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Zero-bias conductance peak in tunneling spectroscopy of hybrid superconductor junctions
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A generalized method of image, incorporated with the nonequilibrium Keldysh-Green'’s function formalism,
is employed to investigate the tunneling spectroscopy of hybrid systems in the configuration of planar junction.
In particular, tunneling spectroscopies of several hybrid systems that exhibit zero-bias conductance peaks
(ZBCP's are examined. The well-known metal-wave superconductdiND) junction is examined in detail.
Both the evolution of the ZBCP versus doping and the splitting of the ZBCP in magnetic fields are computed
in the framework of the slave-boson mean field theory. Further extension of our method to analyze other states
shows that states with particle-hole pairing, sucll-aensity wave and graphene sheet, are all equivalent to a
simple one-dimensional model, which at the same time also describes the polyacetylene. We provide the
criteria for the emergence of ZBCP. In particular, broken reflection symmetry at the microscopic level is shown
to be a necessary condition for ZBCP to occur.
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I. INTRODUCTION relation of the conductance curve to the bulk quantities was
not clearly manifested, essentially the numerical computation
Since the pioneering work of Giaevkthe tunneling mea- had to be done individually for each interface orientation.
surement has been a major experimental method for investAnother technical inconvenience is that the BTK theory is a
gations into the electronic states of condensed mattemean-field theory based on solving the mean-field quasipar-
system¢. In the simplest setup, a metal wikmownspectral ticle wave functions, it is thus difficult in this formulation to
property is made in contact with a materglforming anNX  take into account the effects of interaction systematically. To
junction so that the electronic statesXtan be probed. For extend into the study of other systems, especially those with
many years, despite the fact that many insights into the spestrong correlations where almost all relevant models are on
tral properties of many states have been gained from thdiscrete lattices, it is therefore an urgent need to have a for-
differential conductanced(/dV) curves obtained from tun- mulation which can go beyond the mean-field BTK formu-
neling measurements, nonetheless, unlike many other expetation. As an illustration of our approach, in this paper we
ments, it is fair to say that there is no clear and solid statewill focus on mean-field analysis of several tunneling prob-
ment as to exactly what bulk properties are being probed items. The effects of fluctuations and interactions will be dis-
tunneling measurements. For example, it is known that ircussed elsewhere.
neutron scattering experiments, the neutron intensity is a In this paper, we shall adopt an approach that is based on
measure of the imaginary part of the bulk spin susceptibilitythe non-equilibrium Keldysh-Green'’s function formalism. In
Im x(k,®); no similar statement has ever been firmly estabthe lowest order approximation, we are able to express the
lished for tunneling measurements. differential conductance entirely in terms of bulk Green’s
The difficulty for establishing the relation between the functions and include the interface effects. Thus, the relation
tunneling conductance and the bulk quantities can be traceaf the conductance curve to the bulk quantities is clearly
back to the very existence of the junction interface. It hasmanifested. The tunneling betwelrand X will be treated as
been realized that the presence of the interface can changeperturbation, so that in the zeroth order the Green’s func-
the conductance curve dramatically. A well-known exampletion is the mean-fielchalf-spaceGreen’s function that re-
is the zero-bias conductance pe@BCP) observed in the sides only on the semi-infinite plane and satisfies the bound-
tunneling spectra wheK is a d-wave superconductdiND  ary conditions to be specified later. Based on the half-space
junction) in (110 direction® The appearance of the ZBCP is Green’s functiong, higher order corrections can be system-
entirely tied up with the presence of the interface and itsatically constructed=° In particular, a class of infinite series
orientations, and therefore can not be obtained by simplé g, which consists of all elastic tunneling processes in the
calculations based on bulk density of states. perturbation theory, will be considered and summed to all
Recent theoretical analyses of the ZBCP have been mosttyrders for calculating the current across the juncfih!'To
concentrated on the ND junctions. Furthermore, they aréully take into account the tight-binding nature of the prob-
based largely on the standard BTK thebin the continuum  lem, we shall employ discrete models for both the materials
limit, analytic expressions of the differential conductance forN and X and the tunnel junctions. Thus the essential quantity
general orientations of the interface were obtained. Numerito be calculated is the half-space lattice Green’s function for
cal calculations were later carried out for the BTK theory inthe X state. In resemblance to the conventional method of
the lattice versioi-’ While these works have supplied in- image, we express the half-space Green’s function in terms
sights into the ZBCP, they are, however, specifically de-of the bulk Green’s functions propagating from the real
signed for studying the ND junction. Moreover, because thesource and a fictitious image source
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with the factora accounting for the boundary conditions.
The half-space Green'’s function is thus decomposed into two
parts: the real-source part comes solely from the bulk and
hence reveals purely the bulk properties, the image part con-
tains all interface effects which are encoded in the faator
In this way, the interface effects are clearly identified in the
course of the analysis and one can pinpoint any departure 0 X
from the bulk property.

The factora can be expressed in terms of bulk Green’s
function. Right on the interface, it is found

ao=G Hd)G(—d). )

Hered is an effective lattice constant whose precise meaning
will be explained in below. Clearly, the tunneling spectrum
can be classified according to whether the reflection symme-
try is broken or not. In the case when reflection symmetry is = =
broken with respect to the interface, one h@&g§—d)
#G(d), henceeaq is not unity, possible zero modes may (b) (c)

arise due to the presence of zeros in the denominator of the

left hand side. The number of localized zero modes is thus FIG- 1. (@ Atypical configuration for the tunnel junctions stud-
determined by the order of zeros in the bulk Green’s functior{ed in this paper: 4100 lattice on the left side connected tdH0)
G(d). In the lowest order approximation, the differential !attlce on the right side. The dashed lines between the two lattices

conductance is given by the local density of states at thfipd'cate hopping due o the tunneling Hamiltonieih . The effec-
interface ive one dimensional lattices obtained from Fourier transformation

along the direction parallel to the interface are shown in below. In

(b) and (c) we show explicitly the hard walls of semi-infinite lat-

dl/dVe« — E Im{go(k,eV)}, (3) tices at(110) and(210) orientations indicated by open circles. Here
Ko a and b indicate the crystalline axes. The hard walls result from

