2010清華大學高中科學資優班專題演講

劉怡維 清華大學物理系

反而成功的奠定了相對論的基礎

精密量測與基本物理

高能量 high energy — 高精密度 high precision

當精密度達到一定程度之後,桌上型的精密量測 也能探測到大型加速器所研究的基本物理

桌上型高能物理 -----尋找電子電偶極 EDM

C 一個電子之中還有什麼已經發現超過100年了我們對它還不是很了解

The Grail of AMO physics -----EDM電子電偶極-----

它存在嗎?------Is there an EDM?它長的如何? How large will it be?

宇宙的存在與對稱性的破壞 宇宙誕生的Big Bang 初期物質與反物質一樣多 (兩者對稱 CP symmetry)

物質與反物質相遇就會互相湮滅 那宇宙目前為何能存在?

猜測物質與反物質應該不是完全對稱的 CP violation

CP violation 與電子電偶極

若是基本粒子具有永久電偶極→P-odd, T-odd 或是具有內部結構→基本的粒子?

EDM 的基本量測方法

簡單來說,就是量測:在電場與磁場同方向與反方向作用下,有沒有不同。

電子EDM的理論預測與實驗進展

電子電偶極的存在超越了目前被接受的標準模型Standard Model,將可提供一個目前宇宙為何能存在的解釋

第二個故事......

質子 Proton

所有物質的主要組成p,n,e。 但我們真的了解質子嗎?

Classification: Baryon Composition: 2 up quarks, 1 down quark Particle statistics: Fermionic Symbol(s): p, p+, N+ Theorized: William Prout (1815) Discovered: Ernest Rutherford (1919)

Mass: 1.672621637(83)×10⁻²⁷ kg Mean lifetime: > 2.1×10^{29} yr (stable) Electric charge: 1.602176487(/ Charge radius: 0.877 (7) fm < 不是很清楚 Magnetic moment: 2.79284735 Magnetic polarizability: 1.9(5)×10⁻⁴ fm³ Spin: 1/2 Isospin: 1/2 Parity: +1 Electric dipole moment: <5.4×10⁻²⁴ e·cm Electric polarizability: 1.20(6)×10⁻³ fm³

Rosetta stone

The **key** to **decode** the **secret**

of ancient Egypt. Idiomatic as something that is a critiCal key to the process of decryption or translation of a difficult ENCODING of INFORMATION.

解開現代物理世界 ^{祕密的}羅賽塔石 _{氫原子}光譜 的解碼 是量子物理之鑰 從波爾的原子模型 到 量子電動力學

150年來的氫原子光譜量測

那麼....現在為什麼還要研究氫原子

·探索量子色動力學QCD ---到目前為止我們根本 不知道一堆夸克要怎麼在一起?

·<mark>物理常數是不是常數</mark> ----以前的氫原子光譜跟現 在一樣嗎?

氫原子的超精確頻率量測

$f(1S-2S) = 2\,466\,061\,413\,187\,074(34)~{\rm Hz} \qquad 1.4 \times 10^{14}$ $L(1S) = 8\,172\,840(22)~{\rm kHz}$

By T. Hansch

(Max-Planck-Institut für Quantenoptik)

Bound QED的理論限制 以最簡單的原子系統為檢驗 氫原子(ep) 1S-2S躍遷中的 1S Lamb Shift (所有能階中最大): $\Delta E(nS) = \frac{\alpha(Z\alpha)^4 m}{\pi n^3} F_n(Z\alpha) + \frac{\alpha(Z\alpha)^4 m}{\pi n^3} G_n(Z\alpha) + \Delta E_{recoil} + \Delta E_{rad recoil}$

hyperfine structure=1420 MHz

目前理論與實驗精確度的比較

由於理論的精確度受制於<r²>,使得無法進行真正的 Bound QED test

QED test and RMS of the proton charge radius

目前各質子<r²>的實驗結果

實驗誤差在2-4%間

transition energy=theory + proton size

proton size=transition energy - theory

Recognized value of proton charge radius

The Committee on Data for Science and Technoloy

- H-spectroscopy (CODATA): 0.8768±0.0069 fm
- Electron-proton scattering : 0.897 ± 0.018 fm

