Introduction to Solid state physics

Chapter 1

Crystal Structures



Introduction

- Solid state physics is largely concerned with crystals and electrons in crys-
tals. The study of solid state physics began in the early years of this century
tfollowing the discovery of x-ray diffraction by crystals.

When a crystal grows in a constant environment, the form develops as if
identical building blocks were added continuously Fig. 1). The building blocks

are atoms or groups of atoms, so that a crystal is a three-dimensional periodic
array of atoms.




In 1912 Laue developed an elementary theory of the diffraction of x-rays by a
periodic array. In the second part, Friedrich and Knipping reported the first
experimental observations of x-ray diffraction by crystals.?

The work proved decisively that erystals are composed of a periodic array

of atoms.

The studies have been extended to include amorphous or noncrystalline solids,
glasses, and liquids. The wider field isknown as condensed matter physics,

Periodic Arrays of Atoms

An ideal crystal is constructed by the infinite repetition of identical structural
units in space. the structural unit is a single atom,

comprise many atoms
or molecules.

The structure of all crystals can be described in terms of a lattice, with a

group of atoms attached to every lattice point. The group of atoms is called the
basis.

The concepts of Lattice & Basis



Lattice Translation Vectors

The lattice is defined by three fundamental translation vectors a;, as, ag
such that the atomic arrangement looks the same in every respect when viewed
from the point r as when viewed from the point

r' =r+ ua, + usas + ujzaz , (1)

where u,, us, u; are arbitrary integers. The set of points r’ defined by (1) for all
u;, us, us defines a lattice.

A lattice is a regular periodic array of points in space. A lattice is a
mathematical abstraction; the crystal structure is formed when a basis of atoms
is attached identically to every lattice point. The logical relation is

lattice + basis = crystal structure . (2)

With this definition of the primitive translation vectors, there is no cell of smaller
volume that can serve as a building block for the crystal structure.

The crystal axes a;, ao, az form three adjacent edges of a parallelepiped.
If there are lattice points only at the corners, then it is a primitive parallelepiped.



A lattice translation operation is defined as the displacement of a crystal by
a crystal translation vector

T = uja; + usas + usas . (3)

The symmetry operations of a crystal carry the crystal structure into itself.
These include the lattice translation operations. Further, there are rotation and
reflection operations, called point operations.

Finally, there may exist compound operations made up of combined trans-
lation and point operations.
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Figure 2 Portion of a crvstal of an imaginary protein molecule, in a two-dimensional world. (We
picked a protein moleeule beeanse it is not likely to have a special symmetry of its own.) The atomic
arrangement in the ervstal looks exactly the same to an observer at r' as to an observer at r,
provided that the vector T which connects r' and r may be expressed as an integral multiple of the
veetors ay and aa. In this illustration, T = —a, + 3a,. The vectors a, and a, are primitive transla-
tion veetors of the two-dimensional lattice.
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Figure 3 Similar to Fig. 2. but with protein molecules associated in pairs. The erystal transkation
veetors are a; and as. A rotation of 7 radians about any point marked X will carry the crystal into

itsell. “This ocenrs also for cquivalent points in other cells, hut we have marked the points X only
within one cell.



Basis and the Crystal Structure
A basis of atoms is attached to every lattice point, with every basis identical
in composition, arrangement, and orientation.

The number of atoms in the basis may be one, or it may be more than one.
The position of the center of an altmnj of the basis relative to the associated
lattice point is EPMER ' %
‘ ! : I‘ = Ijﬂl + y_,ag + @ﬂg . (4)

!r:-'... LY, :i-"F-._..f PR L At T A e S

We may arrange the origin, which we have called the associated lattice point, so
that 0 = x5, y;, ;= 1.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a,, as, a3 is called a primitive
cell (Fig. 5b). A primitive cell is a type of cell or unit cell.

A primitive cell is a minimum-volume cell.

There are many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is

always the same for a given crystal structure.



- a,

(a)
Figure 5a  Lattice points of a space lattice in two dimensions. All pairs of vectors a;, a, are
translation vectors of the lattice. But a,""’, a,""" are not primitive translation vectors because we
cannot form the lattice translation T from integral combinations of a,”"" and a,""’. All other pairs
shown of a; and a; may be taken as the primitive translation vectors of the lattice. The parallelo-
grams 1, 2, 3 are equal in arca and any of them could be taken as the primitive cell. The parallelo-
gram 4 has twice the arca of a primitive cell.

Figure 5b  Primitive cell ol a space lattice in three dimensions.



There is always one lattice point per primitive cell. If the primitive cell is
a parallelepiped with lattice points at each of the eight corners,
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X § = 1.

The volume of a parallelepiped with axes a;, a,, aj is

V.= |a;-ag x ag| , (5)
The basis associated with a primitive cell is called a primitive basis.

No basis contains fewer atoms than a primitive basis contains.

Figure 6 A primitive cell may also be chosen follow-
ing this procedure: (1) draw lines to connect a given
lattice point to all nearby lattice points; (2) at the
midpoint and normal to these lines, draw new lines
or planes. The smallest volume enclosed in this way
is the Wigner-Seitz primitive cell. All space may be
filled by these cells, just as by the cells of Fig. 5.

Another way of choosing a primitive cell is shown in Fig. 6. This is known
to physicists as a Wigner-Seitz cell.




FUNDAMENTAL TYPES OF LATTICES
A typical symmetry
operation is that of rotation about an axis that passes through a lattice point.
Lattices can be found such that one-, two-, three-, four-, and sixfold rotation
axes carry the lattice into itself, corresponding to rotations by 27, 27/2, 27/3,
27/4, and 277/6 radians and by integral multiples of these rotations.