. . . disconnecting the sample from the left side in the zeroth order of
whereg, is g of Eq. (1) evaluated at the interface ands the H+. Note that third hard wall would be needed if one considers

charge of an electron. Sineg, can be expressed entirely in ' hopping in thé210) orientation
terms of bulk Green’s functions, this is then the relation be- =~ '
tween the bulk quantities and the differential conductancgy . |eft half the normaiN) electrode C»<x<-a, , a, is

a”'“_'l_dhe.}d to earl_ler. ed as foll In Sec. Il i the lattice constaptand the right the testX) electrode (0
IS paper Is organized as follows. In Sec. Il, we outline _, .y 12 \yg take the interface the direction. The total

the theorgtical formglation anq derive the g‘.eneraliz‘adi-|amiltonian of the system thus comprises two parts: the
method of image for discrete lattices. In Sec. IlI this methOdHamiItonianHoz H, +Hpg for the left and right electrodes

is applied to the study of tunneling spectroscopies for various .\ the tunneling Hamiltonian which connects the surface
systems. We first study the ND junctions at various surfac oints atx= —a. andx=0
orientations and examine the doping dependence of th -
ZBCP using mean-field slave boson theory. We then study
the effects of applied magnetic fields perpendicular toathe Hi= >, ti(lyi—yil)el cr ot H.cC. (4)
plane. A one-dimension&lD) model, based on the structure Yo

of polyacetylene, is then studied in Sec. Ill C. On the basis Oherea are spin indices, angl, y, are they coordinates of

this model, we further apply this method to investigate tUN+6 surface sites on the left and right electrodes; c,, are

2522? dlgtpndé((j;:nls\lﬁy-\{\tﬁ\gﬁfieosm?gngriﬁ%i i’h?ﬁ‘t'iér\llc\:/?he corresponding electron annihilation operatorsis the

and fﬂrthtler a iicat\il(\glns of our formulation Theig ':andix?unneling amplitude whose magnitude models the barrier
. pp! - : PP height in the tunnel junction. Since all points over the inter-

describes techniques for deriving the current expressions f%ce layers contribute to the tunneling process, one has to

the tunnel junctions studied in the text. sum over all interface sites. Suppose the chemical potentials

on the left and the right electrodes atig and wg, respec-
Il. THEORETICAL FORMULATION AND GENERALIZED tively, the total grand Hamiltonian is then given by

METHOD OF IMAGE

A. Theoretical model K=(H_ = u Ny +(Hgr—ugNr) +Hr=Ko+Hy, (5

We start by modeling the planar junction. As illustrated inwhere (u, — ug) is fixed to be the voltage drogV.
Fig. 1, the tunnel junction consists of two truncated two- To calculate the tunneling current, we choose the unper-
dimensional lattices connected through a tunnel barrier, wittiurbed state to be the ground statekyf and adiabatically
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turn onH+. In the Heisenberg picture, the tunneling currentapplying it to the discrete lattice, one encounters the diffi-

is then found to b€ (we setz=1 throughout culty that the image point to any source pomtmay not
locate right at the allowed lattice points. This can be over-

©6) come by performing Fourier transformation along the surface
direction, chosen as thedirection. In the following sections,

] we shall further assume that each electrode is in a steady

The expectation value§ - -) here represent the ensemble gtate and thus will be concerned with the half-space Green’s

average TrZ ™ 'exp(—BKo)---]. function in its Fourier space representatigtx,x’;k ;o).

In actual experiments, the normal metal on the left elecyor eachk, andw one is therefore dealing with an effective
trode could be in any orientations, and the detail connection p system(Fig. 1).

between the two lattices may also cause complications inthe Ag a demonstration of the method, let us consider a 2D
tunneling spectroscopy. To be definite, however, in oulsemi-infinite square lattice with lattice constanextending
model we fix the lattice on the left side &00) orientation  oyer the regionx=0 at orientation k0). The hard-wall
and connect its boundary sites to those of the right=a0  poundary condition prescribes the half-space Green’s func-
[Fig. 1(a)]. As one can observe easily, the system is translagons to vanish over the hard walls, which consist of all
tional invariant along the interface direction with periad.  points where the boundary sites can reach away from the
We exploit this symmetry by making a partial Fourier trans-py| |attice[Figs. 1b), 1(c)]. For general surface orientations
formauon along the interface direction in E@) and arriv- (hk0) and with only nearest-neighb&iN) hopping one can
Ing at find that the number of hard walls is given by njlak|k|}.
Let us consider first the single hard-wall configurations,
I(t)=+ie > t(k)(c/ (k)C/o(k))+Hc, (7) which includes the(100) and the(110) orientations(when
ky o there is no next NN hopping in the latieAs we shall dis-
cuss later, the multi-hard-wall problem are simple generali-
zations to the single hard-wall cases.
For single hard-wall case, since there is only one hard
\é/all located atx= —d with d=a/+hZ+k? being the spacing
etween two consecutivehk0) planes, one imposes the
boundary condition

I(t):+ie 2 {t|<C|Ta'Cr0'>_tr<CITO'C|0'>}'
Y Yr o

where — m/a <k, <m/a_ . We emphasize that the problem
is now effectively one dimensional: in Eq7) differentk,
modes are decoupled completely. Moreover, oBlyrface
guantities are involved. These are very appealing featur
especially for the feasibility of our method of image, as we
will discuss in the following section.

In the Keldysh Green’s function formulation, the time
evolution of the density matrix can be formally solved as a 9(—d,x";ky;@)=0. ®)
closed time-ordered path integfdlThe expectation value
<c|t,(ky)c“,(ky)> in Eq. (7) is then related to the components
of Keldysh’s Green’s functions over the closed time path.
One can then calculate perturbatively the average curient
terms of the zeroth order Green’s function. Details of this
calculation can be found in Ref. 7 and an outline is presented g(x,x";ky ;@) =G(X,X" Ky ;@)
in the Appendix. Here an essential difference from earlier —G(xX, Ky w) (X k) ©)
work is that previously the Green'’s functions were obtained LTy Ty
through directly solving the equation of motion, while here
we shall make use of the method of image elucidated in thX, with respect to the hard wali— —d. The Green’s func-

following section. In this way the current approach is more’.

general and versatile, and can be easily applied to variofi®" G(x.x') describes direct propagation from the point
hybrid systems. source to the poink, while G(x,x;) propagates from the

image point tox. The factora is determined by fitting the
boundary conditior{8), which yields

To implement the method of image, we construct the half-
space Green's functiog(x,x’;k,;w) from the full-space
Green’s functionG(x,x’;ky ;) as

gvherex1= —2d—x’ is the image point of the point source

B. Generalized method of image

In the Green’s function approach, the building blocks for a(x')=G"Y(—d,—2d—x")G(~d,x")
calculating the current are the zeroth order half-space ’ ’
Green’s functiongsee the Appendijx Because in the zeroth =G Yd+x")G(—d—x'). (10

order, lattices on the left and right sides are disconnected, the

Green’s functions are defined only for each semi-infiniteHere and in the following we suppress thgand » depen-

plane. Therefore, lattice points on the interface have “dandence whenever no confusion would arise. In going from the

gling bonds” which effectively, as shown in Figs(d and first to the second expressions above, we have used

1(c), impose hard-wall boundary conditions at the endG(x,x')=G(x—x"), namely that the full-space Green’s

points. One thus envisages a method of image similar to thdtinctions are translational invariant along tkedirection.