• 0.8% accuracy

奇異原子 = Exotic atom

- 字典說: Exotic=外國來的, 異國情調的, 奇特的, 脱衣舞孃的
- 含有電子、質子、中子等長半衰期以外的 粒子(如μ、π)所組成的原子系統,稱為奇異 原子

渺子氫原子: Muonic Hydrogen: μ⁻ P⁺ (μ比電子重200倍的短命電子,生命期只有0.000002秒)

Lamb shift and rp

 $\Delta E = 209.9779(49) - 5.2262 r_P^2 + 0.0347 r_P^3 meV$

為甚麼是渺子氫原子?

渺子比電子重兩百倍,更靠近質子 兩百倍,能更敏鋭地偵測到質子的 大小。

1/200

Principle

十年的實驗挑戰

- ·高密度的慢速渺子束
- ・特製的雷射光源

Generation of Cold muonic hydrogen

r_P=0.84184(36)(56) fm

 $2S_{1/2}$ (F=1) \rightarrow 2P_{3/2} (F=2): 49881.88±0.76GHz

現在百年來的原子物理必須重新檢討

幾種可能:

- 量子電動力學錯了嗎???
- 在極小尺度下的新物理 (am 10⁻¹⁸, zm 10⁻²¹)???
- 電子-質子或渺子-質子間有未知的交互作用???

muonic hydrogen 2S Lamb shift Collaboration ----- 12 institutes from 6 countries

F.D Amaro, A. Antognini, F.Biraben, J.M.R. Cardoso, D.S. Covita, A. Dax, S. Dhawan, L.M.P. Fernandes, A. Giesen, T. Graf, T.W. Hänsch, P. Indelicato, L.Julien, C.-Y. Kao, P.E. Knowles, F. Kottmann, J.A.M. Lopes, E. Le Bigot, Y.-W. Liu, L. Ludhova, C.M.B. Monteiro, F. Mulhauser, T. Nebel, F. Nez, R. Pohl, P. Rabinowitz, J.M.F. dos Santos, L.A. Schaller, K. Schuhmann, C. Schwob, D. Taqqu, J.F.C.A. Veloso

Proton Size Investigators thank you for your attention

8 July 2010 | www.nature.com/nature | \$10 THE INTERNATIONAL WEEKLY JOURNAL OF SCIENCE

111 ×81×8:0

OIL SPILLS There's more to come

PLAGIARISM It's worse than you think

CHIMPANZEES The battle for survival

SHRINKING THE PROTON

New value from exotic atom trims radius by four per cent

\$10.00US \$12.99CAN

- It is measured using Primary standard
- •精確度最終將受制於量測時所使用的標準(尺)
- 使用定義時間的原子鐘來量頻率才能得到最佳精確度

用15公分的尺量台北到高雄的距離????

Optical Frequency Comb !! 光頻梳 2005 Noble prize

10 or more step

Direct Link with Optical Frequency Comb

equal frequency spacing and with coherence

What is the spectral phase anyway?

The spectral phase is the abs phase of each frequency in the wave-form.

All of these frequencies have zero phase. So this pulse has:

 $\varphi(\omega) = 0$

Note that this wave-form sees constructive interference, and hence peaks, at t = 0.

And it has cancellation everywhere else.

Now try a linear spectral phase: $\varphi(\omega) = a\omega$.

By the Shift Theorem, a linear spectral phase is just a delay in time. And this is what occurs!

Mode-lock laser as frequency comb 極快的脈衝雷射將幫助我們進行精密測量

Please visit Prof. Shy's lab at NTHU phys

•物理常數會隨時間改變嗎?

- 重力常數G
- •反平方定律r⁻²,還是r^{-2.0000001}?
- •