we express the half-space Green’s function in te
of the bulk Green’s functions propagating from the re
source and a fictitious image source
©2003 The American Physical Society03-1
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g5Greal2Gimag3a ~1!

with the factora accounting for the boundary condition
The half-space Green’s function is thus decomposed into
parts: the real-source part comes solely from the bulk
hence reveals purely the bulk properties, the image part c
tains all interface effects which are encoded in the factora.
In this way, the interface effects are clearly identified in t
course of the analysis and one can pinpoint any depar
from the bulk property.

The factora can be expressed in terms of bulk Gree
function. Right on the interface, it is found

a05G21~d!G~2d!. ~2!

Hered is an effective lattice constant whose precise mean
will be explained in below. Clearly, the tunneling spectru
can be classified according to whether the reflection sym
try is broken or not. In the case when reflection symmetry
broken with respect to the interface, one hasG(2d)
ÞG(d), hencea0 is not unity, possible zero modes ma
arise due to the presence of zeros in the denominator o
left hand side. The number of localized zero modes is t
determined by the order of zeros in the bulk Green’s funct
G(d). In the lowest order approximation, the differenti
conductance is given by the local density of states at
interface

dI/dV}2(
ks

Im$g0~k,eV!%, ~3!

whereg0 is g of Eq. ~1! evaluated at the interface ande is the
charge of an electron. Sincea0 can be expressed entirely i
terms of bulk Green’s functions, this is then the relation b
tween the bulk quantities and the differential conducta
alluded to earlier.

This paper is organized as follows. In Sec. II, we outli
the theoretical formulation and derive the generaliz
method of image for discrete lattices. In Sec. III this meth
is applied to the study of tunneling spectroscopies for vari
systems. We first study the ND junctions at various surf
orientations and examine the doping dependence of
ZBCP using mean-field slave boson theory. We then st
the effects of applied magnetic fields perpendicular to theab
plane. A one-dimensional~1D! model, based on the structur
of polyacetylene, is then studied in Sec. III C. On the basis
this model, we further apply this method to investigate tu
neling into d-density-wave states and graphite sheets.
conclude in Sec. IV with some comments on the significa
and further applications of our formulation. The Append
describes techniques for deriving the current expressions
the tunnel junctions studied in the text.

II. THEORETICAL FORMULATION AND GENERALIZED
METHOD OF IMAGE

A. Theoretical model

We start by modeling the planar junction. As illustrated
Fig. 1, the tunnel junction consists of two truncated tw
dimensional lattices connected through a tunnel barrier, w
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the left half the normal~N! electrode (2`,x<2aL , aL is
the lattice constant! and the right the test~X! electrode (0
<x,`).12 We take the interface they direction. The total
Hamiltonian of the system thus comprises two parts:
HamiltonianH05HL1HR for the left and right electrodes
and the tunneling Hamiltonian which connects the surfa
points atx52aL andx50

HT5 (
yl ,yr ,s

t I~ uyl2yr u!cls
† crs1H.c. ~4!

Heres are spin indices, andyl , yr are they coordinates of
the surface sites on the left and right electrodes;cls , crs are
the corresponding electron annihilation operators.t I is the
tunneling amplitude whose magnitude models the bar
height in the tunnel junction. Since all points over the int
face layers contribute to the tunneling process, one ha
sum over all interface sites. Suppose the chemical poten
on the left and the right electrodes aremL andmR , respec-
tively, the total grand Hamiltonian is then given by

K5~HL2mLNL!1~HR2mRNR!1HT[K01HT , ~5!

where (mL2mR) is fixed to be the voltage dropeV.
To calculate the tunneling current, we choose the unp

turbed state to be the ground state ofK0 and adiabatically

FIG. 1. ~a! A typical configuration for the tunnel junctions stud
ied in this paper: a~100! lattice on the left side connected to a~110!
lattice on the right side. The dashed lines between the two latt
indicate hopping due to the tunneling HamiltonianHT . The effec-
tive one dimensional lattices obtained from Fourier transformat
along the direction parallel to the interface are shown in below
~b! and ~c! we show explicitly the hard walls of semi-infinite lat
tices at~110! and~210! orientations indicated by open circles. He
a and b indicate the crystalline axes. The hard walls result fro
disconnecting the sample from the left side in the zeroth orde
HT . Note that third hard wall would be needed if one consid
n.n.n. hopping in the~210! orientation.
3-2
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ZERO-BIAS CONDUCTANCE PEAK IN TUNNELING . . . PHYSICAL REVIEW B67, 024503 ~2003!
turn onHT . In the Heisenberg picture, the tunneling curre
is then found to be13 ~we set\51 throughout!

I ~ t !51 ie (
yl ,yr ,s

$t I^cls
† crs&2t I* ^crs

† cls&%. ~6!

The expectation valueŝ•••& here represent the ensemb
average Tr@Z21exp(2bK0)•••#.

In actual experiments, the normal metal on the left el
trode could be in any orientations, and the detail connec
between the two lattices may also cause complications in
tunneling spectroscopy. To be definite, however, in o
model we fix the lattice on the left side at~100! orientation
and connect its boundary sites to those of the right atx50
@Fig. 1~a!#. As one can observe easily, the system is tran
tional invariant along the interface direction with periodaL .
We exploit this symmetry by making a partial Fourier tran
formation along the interface direction in Eq.~6! and arriv-
ing at

I ~ t !51 ie (
ky ,s

t I~ky!^cls
† ~ky!crs~ky!&1H.c., ~7!

where2p/aL,ky<p/aL . We emphasize that the proble
is now effectively one dimensional: in Eq.~7! different ky
modes are decoupled completely. Moreover, onlySurface
quantities are involved. These are very appealing featu
especially for the feasibility of our method of image, as w
will discuss in the following section.

In the Keldysh Green’s function formulation, the tim
evolution of the density matrix can be formally solved as
closed time-ordered path integral.14 The expectation value
^cls

† (ky)crs(ky)& in Eq. ~7! is then related to the componen
of Keldysh’s Green’s functions over the closed time pa
One can then calculate perturbatively the average currentI in
terms of the zeroth order Green’s function. Details of t
calculation can be found in Ref. 7 and an outline is presen
in the Appendix. Here an essential difference from ear
work is that previously the Green’s functions were obtain
through directly solving the equation of motion, while he
we shall make use of the method of image elucidated in
following section. In this way the current approach is mo
general and versatile, and can be easily applied to var
hybrid systems.