in electrostatics. However, this is not essential for establishing the method of
In the usual practice, the method of image is done for themage. It is used here only for brevity. For systems without

continuum differential equations. It is based on the principletranslational symmetry along direction, the following dis-

of superposition and the uniqueness of the solutfBshen  cussion still proceeds with only minor modification.
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=G(—d). Thereforea becomegindependent ok, and w)
A universally equal to the identity matrix and Ed1) reduces
to the familiar fornf-*

Jo= > G(k,) %2 sirt(k,d). (12)
—mldsky,<w/d

% B For general orientations or when taking into account next

5 nearest neighbor hopping, as noted earlier, there could be

more than one hard walls. In these circumstances the surface

(a) Green'’s function must satisfy the boundary condition that it

vanishes on all these hard walls simultaneously. For instance,

let us consider th€210) case with NN hopping: as depicted

in Fig. 1(c) there are two hard walls located st —d and

—2d, whered=a/\/5. Analogous to the single hard-wall

problem, we write the half-space Green’s function

9(x,x")=G(x,X") = G(x,x1) ar1(X") = G(X,X3) ara(X")
(13

with x;=—2d—x’, x;=—4d—x' being the location of the
image sources, and,;, «, determined by the boundary con-
(b) ditions
FIG. 2. The method of image applied tbwave superconduct-
ors: the propagatiofa) from the gsourEZ\ to the pointB tf]rough the g(—d.x’)=0=g(-2d,x"). (14
reflected patrAOBin the presence of a hard-wall boundary can be|n other words, for the point source at, each hard wall
replaced by(b) a direct patrA’B emanating from a fictitious source “generates” an image source on the other side of the surface
atA’ where the boundary is absent. and introduces am factor which accounts for the additional
) boundary conditions. The half-space Green’s function is a
_From the half-space Green's functig{x,x’), one ob-  syperposition of contributions from the real and all image
tains the surface Green'’s functigg by settingx=x"=0.In  gources. To obtain the surface Green’s function, one again
the Fourier spaceg, can be expressed by substitutesx=x'=0 into Eq.(13). We note in passing that
for arbitrary orientations, the number of hard walls may be-
come too large so that the image method becomes analyti-

do= >  G(kox[1—exp2ikd)agl. (11

— mld SR < mld cally intractable. This is one drawback of current method.
We shall further address this issue at the end.
Here ag= «(0) does not depends dqy and the sum ovek, Before proceeding to the applications in the following

extends over the first Brillouin zone of the effective 1D lat- sections, we comment that the present method is not re-

tice. The advantage of this formulation is clearly seen fromstricted to square lattices. In Sec. lll E we will apply this

Eq. (11): the surface Green'’s function is obtained from com-method to systems involving honeycomb lattices. Indeed our

binations of full-space Green’s functions. For different sur-generalized method of image relies only on the possibility of

face orientations, one simply rotates the full-space Green'seducing 2D lattices into 1D structures through a Fourier

function to the appropriate angle. Furthermore, it is also cleatransformation in the transverse direction.

that here we have a scheme for studying the effects of inter-

actions and fluctuations in tunneling problems. Essentially|;| TUNNELING SPECTROSCOPY IN HYBRID SYSTEMS

one can take these effects into account through the bulk

Green’s function. Here, however, we shall concentrate on A. Normal metal—d-wave superconductors

mean-field treatments and defer correlation effects to a sepa- We first study theab-plane tunneling between a normal

rate publication. metal and al-wave superconductor. The superconductor oc-
It is when dealing with lattices with an anisotropic order cupies the half-space>0, modeled by the mean-field

parameter that one could most easily appreciate the power ¢familtonian

the present formulation. For instance in dealing vdttvave

superconductors, apart from fitting the boundary conditions t ;o

(8), a also takes care of the different gap structures for Hp=— 2> tRCiCio— > th CioCio

propagation along the reflected path and the fictitious path

(such asAO andA’O depicted in Fig. 2 In the presence of

reflection symmetrysuch as ars-wave superconductor, or a

d-wave superconductor @100 orientatior], since the gap

structure as seen by these two paths are identical, the fullvhere (ij) denotes the nearest neighbofsj)’ the next

space bulk Green’s function possesses the symnte(d) nearest neighboréNNN), tg andti are the corresponding

(D)o (i) o

+<Z> Ajj(ciicj,—Ci ¢j)+H.C., (15)
ij

024503-4



ZERO-BIAS CONDUCTANCE PEAK IN TUNNELING . .. PHYSICAL REVIEW B57, 024503 (2003

hopping amplitudes, andl;; are the mean-field-wave pair- When the tunnelir_wg Hamiltonian is _turned on, the hal_f-
ing amplitude. The normal metal on the left is modeled bySPace Green's functions get renormalized due to tunneling
the same Hamiltonian but with =0 and with only NN hop- ~€venis(see the Appendix This is expressed as a perturba-
ping term. tion series. In the elastic case, it can be re-summed to all

The corresponding 1D structure is easily obtained by Fourders int,.** With the assumption that the renormalized
fier transform the Hamiltonian along thyedirection. For ex- ~@dvanced and retarded half-space Green's functions satisfy

ample, at110) orientation if including only NN hoppingiy ~ [9%s] =03, (Wherea,B={L,R} label the electrodeswe

becomes can express the tunneling current as
|:|l+|2+|3+|Al (22)
Hg= > —2tgco ky—acT(k)c- (Ky)
Roxke TR ) oyt where
k,a _ ” 2
+ 2iAosin(L> [cir(k)Cisgy(—kK,) Il—kE 471'eJ:wdw tif(o—eV)—f(w)]
Xi oy 2 y

+¢i(—ky)Ci 1 (ky)]+H.c. (16) XAL1(@—eV)Ag 11( )| 1+t R 1x(@) ], (23)

Here ¢; are the electron annihilation operators for the 1D
lattice at theith site[see Fig. 1b)] anda is the lattice con- 2=, —8me
stant of the original 2D lattice. The lattice constant of the 1D

Zdw tf(w—eV)—f(w)]AL(0—eV)

Ky

lattice is identical to the distanakbetween two consecutive X Re{AR 14 ©) (1,90 21(@)[ 1+ t,0r 11(@) D}, (24
(hk0) planes. By using the Nambu notattén
Cit(ky,t) l3= >, 47Tef do t/[f(o—eV)—f(w)]A 1(w—eV)
Wik, ,)={ + , (17) Ky —w
Cil( ky;t)