A single molecule properly designed can have
any degree of rotational symmetry, but an infinite periodic lattice cannot. We
can make a crystal from molecules that individually have a fivefold rotation axis,
but we should not expect the lattice to have a fivefold rotation axis.

Figure 7 A fivefold axis of symmetry can-
not exist in a periodic lattice because it is
not possible to fill the arca of a plane with a
connected array of pentagons. We can, how-
ever, fill all the area of a plane with just two
distinct designs of “tiles” or clementary
polygons. A quasicrystal is a quasiperiodic
nonrandom assembly of two types of figures.
Quasicrystals are discussed at the end of
Chapter 2.

We can have mirror reflections m about a plane
through a lattice point. The inversion operation is composed of a rotation of 7
followed by reflection in a plane normal to the rotation axis; the total effect is to
replace r by —r.



Two-Dimensional Lattice Types

There is an unlimited number of possible lattices because there is no natu-
ral restriction on the lengths of the lattice translation vectors or on the angle ¢
between them. The lattice in Fig. 5a
general lattice such as this is known as an oblique lattice and is invariant only
under rotation of 7 and 27 about anv lattice point.

There are four distinct types of
restriction, and each leads to what we may call a special lattice type. Thus there
are five distinct lattice types in two dimensions, the oblique lattice and the four
special lattices shown in Fig. 9. Bravais lattice is the common phrase for a
distinct lattice type; we say that there are five Bravais lattices or nets in two
dimensions.




Figure 9
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Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different
lattice types listed in Table 1. The general lattice is triclinic, and there are 13
special lattices. These are grouped for convenience into systems classified ac-
cording to seven types of cells,

Table 1 The 14 lattice types in three dimensions

Number Restrictions on
of conventional cell
Svstem lattices axes and angles
Triclinic 1 ay # as ¥ ay
ax#*= B#Fy
Monoclinic Z

iy 7 do 7 iy
a=y=90° 8
Orthorhombic 4 Ay ¥ da % s
o = ﬁ = y= 47

Tetragonal 2 Uy = do 7 s
a=p=y=90

Cubic 3 a) = da = aj
a=p=7y=090°

Trigonal 1 ) = do = ¢y
a=pf=y<120°, % 90°

Hexagonal 1

) = da 7 dy
a= = 90°
v = 120°
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Figure 10 The cubic space lattices. The cells shown are the conventional cells.
The cells in Fig. 10 are conventional cells;

Table 2 Characteristics of cubic lattices®

Simple Body-centered Face-centered
Volume, conventional cell @’ o’ a’
Lattice points per cell 1 2 4
Volume, primitive cell a 1a® la®
Lattice points per unit volume 1/a® 2/a? 4/a’
Number of nearest neighbors® 6 8 12
Nearest-neighbor distance a 3'20/2 = 0.5660 a/l2? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 212 a a
Packing fraction® dar PR V2
=0.524 =(.680 =(.740

There are three lattices in the cubic svstem: the simple cubic (sc) lattice,
the body-centered cubic (bee) lattice, and the face-centered cubic (fee) lattice.



A primitive cell of the bee lattice is shown in Fig. 11, and the primitive
translation vectors are shown in Fig. 12. The primitive translation vectors of the

Figure 11 Body-centered cubic lattice,
showing a primitive cell. The primitive

cell shown is a rhombohedron of edge $ V3 a,
and the angle between adjacent edges is 109°28’

Figure 12 Primitive translation vectors of the body-cen-
tered cubic lattice; these vectors connect the lattice point
at the origin to lattice points at the body centers. The
primitive cell is obtained on completing the rhombohe-
dron. In terms of the cube edge a the primitive translation
vectors are

ay =dalx+y—-1); ag = da(—x + ¢ + 2) ;

ﬂ_1=-iﬂ[i_j’+i} .



fce lattice are shown in Fig. 13. Primitive cells by definition contain only one
lattice point, but the conventional bee ecell contains two lattice points, and the

{ee cell contains four lattice points.

In the hexagonal system the primitive cell is a right prism based on a

rhombus with an included angle of 120°.
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Figure 13 The rhombohedral primitive cell of the face-cen-
tered cubic crystal. The primitive translation vectors a,, a,, a,
connect the lattice point at the origin with lattice points at the
face centers. As drawn, the primitive vectors are:

a, = ba(k + ¥) ; a, = da(y + 2) ; a; = da(z + %) .

The angles between the axes are 60°. Here %, ¥, Z are the Carte-
sian unit vectors.
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Figure 14 Relation of the primitive cell
in the hexagonal system (heavy lines) to
a prism of hexagonal symmetry. Here

a, =ﬂg?éa;].



INDEX SYSTEM FOR CRYSTAL PLANES

to specify the orientation of a plane by the indices determined by the following rules
* Find the intercepts on the axes in terms of the lattice constants a;, as, as. The
axes may be those of a primitive or nonprimitive cell.
e Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkl), is called the index of the plane.




The indices of some important planes in a cubic crystal are illustrated by Fig. 16.

(Ton)

(100) (110) (1)

Figure 16 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and to (100).

the set of cube faces is {100}.
The indices (hkl) may denote a single plane or a set of parallel planes.
The indices [uvw] of a direction in a crystal are the set of the smallest
integers that have the ratio of the components of a vector in the desired direc-
tion, referred to the axes. _
(010] direction. In cubic crystals the direction [hkl] is perpendicular to a plane

(hkl) having the same indices, but this is not generally true in other crystal

systems.