B. Generalized method of image

In the Green’s function approach, the building blocks
calculating the current are the zeroth order half-sp
Green’s functions~see the Appendix!. Because in the zeroth
order, lattices on the left and right sides are disconnected
Green’s functions are defined only for each semi-infin
plane. Therefore, lattice points on the interface have ‘‘d
gling bonds’’ which effectively, as shown in Figs. 1~b! and
1~c!, impose hard-wall boundary conditions at the e
points. One thus envisages a method of image similar to
in electrostatics.

In the usual practice, the method of image is done for
continuum differential equations. It is based on the princi
of superposition and the uniqueness of the solutions.15 When
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applying it to the discrete lattice, one encounters the di
culty that the image point to any source pointr , may not
locate right at the allowed lattice points. This can be ov
come by performing Fourier transformation along the surfa
direction, chosen as they direction. In the following sections
we shall further assume that each electrode is in a ste
state and thus will be concerned with the half-space Gre
function in its Fourier space representationg(x,x8;ky ;v).
For eachky andv one is therefore dealing with an effectiv
1D system~Fig. 1!.

As a demonstration of the method, let us consider a
semi-infinite square lattice with lattice constanta extending
over the regionx>0 at orientation (hk0). The hard-wall
boundary condition prescribes the half-space Green’s fu
tions to vanish over the hard walls, which consist of
points where the boundary sites can reach away from
bulk lattice@Figs. 1~b!, 1~c!#. For general surface orientation
(hk0) and with only nearest-neighbor~NN! hopping one can
find that the number of hard walls is given by max$uhu,uku%.
Let us consider first the single hard-wall configuration
which includes the~100! and the~110! orientations~when
there is no next NN hopping in the latter!. As we shall dis-
cuss later, the multi-hard-wall problem are simple gener
zations to the single hard-wall cases.

For single hard-wall case, since there is only one h
wall located atx52d with d5a/Ah21k2 being the spacing
between two consecutive (hk0) planes, one imposes th
boundary condition

g~2d,x8;ky ;v!50. ~8!

To implement the method of image, we construct the ha
space Green’s functiong(x,x8;ky ;v) from the full-space
Green’s functionG(x,x8;ky ;v) as

g~x,x8;ky ;v!5G~x,x8;ky ;v!

2G~x,x18 ;ky ;v!a~x8;ky ;v!, ~9!

wherex18522d2x8 is the image point of the point sourc
x8 with respect to the hard wallx52d. The Green’s func-
tion G(x,x8) describes direct propagation from the poi
source to the pointx, while G(x,x18) propagates from the
image point tox. The factora is determined by fitting the
boundary condition~8!, which yields

a~x8!5G21~2d,22d2x8!G~2d,x8!

5G21~d1x8!G~2d2x8!. ~10!

Here and in the following we suppress theky andv depen-
dence whenever no confusion would arise. In going from
first to the second expressions above, we have u
G(x,x8)5G(x2x8), namely that the full-space Green
functions are translational invariant along thex direction.
However, this is not essential for establishing the method
image. It is used here only for brevity. For systems witho
translational symmetry alongx direction, the following dis-
cussion still proceeds with only minor modification.
3-3
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SHIN-TZA WU AND CHUNG-YU MOU PHYSICAL REVIEW B 67, 024503 ~2003!
From the half-space Green’s functiong(x,x8), one ob-
tains the surface Green’s functiong0 by settingx5x850. In
the Fourier space,g0 can be expressed by

g05 (
2p/d<kx,p/d

G~kx!3@12exp~2ikxd!a0#. ~11!

Herea05a(0) does not depends onkx and the sum overkx
extends over the first Brillouin zone of the effective 1D la
tice. The advantage of this formulation is clearly seen fr
Eq. ~11!: the surface Green’s function is obtained from co
binations of full-space Green’s functions. For different s
face orientations, one simply rotates the full-space Gree
function to the appropriate angle. Furthermore, it is also c
that here we have a scheme for studying the effects of in
actions and fluctuations in tunneling problems. Essenti
one can take these effects into account through the b
Green’s function. Here, however, we shall concentrate
mean-field treatments and defer correlation effects to a s
rate publication.

It is when dealing with lattices with an anisotropic ord
parameter that one could most easily appreciate the pow
the present formulation. For instance in dealing withd-wave
superconductors, apart from fitting the boundary conditio
~8!, a also takes care of the different gap structures
propagation along the reflected path and the fictitious p
~such asAO andA8O depicted in Fig. 2!. In the presence o
reflection symmetry@such as ans-wave superconductor, or
d-wave superconductor at~100! orientation#, since the gap
structure as seen by these two paths are identical, the
space bulk Green’s function possesses the symmetryG(d)

FIG. 2. The method of image applied tod-wave superconduct
ors: the propagation~a! from the sourceA to the pointB through the
reflected pathAOB in the presence of a hard-wall boundary can
replaced by~b! a direct pathA8B emanating from a fictitious sourc
at A8 where the boundary is absent.
02450
-
-
’s
r
r-

ly
lk
n
a-

of

s
r
th

ll-

5G(2d). Thereforea becomes~independent ofky and v)
universally equal to the identity matrix and Eq.~11! reduces
to the familiar form7,11

g05 (
2p/d<kx,p/d

G~kx!32 sin2~kxd!. ~12!

For general orientations or when taking into account n
nearest neighbor hopping, as noted earlier, there could
more than one hard walls. In these circumstances the sur
Green’s function must satisfy the boundary condition tha
vanishes on all these hard walls simultaneously. For insta
let us consider the~210! case with NN hopping: as depicte
in Fig. 1~c! there are two hard walls located atx52d and
22d, where d5a/A5. Analogous to the single hard-wa
problem, we write the half-space Green’s function

g~x,x8!5G~x,x8!2G~x,x18!a1~x8!2G~x,x28!a2~x8!
~13!

with x18522d2x8, x28524d2x8 being the location of the
image sources, anda1 , a2 determined by the boundary con
ditions

g~2d,x8!505g~22d,x8!. ~14!

In other words, for the point source atx8, each hard wall
‘‘generates’’ an image source on the other side of the surf
and introduces ana factor which accounts for the additiona
boundary conditions. The half-space Green’s function i
superposition of contributions from the real and all ima
sources. To obtain the surface Green’s function, one ag
substitutesx5x850 into Eq. ~13!. We note in passing tha
for arbitrary orientations, the number of hard walls may b
come too large so that the image method becomes ana
cally intractable. This is one drawback of current metho
We shall further address this issue at the end.