X A 24 @)|gr 1A @), (25
Hr can be formally written in the form R R

[ o= 4wefw do tf(o—eV)—f(o+eV)]A
He= D (WIH, oW+ WTH, W) (18) A= Ame | do ] ( WA

Xi ,ky

: : , . : X (w— + ; 2,
with appropriately defined hopping amplitudels; - ;. (0=eV)A 2l w+eV)|grpid )| (26)
According to the image method as explained in E9), Here f(w) is the Fermi function and
our task now is to find the full-space Green’s function
G(x,x";ky ;). If one further performs Fourier transform on Au=i1(27)(95 0a— Ybaa’) (27)
x coordinates, one realizes that all we need is to rotate the ) ) o
full-space Green’s function to the appropriate angle in accorar€ the spectral weight matrices far={L,R}. The indices
dance to the interface orientatioriskQ). In fact, in the mo- 1. 2 in the Green’s functions and the spectral weight matrices

mentum space, Eq18) has the usual BCS form refer to the particle and the hole components, respectively.
t;=t,(w,ky) is the tunneling amplitude between the two

e Ay \/[ Ck electrodes. It is remarkable that the expressionlfohere
HR=E (CLC_M)(A* )( + ) (29 generalizes that found in Ref. 7 and is applicable to any
k ko T/ Co interface orientation. For the special cases considered in Ref.
except thate, and A, are rotated as 7, where the surface Green’s functions are symmgfac
(100 orientatior] or antisymmetric[for (110) orientation,
€= —2tg[cogk-a)+cogk-b)]—4tscogk-a)cog k- b), Eq. (24) reproduces previous results. From these formulas
one can clearly identify the contributions from each channel
A =—2A[cogk-a)—cogk-b)], (200  in the tunneling process. In particulay, is the contribution

from single particle tunneling anld, the Andreev reflection
where for (1kO) orientation the lattice vectord=a(cosé,  (thusl, depends on the particle and hole components of the
—sin#), b=a(sing,cosh) with =tan *(k/h). The full-  spectral weight matria,).
space retarded Green’s function is then obtained as We now present some of our results. Figure 3 shows the
tunneling spectra fof110) and(210 orientations at the dop-
ing levels5=0.08, 0.14, and 0.20. Here we study the doping
dependence by resorting to the mean-field slave boson theory
for the t-t’-J model’ The electron operators and ¢’ are
where G(k, ,ky,0)=[w+i n—HR(kx,ky,w)]‘l, with Hg  then essentially the spinon operators and the Green’s func-
the matrix in Eq.(19) and »=0". The half-space bare tion for spinons as well. The holons condense so that
Green’s functiongy is then obtained via Eq9). = /5. The mean-field parametets, tr, Ao, and the chemi-

G(x.x)= > G(ky Ky, ) X i) (21)

—mldsky<w/d
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FIG. 3. The total differential conductance fat10) and (210 FIG. 4. Spliting of the ZBCP for various values df,

interfaces at dopingg=0.08 (solid lines, 0.14 (dotted line$, and (for 5=0.16)
0.20 (dash lineg The weak link is modeled by the interface hop- B
ping t(w)=exd—V(wy—|w|)/T]. Here we use wyg=11A,

andl'=A,,. To marry with formulations in the previous section, we

note that in the presence of supercurrent the gap function is
modified a&® A;;— A;;exlig- (r;+r;)], whereq=(0,q,) is

the superfluid momentum and is proportional to the magnetic
significantly reduced in thé210) orientation. Interestingly, field. We shall assume that tunneling events take place only

for (110 orientation the ZBCP decreases upon increasindVithin a shallow layer of order about the penetration depth
doping while for (210 case it grows and then falls with 1rom the surface, so thay, is approximately uniform in the
doping. Another interesting feature in the tunneling spectra i§€9ion of our concern. This additional phase can be absorbed
the subgap structures near2A, in the (210 case. These INto the electron operator by the transformatian,
may have originated from resonances due to broken surface’ Ci«€XP(d-ri). In Fourier space the Hamiltonian becomes
pairs, resulting from the dangling bonds 210
orientations:® : €k+q Ak )

The ZBCP originates from zero-energy surface stéves Hr=2> (CkT kai) AF t | (29
the midgap statg¢slue to Andreev reflections. In our formu- . K €k=q/ \ C-k|
lation these states arise from singularities in the image con- .
tributions which manifest as poles in the factors. In the Where e a”?' A, are given by Eq.(ZO). The momentum
presence of a single hard wall, the poles are determined b?Pace Green'’s function that is fed into Efjl) is obtained in

cal potential ur for each doping are calculated
self-consistently. It is obvious from Fig. 3 that the ZBCP is

the zeros of the following factor when=0: the same way:G(ky ky,w)=[w+in— Hr(Ke ky @)1,
with Hg the matrix in Eq.(29).
B(ky)=defG(d;k,,0=0)]. (28 Figure 4 shows typical tunneling spectra for the splitting

This produces singular behavior in the Green’s functions an f the ZB-CP vyhen nereasing - Note that. the slightly
X i o symmetric splitting originates from the particle-hole asym-
resuIFs n the_ ZBCP. In the100 ca:se, Sincex, IS simply the metry in €,. Figure 5 plots the magnitude of the splitting
identity matrix th? surface Green's functi¢t?) is regular at versus the applied magnetic field for underdoped case. For
©=0 thus there is no ZBCP. smallg, the quasiparticle enerdgl ™) =+ E,+q- de, /dk to
. _ the leading order, wherg, = \/e2+AZ. This leads to linear
B. Tunneling into current-carrying superconductors splitting of the ZBCP, as observed in small applied fields.
We now extend previous results by considering tunneling-or higher fields, one has to retain the falldependence,
into current-carrying superconductors. In experiments oneesulting in the bending of the splitting. This is purely due to
applies magnetic field along tteeaxis of the superconductor, the lattice effect. Also shown in Fig. 5 are the results taking
so that a screening current is generated overaih@lane.  into account suppression of the superconducting gap under
When a quasiparticle tunnels across the surface layer, it acnagnetic fields self-consistently. The curve is seen to be
quires additional energy from the supercurrent. Thus thépushed” inwards while maintaining similar features. Note
zero-energy surface state evolves in this case into two suthat  quantitative  agreement  with experimental
face states with non-zero energy. In the tunneling spectra thisbservations?2 can be obtained by fitting scales of our re-
appears as “splitting” of the ZBCRFig. 4). Fogelstion  sults to the experimental datd.Nevertheless, we did not
et al. have analyzed the splittings in the continuum liffit. observe any zero-field splitting at overdoping. This is in con-
Here we examine the tunneling spectra base on our discreteast with the experiment of Ref. 22, where it is attributed to
model. the change of the pairing symmetry.
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o g * O—-
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3 8
005 L ] ] FIG. 7. The structure of polyacetylene and the tiB, model.
‘ ® Filled and empty circles are lattice points over theand B
. sublattices.
0008 o3 v e v o spins form pairs. In thls and j[h'e foIIovymg sectlon§ we will
q, consider systems which exhibits particle-hole pairing over

- o ~ bipartite lattices. We shall start by first considering a simple
FIG. 5. The dependence of splitting on magnetic field for doping1D model based on the structure of polyacetyl&h&his
6=0.12. The empty and full symbols represent data calculatedyiij| turn out to be very helpful for understanding results in
respectively, with and without self-consistently taking into accounti,e following sections. Most importantly, it provides the cri-

the magnetic fields in solving thet’-J slave boson mean-field tqia for the formation of midgap states in semi-infinite bi-
equations. In the former case, the superconducting gap is Strongyartite systems

suppressed wheg,=0.65, where difficulty in convergence of the

) i ; The model we shall examine here is a 1D chain with
mean-field solution arises.

alternating hopping amplitudes, t, as shown in Fig. 7. The

The doping dependence of splitting is also shown in Fig.separatlon between the lattice points is taken to be a constant

24 14 ; ; : e
! : : : a.“" It is convenient to categorize the lattice points iAtand
6 for g,=0.15 and 0.80, which are respectively in the linear . o .

