Reciprocal Lattice Vector

To proceed further with the Fourier analysis of the electron concentration
we must find the vectors G of the Fourier suim Zng exp(iG - r) as in (9).

We construct the axis vectors by, b, by of the reciprocal lattice:

a, X ay
al'agxa:;

az X a;
a*a X as

a, X a;
a;ca; Xag

b1=27T

: b, = 27 ; b, =27 (13)

If a,. a.. a; are primitive veetors of the crystal lattice, then by, bo, by are

primitive vectors of the reciprocal lattice. Each vector defined by (13) is orthog-

onal to two axis vectors of the crystal lattice. Thus by, ba, bs have the property

h; Ty = Eﬂaﬁ " {]-'1”

where §; = 1 if i = j and §; = 0 it i # .
Points in the reciprocal lattice are mapped by the set of vectors

G = L:|h| + Eghg + Eﬂb:‘j ’ I:]-E'}

where ;. vo. v+ are integers. A vector G of this form is a reciprocal lattice
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Reciprocal Lattice {258

1. Every crystal has two lattices associated with it :
the crystal lattice, and the reciprocal lattice.

Barg Ly

2. The reciprocal lattice is a lattice in the Fourier space
associated with the crystal.

N

3. Addiffraction pattern of crystal is a map of the reciprocal
lattice of the crystal.



The vectors G in the Fourier series (9) are just the reciprocal lattice vectors
(15), for then the Fourier series representation of the electron density has the
desired invariance under any crystal translation T = u;a; + usay + usas as de-

fined by (1.3). From (9),

nir+T) = E ng exp(iG - r) exp(iG - T) . (16)
G

But exp(iG - T) = 1, because

EK]'J“G . T} - E};I}[i{lﬁ]b| + Egbg + E:;b:;} : (t“ﬂ] T Usdp T H;‘_a,il;‘;}] {1”}
i
= expli2m(vyu; + votta + vyus)] .
The argument of the exponential has the form 27i times an integer, because
viu) + Uglis + vsuy is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n(r + T) = n(r).
This result proves that the Fourier representation of a function periodic in
the crystal lattice can contain components|ng exp(iG - r)jonly at the reciprocal
lattice vectors G as defined by (15).




Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible
x-ray reflections.

We see in Fig. 6 that the difference in phase factors is expli(k — k') - r]
between beams scattered from volume elements r apart. The wavevectors of

The total amplitude of the scattered wave in the direction of k' is
proportional to the integral over the crystal of n(r) dV times the phase factor
explitk — k') - r].

the quantity F that we call the scattering amplitude:
F=[dV n(r) explilk — k') - r] = [ dV n(r) exp(—iAk-r) , (18)
where k + Ak =k' . (19) .

Here Ak measures the change in wavevector and is called the scattering vector

Figure 7 Deflinition of the scattering vector Ak such that
k+ Ak = k". In elastic scattering the magnitudes satisly
k' = k. FPurther_in Broage seattering from g periodic attice
any allowed Ak mus) eoual some reciprocal lattiee vector .
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We introduce into (18) the Fourier components (9) of n(r) to obtain for the
scattering amplitude

F= z [ dV ng expli(G — Ak) - r] . (20)
G

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

And Fis ~0 when AK # G AK =G (21)

the argument of the exponential vanishes and F = Vng.
In elastic scattering of a photon its energy Aw is conserved,

Thus the magnitudes k and k' are equal, and k* = k', a result
that holds also for electron and neutron beams.

k + G = k', so that the diffraction condition is written as (k + G)2 = k2, or

2k e G+ G?=0 (22)

This is the central result of the theory of elastic scattering of waves in a
periodic lattice.

2K o G — GZ (23)

This particular expression is often used as the condition for diffraction.




Equation (23) is another statement of the Bragg condition (1). The result of
Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
normal to the direction G = hb, + kb, + Ibs is d(hkl) = 27/|G|. Thus the result
2k - G = G* may be written as

2(27r/A) sin 6 = 27/d(hkl) | |G| = 2n/d

or 2d(hkl) sin 6 = A. Here 6 is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the indices
of an actual crystal plane, because the hkl may contain a common factor n,
whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin 6 = nA (24)

where d is the spacing between adjacent parallel planes with indices hin, k/n,
ln.



Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations.

Take the scalar product of both Ak and G successively with a,, a,, as.
From (14) and (15) we get

a " Ak = 277'0) : do * Ak — 27TUQ . ds* Ak = 27T133 X (25)

These equations have a simple geometrical interpretation. The first equation
a) * Ak = 27rv) tells us that Ak lies on a certain cone about the direction of a;.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about as.

Thus, at a reflection Ak must satisfy all three equations: it must lie at the

common line of intersection of three cones, which is a severe condition that can

be satisfied only by systematic sweeping or searching in wavelength or crystal
orientation—or else by sheer accident.



Ewald Sphere Construction

Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radius k = 27/A about the origin of k.
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector

G. The diffracted x-ray beam is in the direction k'’ = k + G. The angle 6 is the Bragg angle of
Fig. 2. This construction is due to P. P. Ewald.




BRILLOUIN ZONES

A Brillouin zone is defined as a Wigner-Seitz primitive cell in the recipro-

cal lattice.

k-(3G) = 3G)* .

as devided by 4 at both sides

We work in reciprocal space, the space of the k's and G's. Select a vector G

from the origin to a reciprocal lattice point. Construct a plane normal to this

vector G at its midpoint. This plane forms a part of the zone boundary (Fig. 9a).

An x-ray beam in the crystal will be diffracted if its wavevector k has the magni-
tude and direction required by (26). The diffracted beam will then be in the

direction k — G, as we see from (19) with Ak

= —G. Thus the Brillouin con-

struction exhibits all the wavevectors k which can be Bragg-reflected by the

crystal.

Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lat-
tice vector G¢: connects points OC; and Gy, connects
OD. Two planes 1 and 2 are drawn which are the per-
pendicular bisectors of G¢: and Gy, respectively. Any
vector from the origin to the plane 1, such as k,, will

satisfy the diffraction condition k, - 3G¢) = 3G
Any vector from the origin to the plane 2, such as ko,
will satisfy the diffraction condition_ko - 3G),) =

Planel

(4G ).

P‘Iane 2



The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals. A wave whose wavevector drawn from the origin terminates on any of
these planes will satisfy the condition for diffraction.

These planes divide the Fourier space of the crystal into fragments, as
shown in Fig. 9b for a square lattice. The central square is a primitive cell of the
reciprocal lattice. It is a Wigner-Seitz cell of the reciprocal lattice.

Figure 9b  Square reciprocal lattice with reciprocal
lattice vectors shown as fine black lines. The lines
shown in white are perpendicular bisectors of the re-
ciprocal lattice vectors. The central square is the small-
est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-

tive cell of the reciprocal lattice. 1t is called the first

Brillouin zone.




The central cell in the reciprocal lattice is of special importance in the
theory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular
bisectors of the reciprocal lattice vectors drawn from the origin.

The first Brillouin zone of an oblique lattice in two dimensions is con-
structed in Fig. 10 and of a linear lattice in one dimension in Fig. 11. The zone
boundaries of the linear lattice are at k = *m/a, where a is the primitive axis of
the crystal lattice.

Historically, Brillouin zones are not part of the language of x-ray diffraction
analysis of crystal structures, but the zones are an essential part of the analysis
of the electronic energy-band structure of crystals.



Linear crystal lattice

Figure 10 Construction of the first Brillouin

zone for an oblique lattice in two dimensions. We
first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed arca is the first
Brillouin zone.
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Reciprocal lattice

k-2 k-2

Figure 11 Crystal and reciprocal lattices in

one dimension. The basis vector in the reciprocal
lattice is b, of length equal to 2a/a. The shortest
reciprocal lattice vectors from the origin are b and
—b. The perpendicular biscectors of these vectors
form the boundaries of the first Brillouin zone.

The boundaries are at k = =/a.