Before proceeding to the applications in the followin
sections, we comment that the present method is not
stricted to square lattices. In Sec. III E we will apply th
method to systems involving honeycomb lattices. Indeed
generalized method of image relies only on the possibility
reducing 2D lattices into 1D structures through a Four
transformation in the transverse direction.

III. TUNNELING SPECTROSCOPY IN HYBRID SYSTEMS

A. Normal metal–d-wave superconductors

We first study theab-plane tunneling between a norm
metal and ad-wave superconductor. The superconductor
cupies the half-spacex.0, modeled by the mean-field
Hamiltonian

HR52 (
^ i j &,s

tRcis
† cj s2 (

^ i j &8,s

tR8 cis
† cj s

1(̂
i j &

D i j ~ci↑cj↓2ci↓cj↑!1H.c., ~15!

where ^ i j & denotes the nearest neighbors,^ i j &8 the next
nearest neighbors~NNN!, tR and tR8 are the corresponding
3-4
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hopping amplitudes, andD i j are the mean-fieldd-wave pair-
ing amplitude. The normal metal on the left is modeled
the same Hamiltonian but withD50 and with only NN hop-
ping term.

The corresponding 1D structure is easily obtained by F
rier transform the Hamiltonian along they direction. For ex-
ample, at~110! orientation if including only NN hoppingHR
becomes

HR5 (
xi ,ky ,s

22tRcosS kya

A2
D cis

† ~ky!ci 11s~ky!

1 (
xi ,ky

2iD0sinS kya

A2
D @ci↑~ky!ci 11↓~2ky!

1ci↓~2ky!ci 11↑~ky!#1H.c. ~16!

Here ci are the electron annihilation operators for the 1
lattice at thei th site @see Fig. 1~b!# anda is the lattice con-
stant of the original 2D lattice. The lattice constant of the
lattice is identical to the distanced between two consecutiv
(hk0) planes. By using the Nambu notation17

C i~ky ,t !5S ci↑~ky ,t !

ci↓
† ~2ky ,t ! D , ~17!

HR can be formally written in the form

HR5 (
xi ,ky

~C i
†Hi ,i 11C i 111C i

†Hi ,i 21C i 21! ~18!

with appropriately defined hopping amplitudesHi ,i 61.
According to the image method as explained in Eq.~9!,

our task now is to find the full-space Green’s functi
G(x,x8;ky ;v). If one further performs Fourier transform o
x coordinates, one realizes that all we need is to rotate
full-space Green’s function to the appropriate angle in acc
dance to the interface orientations (hk0). In fact, in the mo-
mentum space, Eq.~18! has the usual BCS form

HR5(
k

~ck↑
† c2k↓!S ek Dk

Dk* 2ek
D S ck↑

c2k↓
† D , ~19!

except thatek andDk are rotated as

ek522tR@cos~k•a!1cos~k•b!#24tR8cos~k•a!cos~k•b!,

Dk522D0@cos~k•a!2cos~k•b!#, ~20!

where for (hk0) orientation the lattice vectorsa5a(cosu,
2sinu), b5a(sinu,cosu) with u5tan21(k/h). The full-
space retarded Green’s function is then obtained as

G~xi ,xj !5 (
2p/d<kx,p/d

G~kx ,ky ,v!3eikx(xi2xj ), ~21!

where G(kx ,ky ,v)5@v1 ih2ĤR(kx ,ky ,v)#21, with ĤR
the matrix in Eq. ~19! and h501. The half-space bare
Green’s functiong0

r is then obtained via Eq.~9!.
02450
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When the tunneling Hamiltonian is turned on, the ha
space Green’s functions get renormalized due to tunne
events~see the Appendix!. This is expressed as a perturb
tion series. In the elastic case, it can be re-summed to
orders in t I .10 With the assumption that the renormalize
advanced and retarded half-space Green’s functions sa
@gab

r #†5gba
a ~wherea,b5$L,R% label the electrodes!, we

can express the tunneling current as

I 5I 11I 21I 31I A , ~22!

where

I 15(
ky

4peE
2`

`

dv t I
2@ f ~v2eV!2 f ~v!#

3AL,11~v2eV!AR,11~v!u11t IgRL,11
r ~v!u2, ~23!

I 25(
ky

28peE
2`

`

dv t I
2@ f ~v2eV!2 f ~v!#AL,11~v2eV!

3Re$AR,12~v!„t IgLR,21
a ~v!@11t IgRL,11

r ~v!#…%, ~24!

I 35(
ky

4peE
2`

`

dv t I
4@ f ~v2eV!2 f ~v!#AL,11~v2eV!

3AR,22~v!ugRL,12
r ~v!u2, ~25!

I A5(
ky

4peE
2`

`

dv t I
4@ f ~v2eV!2 f ~v1eV!#AL,11

3~v2eV!AL,22~v1eV!ugRR,12
r ~v!u2. ~26!

Here f (v) is the Fermi function and

Aa5 i /~2p!~g0,aa
r 2g0,aa

r †! ~27!

are the spectral weight matrices fora5$L,R%. The indices
1, 2 in the Green’s functions and the spectral weight matri
refer to the particle and the hole components, respectiv
t I5t I(v,ky) is the tunneling amplitude between the tw
electrodes. It is remarkable that the expression forI 2 here
generalizes that found in Ref. 7 and is applicable to a
interface orientation. For the special cases considered in
7, where the surface Green’s functions are symmetric@for
~100! orientation# or antisymmetric@for ~110! orientation#,
Eq. ~24! reproduces previous results. From these formu
one can clearly identify the contributions from each chan
in the tunneling process. In particular,I 1 is the contribution
from single particle tunneling andI A the Andreev reflection
~thus I A depends on the particle and hole components of
spectral weight matrixAL).