Ay P y sublattices and express the Hamiltonian for thjst,

and the saturated regimes in Fig. 5. Note that the splittin del

increases with doping, in agreement with Ref. 22. odel as
In passing we point out that the splitting depends sensi-

tively on the Fermi surface topology. Indeed fag=0 we Hg= >, —ticMcB—t,cBTeh [+ H.c. (30)

find no splitting of the ZBCP whatever the value @f is. ig.o

One can confirm this analytically by making an asymptotic N o )

expansion of the Green’s function around=0. At uz=0  Hereci’ annihilates electrons over siteon the a={A,B}

one finds the conductance peak invariantly stays at the zef@blattice(spin indicesc will be omitted throughout and

bias.

C. Polyacetylene

Up to this point, we have considered tunnel junctions with
superconducting test electrodes, where particles of opposite

0.25 |
n - -
- | |
uq,=0.8 -
0q=0.15
0.20 | i -
-
= .
B
a
£ o5}
c
S =
=
g’ []
B 0.10 |
g
o o @
a a
a
a
0.05 - g ©
o
o
o
0.00 . ‘ ‘ ‘ ‘
0.05 0.10 0.15 0.20 0.25 0.30

8

FIG. 6. Splitting versus dopings fof,=0.15(open squargsand
0.8 (solid squares

the sum run over siteisin the B sublattice only. In the mo-

mentum space, one finds
Ay [k
, 31
ole (31)

where A= —(t;+ty)coska)—i(t;—ty)sinka). It is easily
seen that the quasiparticle energy are giventjy\,|. Note
that RA } plays the role of the hopping energy, while
Im{A,} is the pairing between particles and holes. Since
Im{A,}et,;—1t,, a gap opens at the chemical potential when
t #t,.

For semi-infinite chains, there are two possible configura-
tions with the terminating site being aor a B sublattice
point. In either case we choose the boundary point the origin
x=0 and construct the surface Green’s function as follows:

0

At Bt

= C C
Hr kz( ko Tk (A:

Jo=G(0,0—G(0,—2a)G L(—a,—2a)G(—a,0).
(32

Here the appropriate component of the Green’s functions
should be used in accordance with the coordinates. This de-
pends the type of the end point. For instance, forAaype
boundary, even/odd sites are attributed to &I@ sublat-
tices. Therefore, terms such &(—a,—2a) in Eqg. (32
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should be expressed &g (—a,—2a). One can formally
keep track of the A/B sublattice nature by defining the re-

tarded Green'’s function as 010 |
G(x" . t;xf,0=—i0(t)({cl(t).c/T(0)},), (33
wherea is the index for the sublattice. In the Fourier space, £
one has £
>
e g 2 005
G xiw)= X G p(K,@) X ek =x)),
—ml2as<ky<ml2a
(34)
Here by inverting the matrixo+i7— Hg(k, »), we obtain T T Pl
1 w+in Ay 000 =55 25 00 25 50
Gulkw)=——77—— . , Ve
gl (w+i77)2—EE A¥ w+ing g
(35) FIG. 8. Typical tunneling conductance curves for polyacetylene

with A type (solid line) and B type (dashed ling end points. Here

where the matrix indices are assigned according to the con;=2.25 ev andt,=2.85eV; thus the bandwidth ig;+t,
vention used in Eq(31). =5.1 eV and the gap widttt;—t,|=0.6 eV. The linear chain on

From Eq.(32), one sees that the only possible source ofthe left side is a wideband material and the tunneling amplitdigle
singular behavior ing, resides in the inverse pa ! ist;=0.3.
(—a,—2a). The existence of the zero-energy mode thus de-
pends on the behavior db(—a,—2a) at ®=0. This is  circulating the unit cell of the underlying square lattice
analogous to the ND junctions where the ZBCP results fronbreak, among other symmetries, the invariance of translation
the zeros of the determinagtk,), Eq.(28). For example, in by one lattice spacing and lead to a bipartite structéig.
the case ofA-type boundaries, by setting=w=0 anda  9). Obviously, if the interface cuts atl10 direction, the
=2,6=1 in Eq.(35), we find thatG(—a,—2a) can be ex- reflection symmetry is broken—in contrast to €0 case.
pressed as a simple contour integral and has the followinTherefore, we shall examine tli&10) direction with the fol-

behavior: lowing mean-field Hamiltonian:
s ) 0 0 if t,<ty, 36
—a,—2a,w= = . T
Bl ©=0) 12t if t,<t,. (36) HR:iE {x(cl el +etlel) + x* (e el +citue?)
B:0O
Thus the condition for the existence of ZBCRjs<t, as in tH.c), 37)

this caseGg, diverges. In the following sections we shall
see that this provides for 2D bipartite systems a general cri-
terion for the range of transverse momektawhere zero- wherec{* annihilates an electron at siteover thea sublat-
energy states exist. F&type boundary the analysis is iden- tice, andy is the hopping amplitude on the bof¥ig. 9(b)].
tical, except an exchange in the rolestpfindt,. Therefore ~Making the Fourier transformation along tlyedirection in
when the ZBCP shows up in aftype chain, it must be Hg, one finds

absent in aB-type chain, and vice versa. This is shown in
Fig. 8 for the case of polyacetylene. The current expression
here is identical to Eq(39) given in the following section,
except the extra sum ovéy, there.

