Chapter 2

Reciprocal Lattice



DIFFRACTION OF WAVES BY CRYSTALS

Bragg Law

We study crystal structure through the diffraction of photons, ncutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength.
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Bragg Law of Diffraction

» W. L. Bragg presented a simple explanation of the law of
diffraction beams from a crystal.

» The incident waves are reflected specularly (mirror-like) from
parallel planes of atoms in the crystals. In the specular reflection,
the angle of incidence is equal to the angle of reflection.

» The diffracted beams are found when the reflections from parallel
planes of atoms interfere constructively.

» Elastic scattering is considered here that the energy of x-rays is not
changed upon reflection



Consider parallel lattice planes spaced d apart. The radiation is incident in
the plane of the paper. The path difference for rays reflected from adjacent
planes is 2d sin 0, where 6 is measured from the plane. Constructive interfer-
ence of the radiation from successive planes occurs when the path difference is
an integral number n of wavelengths A, so that

Bragg Equation
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Figure 2 Derivation of the Bragg equation 2d sin 6 = nA; here d is the spacing of parallel atomic
planes and 27 is the difference in phase between reflections from successive planes. The
reflecting planes have nothing to do with the surface planes bounding the particular specimen.



Although the reflection from each plane is specular, for only certain values
of @ will the reflections from all parallel planes add up in phase to give a strong

reflected beam.

The Bragg law is a consequence of the periodicity of the lattice. Notice that
the law does not refer to the composition of the basis of atoms associated with
every lattice point. We shall see, however, that the composition of the basis
determines the relative intensity of the various orders of diffraction (denoted by

n above) from a given set of parallel planes.
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Figure 3 Sketch of a monochromator which by Bragg reflection selects a narrow spectrum of
x-ray or neutron wavelengths from a broad spectrum incident beam. The upper part of the figure
shows the analysis (obtained by reflection from a second crystal) of the purity of a 1.16 A beam of
neutrons from a calcium fluoride crystal monochromator. (After G. Bacon.)



X-ray Powder diffraction pattern of Si
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Figure 4 X-ray diffractometer recording of powdered silicon, showing a counter recording of the
diffracted beams. (Courtesy of W. Parrish.)



SCATTERED WAVE AMPLITUDE

We need a deeper analysis to determine the scattering intensity
from the basis of atoms, which means from the spatial distribution of eiectrons
within each cell.

From (1.3), a crystal is invariant under any translation of the form T =
uya) + usa, + usay, where u;, ug, us are integers and a;, ag, ag are the crystal

axes. Any local physical property of the crystal is invariant under T, such as the
charge concentration, electron number density, or magnetic moment density.

Fourier Analysis

electron number density n(r) is a periodic function of r,
nr + T) =n(r) . (2)
Such periodicity creates an ideal situation for Fourier analysis. The most inter-

esting properties of crystals are directly related to the Fourier components of
the electron density.




We consider first a function n(x) with period « in the direction x. in one
dimension. We expand n(x) in a Fourier series of sines and cosines:

1-D n(x) = ny + 2 [C,, cos(2mpx/a) + S,, sin(2mpx/a)] , (3)
p=0
where the p’s are positive integers and C,,, S,, are real constants, calied the
Fourier coefficients of the expansion. The factor 277/a in the arguments ensures
that n(x) has the period a:

n(x + a) = ng + Z[C,, cos(2mpx/a + 2mp) + §,, sin(2mpx/a + 21-;})]

4
= ny + Z[C,, cos(2mpx/a) + S,, sin(2mpx/a)] = n(x) . )

We say that 27rp/a is a point in the reciprocal lattice or Fourier space of the
crystal. In one dimension these points lie on a line. The reciprocal lattice points
tell us the allowed terms in the Fourier series (4) or (5). A term is allowed 1I it
is consistent with the periodicity of the crystal, as in Fig. 5;
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It is a great convenience to write the series (4) in the compact form

1-D nix) = Z n,, exp(i2mpx/a) | (2)
G

where the sum is over all integers p: positive, negative, and zero. The coeffi-

cients n,, now are complex numbers. To ensure that n(x) is a real function, we
require

n%t,=n, , n,= np* (6)

for then the sum of the terms in p and —p is real. The asterisk on n*, denotes

the complex conjugate of n_,,
With ¢ = 2mpa/a, the sum of the
be real if (6) is satisfied. The sum iy

fins in p and —p in (3) can be shown to

n,(cos @ + isin @) + no,{cos ¢ — i sin @)

(7)
= (n, + n_,)cos ¢ + i(n, — n_, )sin ¢ |
which in turn is equal to the regliiction
2Re{n,} cos ¢ — 2Im{n,}sin @, ‘ (8)

if (6) is satisfied. Here Re{n,} and Im{n,} denote the real and imaginary parts of
n,. Thus the number density n(x) is a real function, as desired.




The extension of the Fourier analvsis to periodie functions n(r) in three
dimensions is straightforward. We must find a set of veetors G such thal

3-D | alr) = 2, ne expliG + 1) (9)
(-

is_invariant under all ervstal translations T that leave the crvstal invariant. It

will be shown below that the set of Fourier coeflicients ng determines the x-rav

scattering amplitude.
Inversion of Fourier Series. We now show that the Fourier coeflicient n,,

in the series (5) is given by

1-D n, = a ! f dx n(x) exp(—i2mpafa) . (10]
i)

Substitute (3) in (10) btai -
ubstitute (5) in (10) to obtain Is substituted by Eq. (5)

n,=a"' z ”rr'J dx expli2a(p’'— p xla) . (11)
e £



If p" # p the value of the integral is

a

i2m(p' — p)

{Eiﬂﬂip'—pi _ 1] = () :-

because p’ — p is an integer and exp[i2a(integer)] = L. For the term p” = p the
integrand is exp(i0) = 1, and the value of the integral is a, so that n, =
a~'n,a = ny, which is an identity, so that (10) is an identity.

Similarly, the inversion of (9) gives

3-D ne=V." j dV n(r) exp(=iGr) . (12)
cell

Here V. is the volume of a cell of the crystal.