We now present some of our results. Figure 3 shows
tunneling spectra for~110! and~210! orientations at the dop
ing levelsd50.08, 0.14, and 0.20. Here we study the dopi
dependence by resorting to the mean-field slave boson th
for the t-t8-J model.7 The electron operatorsc and c† are
then essentially the spinon operators and the Green’s fu
tion for spinons as well. The holons condense so that^b&
5Ad. The mean-field parameterstR , tR8 , D0, and the chemi-
3-5
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cal potential mR for each doping are calculate
self-consistently.7 It is obvious from Fig. 3 that the ZBCP i
significantly reduced in the~210! orientation. Interestingly,
for ~110! orientation the ZBCP decreases upon increas
doping while for ~210! case it grows and then falls wit
doping. Another interesting feature in the tunneling spectr
the subgap structures near62D0 in the ~210! case. These
may have originated from resonances due to broken sur
pairs, resulting from the dangling bonds in~210!
orientations.18

The ZBCP originates from zero-energy surface states~or
the midgap states! due to Andreev reflections. In our formu
lation these states arise from singularities in the image c
tributions which manifest as poles in thea factors. In the
presence of a single hard wall, the poles are determined
the zeros of the following factor whenh50:

b~ky!5det@G~d;ky ,v50!#. ~28!

This produces singular behavior in the Green’s functions
results in the ZBCP. In the~100! case, sincea0 is simply the
identity matrix the surface Green’s function~12! is regular at
v50 thus there is no ZBCP.

B. Tunneling into current-carrying superconductors

We now extend previous results by considering tunnel
into current-carrying superconductors. In experiments
applies magnetic field along thec-axis of the superconducto
so that a screening current is generated over theab plane.
When a quasiparticle tunnels across the surface layer, it
quires additional energy from the supercurrent. Thus
zero-energy surface state evolves in this case into two
face states with non-zero energy. In the tunneling spectra
appears as ‘‘splitting’’ of the ZBCP~Fig. 4!. Fogelstro¨m
et al. have analyzed the splittings in the continuum limit19

Here we examine the tunneling spectra base on our disc
model.

FIG. 3. The total differential conductance for~110! and ~210!
interfaces at dopingsd50.08 ~solid lines!, 0.14 ~dotted lines!, and
0.20 ~dash lines!. The weak link is modeled by the interface ho
ping t I(v)5exp@2A(v02uvu)/G#. Here we use v0511D0

andG5D0.
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To marry with formulations in the previous section, w
note that in the presence of supercurrent the gap functio
modified as20 D i j →D i j exp@iq•(r i1r j )#, whereq5(0,qy) is
the superfluid momentum and is proportional to the magn
field. We shall assume that tunneling events take place o
within a shallow layer of order about the penetration de
from the surface, so thatqy is approximately uniform in the
region of our concern. This additional phase can be absor
into the electron operator by the transformationcis
→cisexp(iq•r i). In Fourier space the Hamiltonian becom

HR5(
k

~ ck↑
† c2k↓! S ek¿q Dk

Dk* 2ekÀq
D S ck↑

c2k↓
† D , ~29!

where ek and Dk are given by Eq.~20!. The momentum
space Green’s function that is fed into Eq.~11! is obtained in
the same way:G(kx ,ky ,v)5@v1 ih2ĤR(kx ,ky ,v)#21,
with ĤR the matrix in Eq.~29!.

Figure 4 shows typical tunneling spectra for the splitti
of the ZBCP when increasingqy . Note that the slightly
asymmetric splitting originates from the particle-hole asy
metry in ek . Figure 5 plots the magnitude of the splittin
versus the applied magnetic field for underdoped case.
small q, the quasiparticle energyEk

(6)56Ek1q•]ek /]k to
the leading order, whereEk5Aek

21Dk
2. This leads to linear

splitting of the ZBCP, as observed in small applied field
For higher fields, one has to retain the fullq dependence,
resulting in the bending of the splitting. This is purely due
the lattice effect. Also shown in Fig. 5 are the results tak
into account suppression of the superconducting gap un
magnetic fields self-consistently. The curve is seen to
‘‘pushed’’ inwards while maintaining similar features. No
that quantitative agreement with experimen
observations21,22 can be obtained by fitting scales of our r
sults to the experimental data.16 Nevertheless, we did no
observe any zero-field splitting at overdoping. This is in co
trast with the experiment of Ref. 22, where it is attributed
the change of the pairing symmetry.

FIG. 4. Splitting of the ZBCP for various values ofqy

~for d50.16).
3-6



ig
a

tin

ns

tic

ze

ith
s

ill
ver
ple

in
ri-
i-

ith

tant

le
ce
en

ra-

igin
s:

ons
de-

in
te
un

ng
e

ZERO-BIAS CONDUCTANCE PEAK IN TUNNELING . . . PHYSICAL REVIEW B67, 024503 ~2003!
The doping dependence of splitting is also shown in F
6 for qy50.15 and 0.80, which are respectively in the line
and the saturated regimes in Fig. 5. Note that the split
increases with doping, in agreement with Ref. 22.

In passing we point out that the splitting depends se
tively on the Fermi surface topology. Indeed formR50 we
find no splitting of the ZBCP whatever the value ofqy is.
One can confirm this analytically by making an asympto
expansion of the Green’s function aroundv50. At mR50
one finds the conductance peak invariantly stays at the
bias.

C. Polyacetylene

Up to this point, we have considered tunnel junctions w
superconducting test electrodes, where particles of oppo

FIG. 5. The dependence of splitting on magnetic field for dop
d50.12. The empty and full symbols represent data calcula
respectively, with and without self-consistently taking into acco
the magnetic fields in solving thet-t8-J slave boson mean-field
equations. In the former case, the superconducting gap is stro
suppressed whenqy>0.65, where difficulty in convergence of th
mean-field solution arises.

FIG. 6. Splitting versus dopings forqy50.15~open squares! and
0.8 ~solid squares!.
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spins form pairs. In this and the following sections we w
consider systems which exhibits particle-hole pairing o
bipartite lattices. We shall start by first considering a sim
1D model based on the structure of polyacetylene.23 This
will turn out to be very helpful for understanding results
the following sections. Most importantly, it provides the c
teria for the formation of midgap states in semi-infinite b
partite systems.

The model we shall examine here is a 1D chain w
alternating hopping amplitudest1 , t2 as shown in Fig. 7. The
separation between the lattice points is taken to be a cons
a.24 It is convenient to categorize the lattice points intoA and
B sublattices and express the Hamiltonian for thist1-t2
model as

HR5 (
i B ,s

2t1ci 21
A† ci

B2t2ci
B†ci 11

A 1H.c. ~30!