D. Normal metal-d-density wave states

In underdoped cuprate superconductors, it is observed in
experiments that there are signatures of a “partial” gap well
above the superconducting temperatlige This anomalous o
regime is termed the pseudogap ph&sExperiments also
find that the pseudogap is consistent wittha&ave structure. () (b)

Recently Chakravartyet al. proposed that the pg(aeudpgap FIG. 9. (8 The d-density-wave state ifl10) orientation and its
phase is possibly the-density-wave(DDW) state’” It i corresponding 1D model. Filled and empty circles labelAtendB
therefore of interest to examine the tunneling spectra oOfyplattices; the arrows indicate the directions of bond currents.
normal-metal-d-density-wave(N-DDW) junctions. Dashed lines extended from the boundary sites indicate the cou-

The DDW state is characterized by the staggered flux itpling of the tunneling Hamiltonian(b) shows explicitly the bond
the elementary plaquettes of the lattice. The bond currentgariables in a doubled unit cell.
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0.15
Hg= 2 {Ai,i—lcﬁjl(ky)CiE;(ky) (a)
XiB ,ky o
0.10
+ Al (ke (k) +Hel,  (39)
whereA; ;..,=2 Re{ xe*™®v¥"2} with a being the lattice con- - oo
stant of the square lattice. One sees that this belongs to thg
class of thet;-t, model defined in Eq(31) except that now 0.0

A= e +1A with € andA, being given by Eq(20) where
one setdg=—Re{x}, Ag=—Im{x}, andt;=0.

To find the tunneling current we apply again the Keldysh
formulation outlined in the Appendix. For fixeld, the full-
space retarded Green’s functi@{x;" ,t;xjﬁ,o;ky) is obtained
similar to its 1D counterpart. The momentum space Green'’s

dl/dV(arb ul

0.05 [

0.00 L B -

function has the same form as given in E85) (with k -25 -2 - - sz; 05
replaced byk) and the inverse Fourier transformation is car-
ried out as in Eq(34) with here — m/2d<k,<m/2d, where FIG. 10. Typical conductancal(/dV) curves for N-DDW junc-

d=a/ /2 is the lattice spacing of the effective 1D structure. tions at(110 orientation in the(a) absence andb) presence of

From the bulk Green’s function, one can again construcin-plane magnetic field. Here the boundary surface consist# of
the half-space surface Green'’s function using the method cfublattice sites angy=(—tg—iAg)=(—0.447-0.1), =0.01.
image. The current expressions here, however, are distinéiso shown in(b) are contributions from the spin-upashed ling
from those of Eqs(23)—(26). Indeed since we are dealing and spin-down(dotted ling components. The Zeeman splitting is
with a single component Green’s function the calculation ishere 0.24A,. The weak link is modeled by the same expression as
much simpler than previously. As shown in the Appendix,in Fig. 3.

the current expression is here _ _ _ o
induced in the Green’s function. This is in sharp contrast

* ) with the ND case; there the chemical potential shifts the
' :kzg Zwef_xd“’tl [flo—eV)—f(w)] quasiparticle energy,— e, — ug in the Green'’s function but
v not the frequency. This results in the distinct behavior of the
XA (w—eV)Ag(w)|1+t,gk (w)]? (39 ZBCP for ND and N-DDW junctions at finiteug. For

o ) ) N-DDW junctions sincev— w + ug at finite chemical poten-
This is exactly the single-particle currehit of Eq. (23) for i), the conductance peak is shifted from zero bias to the
ND tunneling. There is no contribution from “Andreev re- 4nhosite value of the chemical potentiajg. For ND junc-
flections” in N-DDW tunneling. This is due to the fact thatin jons however, the midgap state stayssat0 even at finite
the DDW state the pairing takes place between particles anghemical potential, thus the conductance peak always posi-
holes of moment& andk+Q, with Q the nesting vector of  tjon at zero biagsee Fig. 3 This shift has an obvious im-
2D square lattices. Thus the Andreev reflected particles argjication: the peak will split due to the Zeeman splittitege
stillelectrons whose response to the bias voltage are theig 10. The orbital effects of magnetic fields can be in-
same as the incident particles; as a result their contributiong,ged by changing into ye'® =) for any nearest neigh-
to the tunneling current cancel exactly. In the ND junction, hor sites, j. This takes into account the current induced near
however, a particle is Andreev reflected as a hole, whiche interface. Since under this change bethand A, un-
behavesoppositelyunder applied bias. Figure @ shows & gergo shifting ofk by q which can be absorbed into the
typical plot for differential conductance versus voltage forgmmation ok, the peak does not split. Therefore, the split-
N-DDW junctions. The conspicuous ZBCP agrees with re<jng of 7BCP turns out the same for both in-plane and per-

cent calculations done by Honerkamp and Sigfist. pendicular magnetic fields. This is in contrast to the ND
The reason for the ZBCP here can be understood on thenction where orbital effects dominate for perpendicular

basis of the results in the previous section. Just like polyzia|gs.

acetylene, the midgap states arises wipgis singular due to In closing this section we note that since the next n.n.

the zeros in the Green's function such as in E86). FOr o1 couples only lattice sites within each sublattice, its
ach ky Eq. (38) resembles thet;-t, model with t;  qftect s similar to that of the chemical potential. Therefore,

=—A;i_1 andt,=—A;;;,. Therefore, for example, for t' ca :
v v ; use the ZBCP and the spectrum to migrate wtfen
A-type boundary one expects midgap states for the range gfo_ This is displayed in Fig. 11.

ky where A;;_;>A; .1, or Im{x}sinka/\/2)>0. Since
here In{x}=—A,<0, this leads to- y2m/a<k,<O0.

We have so far considered only the case of vanishing
chemical potentiag in the DDW state. At finite chemical So far we have considered systems involving only square
potential the grand Hamiltonian for the DDW Kg=Hg lattices. As commented in the end of Sec. IlI, our formulation
—urNRr. Hence— ugNg is diagonal and simply shifts the is general and can be applied to any systems which can be
excitation energy by- ug. As aresult, a shifo—w+ugis  projected into 1D structures. As an example, we study in this

E. Graphite sheets
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0.15
He= > —ticMy(ky)cl(k,) —tocPT(ky)cl 1 (ky) +H.c.
X; ,ky,O'
n (41
0.10 | .
= with
2 V3
oos | ty=2vyyC0 7kya and t,=vy,, (42
a being the lattice constant. Furthier transformation brings
Hg into the same form as Eq31) with A,=— yy{e 3
0.00

+2 cog(y/3/2)k,ale™@?}.
In applying the method of image, we note that the pro-
) ) ) _ Jected 1D lattice for the zigzag case has alternating bond
FIG. 11. Same as Fig. 18) but with next n.n. hopping ampli- - jangth which breaks the reflection symmetry and hence im-
tudest=0.0 (solid line), —0.03 (dotted ling, and—0.06 (dashed  ias the possible existence of the ZBCP. The alternating
line). bond length, however, seems to cause difficulty in locating
the image point of an arbitrary source site. For instance, the
section the in-plane tunneling from a normal metal into semi-usual choice—the mirror image—does not always put the

infinite graphite sheetdNG junctions. image point right on the lattice. Nevertheless, since in 1D the
In the tight-binding limit the Hamiltonian for the bulk hard wall becomes a point, as long as the Green'’s function
graphite sheet is propagating from the real source to the hard wall can be

canceled by that from a fictitious source, so that the bound-
ary condition is satisfied, uniqueness of the half-space
_ At B At B At B Green’s function implies that the location of the fictitious
HR—.Z ~ Y0Ci+aCi” — Y1CikpCi — ¥2Ci—a—pCi + H.C. source can be chosen at will. Indeed, this can be explicitly
g0 . - ..
(40) qhecked numerically. To be definite, we shall place .the ficti-
tious source ak=—(3/2)a and apply the method of image.
The boundary conditiog(—a,x')=0 for all X’ immedi-
Here the lattice is divided inté andB sublatticesa, b are  ately leads to
the lattice vectors illustrated in Fig. 12, ang are the hop-
ping integrals form bands. For simplicity we shall takg,
= y,= 17, in the following. We will be interested in two ori- 9o=Gaa(0,0) = Gan(0,—3/2a)
Zprtna(;ur?;f t?cf)l}:]\galrai;t;c.e. one with zigzag and the other with X Gak(—a,—3/22)Gga( —a,0). (43)
We first consider the zigzag case and choose the frame of
coordinates as shown in Fig. 2 Fourier transformation in  Here we have labeled the attributes of the lattice points ex-
the transverse direction leads to 1D Hamiltonian which replicitly in the subscripts of the Green’s functions. Just like
sembles Eq(30) polyacetylene, the midgap states arise wigris singular,
namely at the zeros dbga(—a,—3/2a) when»=0. From
Eq. (42) the correspondence to thet, model indicates that
midgap states exist fdt, which satisfy cosl(y\/§a/2)< 1/2.
When settingy/3a=1 we find — w<k,<—2m/3 or 2m/3
<kysm, exactly what is found in band structure
calculations®
For the zigzag orientation, apart from the zigzag bound-
ary, there could also be the “bearded” boundary where the
surface layer consists @ sites. This is reminiscent of the
case ofB-type end point of the;-t, model. A similar analy-
(@ ® sis as above can also be used here. We find in this case the

FIG. 12. Graphite sheets witke) zigzag and(b) armchair ~ ZEro-energy state arises _When\/§@= 1) —2m/3<k,
boundaries and the corresponding 1D models afjetransforma- ~ <27/3. The current expression are the same as(&g).for
tion. Filled and empty circles represent respectively gnandB ~ N-DDW junctions. The corresponding tunneling spectra are
sublatticesa, b are lattice vectors. The dashed lines draw from theshown in Fig. 13.
boundary sites indicate connections to the left electrode through the Let us now consider the armchair cd§eég. 12b)]. After
tunneling Hamiltonian similar to Fig. (). the Fourier transformation along the interface, one finds
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90=G(0)—G(2d). (49
o010 | In this case, one thus expects no midgap states.

Without loss of generality, we connect tAesublattice to
the left side[Fig. 12b)]. The current expression is then the
same as Eq(39), whereg, is replaced by the 1ior AA)
component of Eq(49). The conductance curve for this case
is also shown in Fig. 13.

IV. DISCUSSIONS AND CONCLUSIONS

In conclusion, the generalized method of image that we

developed allows us to deal with various tunneling problems
‘ ‘ ‘ in a unified manner, with full tight-binding nature being

#9950 -1.0 0.0 10 2.0 taken into account. In particular, applying our method to in-

vestigate the splitting of ZBCP in normal metdhwave su-

FIG. 13. Typical tunneling conductance curves for NG junctionsP€rconductor junction under magnetic fields yields results in
with zigzag(solid line), beardeddashed ling and armchaifdotted ~ 2gréement with recent experiments. Furthermore, we predict
line) boundaries. Here,=0.1 and the left electrode is a wideband that a sharp conductance peak at the chemical potential in the
metal. The weak link is modeled by the same expression as in Figunneling spectra should exist for tunneling into the
3 with herewy= 11y, andl = y,. d-density-wave state &110) orientation. This peak will shift

away from the chemical potential if the next nearest neighbor
_ hoppingtg exists, which also offers a way to measufe
He= 2 —yolcP(ky)c(k,)e "2 Under in-plane magnetic fields, it also splits due to Zeeman
xp Ky o splitting. These provide signatures to be looked for in experi-
B A ka2, B A ikoa/2 ments, especially in normal-metal-pseudogap-cuprate junc-
e (ky) el a(ky) e 2 Tk et g (ky ey tions for testing the proposal of Ref. 26.
+H.cl. (44) The general applicability of our formulation is further
demonstrated by considering tunneling into graphite sheets at
Note that bothA and B components exist for each siteas  the zigzag and armchair orientations, and it shows complete
shown in Fig. 12b). The propagation betweeq andx; thus  agreement with findings in the study of graphite ribbons by
compose of four components and the full-space Green'glirect computation of energy spectritfh.
function form a 2<2 matrix The merit of our formulation lies in two aspects. First, it
offers a unified method for theoretical study of the tunneling
spectroscopy of various junction systems. Secondly, as al-
ready pointed out at the beginning of the paper our method
allows us to express what is being measured in tunneling
Furtherk, transformation yields the Hamiltoniai31) with  experiments in terms of bulk Green’s function. For instance,
here in a single hard-wall configuration, if a wideband metal is
used for the left part, in the tunneling limit;&1), tunneling
experiments essentially measure thefacedensity of state
given by Eq.(3), which as we have seen, can be expressed in
o . terms of two contributions from the bullsee Eq.1)]. The
Note that A(—ky,ky)=A(ky ky) implies that reflection role of reflection is further manifested. Only when the reflec-
symmetry is preserved here. Similar to the case of polyacetytion symmetry is broken with respect to the interface, singu-
lene, in momentum spac&(k,w) has exactly the same |ar behavior may arise from the image part, resulting the
form as Eq(35). However, now the hard-wall boundary con- zgcp.
dition becomes a matrix equation Finally, we discuss a potential drawback of our formula-
« B tion. This regards dealing with the high-index interfaces:
9% X{)|x=-q=0 foralle,B={A,B},  (47)  (hk0), whereh or kis large. As mentioned at the end of Sec.
I B, the number of hard walls required then becomes very
large so that the image method is impractical. For instance,
the high-index interfaceh=12 andk=13, seems to be a
_ B . 14 . good approximation to the low-index interfackL0), and yet
90=G(0,0~G(0,~2d)G"(~d, ~2d)G(~d,0). (48) the former requires 13 hard walls. From a mathematical
point of view, this indeed poses a limitation of our formula-
Since translational symmetry is preserved in this 1D latticetion. Nevertheless, since in reality high-index interfaces tend
we haveG(—d,—2d)=G(d) andG(—d,0)=G(—d). Re- to form small low-index terraces separated by steps, one can
flection symmetry impliess(d) =G(—d) and consequently apply the image method to each terrace but now ukig

G(x" X)) G(x xP)
G X  G(xP,xP)) 49

G(Xi 'Xj):(

. 3 :
N PO s

whered= (\/3/2)a is the lattice constant of the projected 1D
lattice. The surface Green’s function then takes the form
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that are consistent with the width of the terrace and sunprocessesi.e., the interaction does not act across the tunnel-
currents from each terrace to obtain the total current. Thisng matrix), one can use the Dyson equatiths
would be an approximated way to deal with high-index

interfaces. 9=0o+Jo 1,9=0o+g tJo. (AS5)
Writing out the above equation for each component and note
ACKNOWLEDGMENTS that in the bare levelgog =0=gq g. We find
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APPENDIX: CURRENT EXPRESSIONS By using g*"+g~"=g” "+g*~ and substituting Egs.