Here ci
a annihilates electrons over sitei on the a5$A,B%

sublattice~spin indicess will be omitted throughout!, and
the sum run over sitesi in the B sublattice only. In the mo-
mentum space, one finds

HR5(
k,s

~ck
A† ck

B†
!S 0 Lk

Lk* 0 D S ck
A

ck
BD , ~31!

where Lk52(t11t2)cos(ka)2i(t12t2)sin(ka). It is easily
seen that the quasiparticle energy are given by6uLku. Note
that Re$L k% plays the role of the hopping energy, whi
Im$Lk% is the pairing between particles and holes. Sin
Im$Lk%}t12t2, a gap opens at the chemical potential wh
t1Þt2.

For semi-infinite chains, there are two possible configu
tions with the terminating site being anA or a B sublattice
point. In either case we choose the boundary point the or
x50 and construct the surface Green’s function as follow

g05G~0,0!2G~0,22a!G21~2a,22a!G~2a,0!.
~32!

Here the appropriate component of the Green’s functi
should be used in accordance with the coordinates. This
pends the type of the end point. For instance, for anA-type
boundary, even/odd sites are attributed to theA/B sublat-
tices. Therefore, terms such asG(2a,22a) in Eq. ~32!

g
d,
t

ly

FIG. 7. The structure of polyacetylene and the 1Dt1-t2 model.
Filled and empty circles are lattice points over theA and B
sublattices.
3-7
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should be expressed asGBA(2a,22a). One can formally
keep track of the A/B sublattice nature by defining the
tarded Green’s function as

G~xi
a ,t;xj

b,0!52 iQ~ t !^$ci
a~ t !,cj

b†~0!%,&, ~33!

wherea is the index for the sublattice. In the Fourier spa
one has

G~xi
a ,xj

b ;v!5 (
2p/2a<kx,p/2a

Gab~k,v!3eik(xi
a

2xj
b).

~34!

Here by inverting the matrixv1 ih2ĤR(k,v), we obtain

Gab~k,v!5
1

~v1 ih!22Ek
2 S v1 ih Lk

Lk* v1 ih D
ab

,

~35!

where the matrix indices are assigned according to the c
vention used in Eq.~31!.

From Eq.~32!, one sees that the only possible source
singular behavior ing0 resides in the inverse partG21

(2a,22a). The existence of the zero-energy mode thus
pends on the behavior ofG(2a,22a) at v50. This is
analogous to the ND junctions where the ZBCP results fr
the zeros of the determinantb(ky), Eq.~28!. For example, in
the case ofA-type boundaries, by settingh5v50 and a
52,b51 in Eq. ~35!, we find thatG(2a,22a) can be ex-
pressed as a simple contour integral and has the follow
behavior:

GBA~2a,22a;v50!5H 0 if t1,t2 ,

1/2t1 if t2,t1 .
~36!

Thus the condition for the existence of ZBCP ist1,t2 as in
this case,GBA

21 diverges. In the following sections we sha
see that this provides for 2D bipartite systems a general
terion for the range of transverse momentaky where zero-
energy states exist. ForB-type boundary the analysis is iden
tical, except an exchange in the roles oft1 andt2. Therefore
when the ZBCP shows up in anA-type chain, it must be
absent in aB-type chain, and vice versa. This is shown
Fig. 8 for the case of polyacetylene. The current express
here is identical to Eq.~39! given in the following section,
except the extra sum overky there.

D. Normal metal–d-density wave states

In underdoped cuprate superconductors, it is observe
experiments that there are signatures of a ‘‘partial’’ gap w
above the superconducting temperatureTc . This anomalous
regime is termed the pseudogap phase.25 Experiments also
find that the pseudogap is consistent with ad-wave structure.
Recently Chakravartyet al. proposed that the pseudoga
phase is possibly thed-density-wave~DDW! state.26 It is
therefore of interest to examine the tunneling spectra
normal-metal–d-density-wave~N-DDW! junctions.

The DDW state is characterized by the staggered flux
the elementary plaquettes of the lattice. The bond curre
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circulating the unit cell of the underlying square lattic
break, among other symmetries, the invariance of transla
by one lattice spacing and lead to a bipartite structure~Fig.
9!. Obviously, if the interface cuts at~110! direction, the
reflection symmetry is broken—in contrast to the~100! case.
Therefore, we shall examine the~110! direction with the fol-
lowing mean-field Hamiltonian:

HR5 (
i B ,s

$x~ci 1a
A† ci

B1ci 2a
A† ci

B!1x* ~ci 1b
A†

ci
B1ci 2b

A† ci
B!

1H.c.%, ~37!

whereci
a annihilates an electron at sitei over thea sublat-

tice, andx is the hopping amplitude on the bond@Fig. 9~b!#.
Making the Fourier transformation along they direction in
HR , one finds

FIG. 8. Typical tunneling conductance curves for polyacetyle
with A type ~solid line! andB type ~dashed line! end points. Here
t152.25 eV and t252.85 eV; thus the bandwidth ist11t2

55.1 eV and the gap widthut12t2u50.6 eV. The linear chain on
the left side is a wideband material and the tunneling amplitudeHT

is t I50.3.

FIG. 9. ~a! Thed-density-wave state in~110! orientation and its
corresponding 1D model. Filled and empty circles label theA andB
sublattices; the arrows indicate the directions of bond curre
Dashed lines extended from the boundary sites indicate the
pling of the tunneling Hamiltonian.~b! shows explicitly the bond
variables in a doubled unit cell.
3-8
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HR5 (
xi

B ,ky ,s

$L i ,i 21ci 21
A† ~ky!ci

B~ky!

1L i ,i 11ci
B†~ky!ci 11

A ~ky!1H.c.%, ~38!

whereL i ,i 6152 Re$xe6 ikya/A2% with a being the lattice con-
stant of the square lattice. One sees that this belongs to
class of thet1-t2 model defined in Eq.~31! except that now
Lk5ek1 iDk with ek andDk being given by Eq.~20! where
one setstR52Re$x%, D052Im$x%, andtR850.

To find the tunneling current we apply again the Keldy
formulation outlined in the Appendix. For fixedky the full-
space retarded Green’s functionG(xi

a ,t;xj
b,0;ky) is obtained

similar to its 1D counterpart. The momentum space Gree
function has the same form as given in Eq.~35! ~with k
replaced byk) and the inverse Fourier transformation is ca
ried out as in Eq.~34! with here2p/2d<kx,p/2d, where
d5a/A2 is the lattice spacing of the effective 1D structu

From the bulk Green’s function, one can again constr
the half-space surface Green’s function using the metho
image. The current expressions here, however, are dis
from those of Eqs.~23!–~26!. Indeed since we are dealin
with a single component Green’s function the calculation
much simpler than previously. As shown in the Append
the current expression is here

I 5 (
ky ,s

2peE
2`

`

dvt I
2@ f ~v2eV!2 f ~v!#

3AL~v2eV!AR~v!u11t IgRL
r ~v!u2. ~39!