. ) ) ) ] (A6) and (A7) into (A4), we obtain
In this appendix we outline techniques for calculating the

tunneling currents for the ND and the N-DDW junctions. We 5 [ . i
shall start from the expressidi) for the tunneling current. 'ZZGkE ] f_mz{go,LL,ll(w_ev)gRRll(w)
y

1. ND junctions —g&[L,ll(w—eWg§$,11(w)}- (A8)

Let us start with the Nambu representation used for theNote that the frequency arguments of the bare Green'’s func-
ND junction tions for the left electrode), "~ has been shifted due to
v ot the applied biagV between the two sidesu — ugr=eV).
| Fat| Car(Xi Ky, 1) We emphasize that the Green’s functians '~ may con-
W (% Ky 1) = = 0 . (A1) . ASIZ¢ ; functians |
W, Co (Xi, —ky,t) tain contributions from interactiongy can be ex-

_ pressed in terms of the bare ongg"‘+ and retarded/
where a={L,R} labels the_ electrqdes and the upper andadvanced Green's functionsg™® by the following
lower elements are associated with, respectively, electrong Uations4
and holes. The Keldysh non-equilibrium Green’s functions q '

1 8 ~ -~
are then defined 8% 9" (@) =[1+g"(0) §1gs " [Hg(w)+1].

(A9)

(A2)  One can further expregg @ in terms of the bare oneg,® by
virtue of the Dyson equations

Uup (X X U= +I(W L (X t)W, (X 1),

9o (X 6X )= =W, 06 DW S (x),t). )
(A3) 9" w)=go*(w)+gg%w) t,g"*w).  (AL0)
For brevity we have suppressed tke dependence. The Solving these equations, we obtain
Green’s functions here carry the left right indicesg

={L,R}, the Nambu(spinop indices u,»={1,2}, and the IR 0) =T @)goRr(®), (A11)

Keldysh indices{ —,+}. For notational clarity we shall in

the following frequently omit irrelevant indices and keep gLr(@) =T &(w)[t,957 (0 —eV)300Rr(@) ],

track of only those related to our discussion. (A12)
In this representation we define the tunneling matjix fa a fa fa

=t,7303, Wherer; and oy are the third Pauli matrices per- gri(@)=TRi()[ti9oRR(®) 73907 (0 —eV)], (AL3)

taining to the Nambu space and the Keldysh space, respec-
tively. In particular,oz is chosen so that in the Keldysh space ras s ra ra
o3 =1=—03", ando; "=0=0; , since we have as- 9ii(@)=Tir(0)ggLL (0 —eV), (A14)

signed the forward time path the—” time axis, and the where the sum over tunneling processes of all orders is sig-

return time-path the +” time axis. In the following we will  nified by the factors
consider only real valuet| and hence;} =t . a s ra fa .
The current expressiofY) can now be written as Tri(w)=[1-1t7gorr(®) TaGor (0 —€V) T3] 7,

TLR(0)=[1-t{g52 (0 —eV) ragpRp(@) 73] L.

Note that frequencies of particles and holes are shifted in

_ -+ opposite ways in goi i JorL1(@—eV) and gor 2w
iR (Xo.ky, )]} (Ad) +eV). This is essential in giving rise to the Andreev contri-

where the trace is taken over the Nambu space. In the prebutions in the tunneling current.

ence of particle-hole symmetry, 11 and 22 components con- Incorporating Eqs(A11)—(A14) with (A9), one can thus

tribute equally. Therefore, the trace yields twice the contri-obtainggpg !*~ and substitute back into EA8). Finally, by

bution from the 11 component. For elastic tunnelingusing the relations

* dw
Ih=+eX | 5= ti(k){Trdr, (Xo.ky,®)]
oy f7w277 | y{ RL (Xp,Ky,®
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o (w)=27if (0)A(0), A15 “do -

0o (w)=27if(w)A(w) ( ) Izekgg thiw—Z:{goyLL(w—eV)gRR(w)
§(w)=—27[1-f(0)] Alw), (A16)
gy (w i (0)] Alw ~ g (0—eV)grz (o)}, (A20)

wheref(w) is the Fermi function and\(w) is the spectral
weight matrix given by Eq(27), we obtain the current ex-

i Note that here, unlike the previous section, the tunneling
pressiong23)—(26).

matrix isf,zt,o-g, whereo is the third Pauli matrix in the
Keldysh space.
By applying Eq.(A9) and carrying out similar calcula-
We now derive the current expressions for N-DDW junc-tions as for ND junctions, we find
tions. These will be also applicable to NG junctions. We shall
also show that in this case Andreev-like processes do not
contribute to the tunneling current. In the absence of external
fields, spin degree of freedom merely introduces a factor of
2. Thus the spin indices will be omitted in the following.  grg = —27i[(1—f(w))Mg(w)+(1-f(o—eV))M (w)],
We first define the Keldysh Green'’s functions similarly to (A22)
Eqg. (A3)

2. N-DDW junctions

Orp =27 [f(0)Mg(w)+f(o—eV)M ()], (A21)

with Mg(w)=Ag(w)|1+tgk (@)|* and M (@) =t7A (@
—eV)|grr(w)|?. In the last expressions we have usgd
o ) N + , =(giRr)*. Note thatM contains the spectral weigh of

Gag (X 1), 1) = =i{Ca(X;, 1)Ch(x; 1)) (AL8) the normal electrode. It is associated with tunneling pro-
Here the subscripts, 8={R,L} are labels for the electrodes cesses where a particle is reflected back into the left side and
(not to be confused with the labels for sublattices in the)text at the same time a particle-hole pair is transmitted into the
In terms of the Keldysh Green’s functions the tunneling cur-right; this is reminiscent of the Andreev channel in ND tun-
rent can be written neling[see the integrand in EqR6)]. Substituting the above
results into the current expression E420), we obtain for

()= +e”2 [t () —t* gia (1,0)]. (AL9) the terms in the braces in the integrand

Gup (X 1iX; 1) = +i(Ch(X; 1)Cu(X 1),  (AL7)

Similar to the previous section, the renormalized Green’s 47 f(o—eV)—f(w)]AL(o—eV)Mg(w), (A23)
functionsgg, andg, g can be expressed as combinations of
goLL andggr. This results in the exact formula which leads to the current expressi(39).
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