This is exactly the single-particle currentI 1 of Eq. ~23! for
ND tunneling. There is no contribution from ‘‘Andreev re
flections’’ in N-DDW tunneling. This is due to the fact that i
the DDW state the pairing takes place between particles
holes of momentak andk¿Q, with Q the nesting vector of
2D square lattices. Thus the Andreev reflected particles
still electrons whose response to the bias voltage are
same as the incident particles; as a result their contribut
to the tunneling current cancel exactly. In the ND junctio
however, a particle is Andreev reflected as a hole, wh
behavesoppositelyunder applied bias. Figure 10~a! shows a
typical plot for differential conductance versus voltage
N-DDW junctions. The conspicuous ZBCP agrees with
cent calculations done by Honerkamp and Sigrist.27

The reason for the ZBCP here can be understood on
basis of the results in the previous section. Just like po
acetylene, the midgap states arises wheng0 is singular due to
the zeros in the Green’s function such as in Eq.~36!. For
each ky Eq. ~38! resembles thet1-t2 model with t1
52L i ,i 21 and t252L i ,i 11. Therefore, for example, fo
A-type boundary one expects midgap states for the rang
ky where L i ,i 21.L i ,i 11, or Im$x%sin(kya/A2).0. Since
here Im$x%52D0,0, this leads to2A2p/a,ky,0.

We have so far considered only the case of vanish
chemical potentialmR in the DDW state. At finite chemica
potential the grand Hamiltonian for the DDW isKR5HR
2mRNR . Hence2mRNR is diagonal and simply shifts th
excitation energy by2mR . As a result, a shiftv→v1mR is
02450
he

’s

-

.
t

of
ct

s
,

nd

re
he
ns
,
h

r
-

he
-

of

g

induced in the Green’s function. This is in sharp contr
with the ND case; there the chemical potential shifts
quasiparticle energyek→ek2mR in the Green’s function but
not the frequency. This results in the distinct behavior of
ZBCP for ND and N-DDW junctions at finitemR . For
N-DDW junctions sincev→v1mR at finite chemical poten-
tial, the conductance peak is shifted from zero bias to
opposite value of the chemical potential2mR . For ND junc-
tions, however, the midgap state stays atv50 even at finite
chemical potential, thus the conductance peak always p
tion at zero bias~see Fig. 3!. This shift has an obvious im
plication: the peak will split due to the Zeeman splitting~see
Fig. 10!. The orbital effects of magnetic fields can be i
cluded by changingx into xeiq•(r i2r j ) for any nearest neigh
bor sitesi, j. This takes into account the current induced ne
the interface. Since under this change bothek and Dk un-
dergo shifting ofk by q which can be absorbed into th
summation ofk, the peak does not split. Therefore, the sp
ting of ZBCP turns out the same for both in-plane and p
pendicular magnetic fields. This is in contrast to the N
junction where orbital effects dominate for perpendicu
fields.

In closing this section we note that since the next n
term tR8 couples only lattice sites within each sublattice,
effect is similar to that of the chemical potential. Therefo
tR8 cause the ZBCP and the spectrum to migrate whentR8
Þ0. This is displayed in Fig. 11.

E. Graphite sheets

So far we have considered systems involving only squ
lattices. As commented in the end of Sec. II, our formulati
is general and can be applied to any systems which can
projected into 1D structures. As an example, we study in

FIG. 10. Typical conductance (dI/dV) curves for N-DDW junc-
tions at ~110! orientation in the~a! absence and~b! presence of
in-plane magnetic field. Here the boundary surface consists oA
sublattice sites andx5(2tR2 iD0)5(20.44720.1i ), h50.01.
Also shown in~b! are contributions from the spin-up~dashed line!
and spin-down~dotted line! components. The Zeeman splitting
here 0.24D0. The weak link is modeled by the same expression
in Fig. 3.
3-9
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section the in-plane tunneling from a normal metal into se
infinite graphite sheets~NG junctions!.

In the tight-binding limit the Hamiltonian for the bulk
graphite sheet is

HR5 (
i B ,s

2g0ci 1a
A† ci

B2g1ci 1b
A† ci

B2g2ci 2aÀb
A† ci

B1H.c.

~40!

Here the lattice is divided intoA andB sublattices,a, b are
the lattice vectors illustrated in Fig. 12, andg i are the hop-
ping integrals forp bands. For simplicity we shall takeg0
5g15g2 in the following. We will be interested in two ori
entations of the lattice: one with zigzag and the other w
armchair boundaries.

We first consider the zigzag case and choose the fram
coordinates as shown in Fig. 12~a!. Fourier transformation in
the transverse direction leads to 1D Hamiltonian which
sembles Eq.~30!

FIG. 11. Same as Fig. 10(a) but with next n.n. hopping ampli-
tudestR850.0 ~solid line!, 20.03 ~dotted line!, and20.06 ~dashed
line!.

FIG. 12. Graphite sheets with~a! zigzag and~b! armchair
boundaries and the corresponding 1D models afterky transforma-
tion. Filled and empty circles represent respectively theA and B
sublattices;a, b are lattice vectors. The dashed lines draw from
boundary sites indicate connections to the left electrode through
tunneling Hamiltonian similar to Fig. 1~a!.
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HR5 (
xi

B ,ky ,s

2t1ci 21
A† ~ky!ci

B~ky!2t2ci
B†~ky!ci 11

A ~ky!1H.c.

~41!

with

t152g0cosSA3

2
kyaD and t25g0 , ~42!

a being the lattice constant. Furtherkx transformation brings
HR into the same form as Eq.~31! with Lk52g0$e

2 ikxa

12 cos@(A3/2)kya#eikxa/2%.
In applying the method of image, we note that the p

jected 1D lattice for the zigzag case has alternating b
length, which breaks the reflection symmetry and hence
plies the possible existence of the ZBCP. The alternat
bond length, however, seems to cause difficulty in locat
the image point of an arbitrary source site. For instance,
usual choice—the mirror image—does not always put
image point right on the lattice. Nevertheless, since in 1D
hard wall becomes a point, as long as the Green’s func
propagating from the real source to the hard wall can
canceled by that from a fictitious source, so that the bou
ary condition is satisfied, uniqueness of the half-spa
Green’s function implies that the location of the fictitiou
source can be chosen at will. Indeed, this can be explic
checked numerically. To be definite, we shall place the fi
tious source atx52(3/2)a and apply the method of image
The boundary conditiong(2a,x8)50 for all x8 immedi-
ately leads to

g05GAA~0,0!2GAA~0,23/2a!

3GBA
21~2a,23/2a!GBA~2a,0!. ~43!

Here we have labeled the attributes of the lattice points
plicitly in the subscripts of the Green’s functions. Just li
polyacetylene, the midgap states arise wheng0 is singular,
namely at the zeros ofGBA(2a,23/2a) whenh50. From
Eq. ~42! the correspondence to thet1-t2 model indicates that
midgap states exist forky which satisfy cos(kyA3a/2),1/2.
When settingA3a51 we find 2p<ky,22p/3 or 2p/3
,ky<p, exactly what is found in band structur
calculations.28

For the zigzag orientation, apart from the zigzag boun
ary, there could also be the ‘‘bearded’’ boundary where
surface layer consists ofB sites. This is reminiscent of the
case ofB-type end point of thet1-t2 model. A similar analy-
sis as above can also be used here. We find in this case
zero-energy state arises when (A3a51) 22p/3,ky
,2p/3. The current expression are the same as Eq.~39! for
N-DDW junctions. The corresponding tunneling spectra
shown in Fig. 13.

Let us now consider the armchair case@Fig. 12~b!#. After
the Fourier transformation along the interface, one finds

he
3-10
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HR5 (
xi

B ,ky ,s

2g0@ci
B†~ky!ci

A~ky!e2 ikya

1ci
B†~ky!ci 11

A ~ky!eikya/21ci
B†~ky!ci 21

A ~ky!eikya/2

1H.c.#. ~44!

Note that bothA andB components exist for each sitexi as
shown in Fig. 12~b!. The propagation betweenxi andxj thus
compose of four components and the full-space Gree
function form a 232 matrix

G~xi ,xj !5S G~xi
A ,xj

A! G~xi
A ,xj

B!

G~xi
B ,xj

A! G~xi
B ,xj

B!
D . ~45!

Furtherkx transformation yields the Hamiltonian~31! with
here

Lk52g0Feikya12 cosSA3

2
kxaD e2 iky(a/2)G . ~46!

Note that L(2kx ,ky)5L(kx ,ky) implies that reflection
symmetry is preserved here. Similar to the case of polyac
lene, in momentum space,G(k,v) has exactly the sam
form as Eq.~35!. However, now the hard-wall boundary co
dition becomes a matrix equation

g~xi
a ,xj

b!uxi52d50 for all a,b5$A,B%, ~47!

whered5(A3/2)a is the lattice constant of the projected 1
lattice. The surface Green’s function then takes the form

g05G~0,0!2G~0,22d!G21~2d,22d!G~2d,0!.
~48!

Since translational symmetry is preserved in this 1D latti
we haveG(2d,22d)5G(d) andG(2d,0)5G(2d). Re-
flection symmetry impliesG(d)5G(2d) and consequently

FIG. 13. Typical tunneling conductance curves for NG junctio
with zigzag~solid line!, bearded~dashed line!, and armchair~dotted
line! boundaries. Hereg050.1 and the left electrode is a wideban
metal. The weak link is modeled by the same expression as in
3 with herev0511g0 andG5g0.
02450
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g05G~0!2G~2d!. ~49!

In this case, one thus expects no midgap states.
Without loss of generality, we connect theA sublattice to

the left side@Fig. 12~b!#. The current expression is then th
same as Eq.~39!, whereg0 is replaced by the 11~or AA!
component of Eq.~49!. The conductance curve for this cas
is also shown in Fig. 13.

IV. DISCUSSIONS AND CONCLUSIONS

In conclusion, the generalized method of image that
developed allows us to deal with various tunneling proble
in a unified manner, with full tight-binding nature bein
taken into account. In particular, applying our method to
vestigate the splitting of ZBCP in normal metal–d-wave su-
perconductor junction under magnetic fields yields results
agreement with recent experiments. Furthermore, we pre
that a sharp conductance peak at the chemical potential in
tunneling spectra should exist for tunneling into t
d-density-wave state at~110! orientation. This peak will shift
away from the chemical potential if the next nearest neigh
hopping tR8 exists, which also offers a way to measuretR8 .
Under in-plane magnetic fields, it also splits due to Zeem
splitting. These provide signatures to be looked for in expe
ments, especially in normal-metal–pseudogap-cuprate ju
tions for testing the proposal of Ref. 26.

The general applicability of our formulation is furthe
demonstrated by considering tunneling into graphite shee
the zigzag and armchair orientations, and it shows comp
agreement with findings in the study of graphite ribbons
direct computation of energy spectrum.28

The merit of our formulation lies in two aspects. First,
offers a unified method for theoretical study of the tunneli
spectroscopy of various junction systems. Secondly, as
ready pointed out at the beginning of the paper our met
allows us to express what is being measured in tunne
experiments in terms of bulk Green’s function. For instan
in a single hard-wall configuration, if a wideband metal
used for the left part, in the tunneling limit (t I!1), tunneling
experiments essentially measure thesurfacedensity of state
given by Eq.~3!, which as we have seen, can be expresse
terms of two contributions from the bulk@see Eq.~1!#. The
role of reflection is further manifested. Only when the refle
tion symmetry is broken with respect to the interface, sing
lar behavior may arise from the image part, resulting
ZBCP.

Finally, we discuss a potential drawback of our formu
tion. This regards dealing with the high-index interface
(hk0), whereh or k is large. As mentioned at the end of Se
II B, the number of hard walls required then becomes v
large so that the image method is impractical. For instan
the high-index interface,h512 andk513, seems to be a
good approximation to the low-index interface~110!, and yet
the former requires 13 hard walls. From a mathemati
point of view, this indeed poses a limitation of our formul
tion. Nevertheless, since in reality high-index interfaces te
to form small low-index terraces separated by steps, one
apply the image method to each terrace but now usingky’s

s

ig.
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that are consistent with the width of the terrace and s
currents from each terrace to obtain the total current. T
would be an approximated way to deal with high-ind
interfaces.
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APPENDIX: CURRENT EXPRESSIONS

In this appendix we outline techniques for calculating t
tunneling currents for the ND and the N-DDW junctions. W
shall start from the expression~7! for the tunneling current.

1. ND junctions

Let us start with the Nambu representation used for
ND junction

Ca~xi ,ky ,t !5S Ca,1

Ca,2
D 5S ca↑~xi ,ky ,t !

ca↓
† ~xi ,2ky ,t ! D , ~A1!

where a5$L,R% labels the electrodes and the upper a
lower elements are associated with, respectively, elect
and holes. The Keldysh non-equilibrium Green’s functio
are then defined as29,8

gab,mn
21 ~xi ,t;xj ,t8!51 i ^Cb,n

† ~xj ,t8!Ca,m~xi ,t !&,
~A2!

gab,mn
12 ~xi ,t;xj ,t8!52 i ^Ca,m~xi ,t !Cb,n

† ~xj ,t8!&.
~A3!

For brevity we have suppressed theky dependence. The
Green’s functions here carry the left right indicesa,b
5$L,R%, the Nambu~spinor! indices m,n5$1,2%, and the
Keldysh indices$2,1%. For notational clarity we shall in
the following frequently omit irrelevant indices and kee
track of only those related to our discussion.

In this representation we define the tunneling matrixt̂ I
[t It3s3, wheret3 ands3 are the third Pauli matrices pe
taining to the Nambu space and the Keldysh space, res
tively. In particular,s3 is chosen so that in the Keldysh spa
s3

225152s3
11 , ands3

21505s3
12 , since we have as

signed the forward time path the ‘‘2 ’’ time axis, and the
return time-path the ‘‘1’’ time axis. In the following we will
consider only real valuedt I and hencet I* 5t I .

The current expression~7! can now be written as

I ~ t !51e(
ky

E
2`

` dv

2p
t I~ky!$Tr@gRL

21~x0 ,ky ,v!#

2Tr@gLR
21~x0 ,ky ,v!#%. ~A4!

where the trace is taken over the Nambu space. In the p
ence of particle-hole symmetry, 11 and 22 components c
tribute equally. Therefore, the trace yields twice the con
bution from the 11 component. For elastic tunneli
02450
is

,

n.

e

d
ns
s

c-

s-
n-
-

processes~i.e., the interaction does not act across the tunn
ing matrix!, one can use the Dyson equations14

g5g01g0 t̂ Ig5g01g t̂Ig0 . ~A5!

Writing out the above equation for each component and n
that in the bare level,g0,RL505g0,LR . We find

gRL
215t I~gRR

22g0,LL
21 2gRR

21g0,LL
11 !, ~A6!

gLR
215t I~2g0,LL

21 gRR
111g0,LL

22 gRR
21!. ~A7!

By using g111g225g211g12 and substituting Eqs
~A6! and ~A7! into ~A4!, we obtain

I 52e(
ky

t I
2E

2`

` dv

2p
$g0,LL,11

21 ~v2eV!gRR,11
12 ~v!

2g0,LL,11
12 ~v2eV!gRR,11

21 ~v!%. ~A8!

Note that the frequency arguments of the bare Green’s fu
tions for the left electrodeg0,LL

21/12 has been shifted due t
the applied biaseV between the two sides (mL2mR5eV).
We emphasize that the Green’s functionsg12/21 may con-
tain contributions from interactions.g12/21 can be ex-
pressed in terms of the bare onesg0

12/21 and retarded/
advanced Green’s functionsgr ,a by the following
equations:14

g12/21~v!5@11gr~v! t̂ I #g0
12/21@ t̂ Ig

a~v!11#.
~A9!

One can further expressgr ,a in terms of the bare onesg0
r ,a by

virtue of the Dyson equations

gr ,a~v!5g0
r ,a~v!1g0

r ,a~v! t̂ Ig
r ,a~v!. ~A10!

Solving these equations, we obtain

gRR
r ,a~v!5T RL

r ,a~v!g0,RR
r ,a ~v!, ~A11!

gLR
r ,a~v!5T LR

r ,a~v!@ t Ig0,LL
r ,a ~v2eV!t3g0,RR

r ,a ~v!#,
~A12!

gRL
r ,a~v!5T RL

r ,a~v!@ t Ig0,RR
r ,a ~v!t3g0,LL

r ,a ~v2eV!#,
~A13!

gLL
r ,a~v!5T LR

r ,a~v!g0,LL
r ,a ~v2eV!, ~A14!

where the sum over tunneling processes of all orders is
nified by the factors

T RL
r ,a~v!5@12t I

2g0,RR
r ,a ~v!t3g0,LL

r ,a ~v2eV!t3#21,

T LR
r ,a~v!5@12t I

2g0,LL
r ,a ~v2eV!t3g0,RR

r ,a ~v!t3#21.

Note that frequencies of particles and holes are shifted
opposite ways in g0,LL : g0,LL,11(v2eV) and g0,LL,22(v
1eV). This is essential in giving rise to the Andreev cont
butions in the tunneling current.

Incorporating Eqs.~A11!–~A14! with ~A9!, one can thus
obtaingRR

21/12 and substitute back into Eq.~A8!. Finally, by
using the relations
3-12
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g0
21~v!52p i f ~v!Â~v!, ~A15!

g0
12~v!522p i @12 f ~v!# Â~v!, ~A16!

where f (v) is the Fermi function andÂ(v) is the spectral
weight matrix given by Eq.~27!, we obtain the current ex
pressions~23!–~26!.

2. N-DDW junctions

We now derive the current expressions for N-DDW jun
tions. These will be also applicable to NG junctions. We sh
also show that in this case Andreev-like processes do
contribute to the tunneling current. In the absence of exte
fields, spin degree of freedom merely introduces a facto
2. Thus the spin indicess will be omitted in the following.

We first define the Keldysh Green’s functions similarly
Eq. ~A3!

gab
21~xi ,t;xj ,t8!51 i ^cb

†~xj ,t8!ca~xi ,t !&, ~A17!

gab
12~xi ,t;xj ,t8!52 i ^ca~xi ,t !cb

†~xj ,t8!&. ~A18!

Here the subscriptsa, b5$R,L% are labels for the electrode
~not to be confused with the labels for sublattices in the te!.
In terms of the Keldysh Green’s functions the tunneling c
rent can be written

I ~ t !51e(
l ,r ,s

@ t IgRL
21~r ,l !2t I* gLR

21~ l ,r !#. ~A19!

Similar to the previous section, the renormalized Gree
functionsgRL andgLR can be expressed as combinations
g0,LL andgRR. This results in the exact formula
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