Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as
the set :
a; = ax ; a, = ay ; a; = az . (27a)
Here %, 9, 2 are orthogonal vectors of unit length. The volume of the cell is
a) *ag X ag = a°. The primitive translation vectors of the reciprocal lattice are
found from the standard prescription (13):

b] = (27T/(l>)2 4 b2 — (277'/(1)5" > b3 — (27T/(l)i . (27[))

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice constant
27la.

The boundaries of the first Brillouin zones are the planes normal to the six
reciprocal lattice vectors £b,, =by, +bs at their midpoints:

+4b, = x(mla)k ;  *dby = *(wa)§ ;  *ibs = *(wla)i .

The six planes bound a cube of edge 27/a and of volume (27r/a)*; this cube is the
first Brillouin zone of the sc crystal lattice.



Reciprocal Lattice to bec Lattice

The primitive translation vectors of the bee lattice (Fig. 12) are
ay=da(-%+y+2); a=lak-9+2); a=tak+9y-2), (28)

where a is the side of the conventional cube and &, ¥, % are orthogonal unit
vectors parallel to the cube edges. The volume of the primitive cell is

(29)

Figure 12 Primitive basis vectors of the body-centered
cubic lattice.



The primitive translations of the reciprocal lattice are defined by (13). We
have, using (28),

b, =Q2mla)y +2); by=2wa)x + 2) ; b, = @w/a)x + ¥) . (30)

Note by comparison with Fig. 14 (p. 42) that these are just the primitive vectors
of an fcc lattice, so that an fcc lattice is the reciprocal lattice of the bec lattice.

The general reciprocal lattice vector is, for integral vy, v, vs,
G = v;b) + vsby + vgbs = (27/a)[(ve + vy)k + (v) + va)¥ + (v) + v2)2] . (31)

The shortest G's are the following 12 vectors, where all choices of sign are
independent:

2mla)(xy * £) ; 2m/a)(xx *+ 2) : (2m/a)(xx = ¥) . (32)

The primitive cell ol the reciprocal lattice is the parallelepiped deseribed
by the by, bg, by defined by (30). The volume of this cell in reciprocal space is
by - ba x by = 2(2wla)’. The cell contains one reciprocal lattice point, because
each of the cight corner points is shared among cight parallelepipeds. Each
parallelepiped contains one-cighth of each of eight corner points.



In solid state physics we take the central (Wigner-Seitz) cell of the recipro-
cal lattice as the first Brillouin zone. Each such cell contains one lattice point at
the central point of the cell. This zone (for the bee lattice) is bounded by the
planes normal to the 12 vectors of Eq. (32) at their midpoints. The zone is a
regular 12-faced solid, a rhombie dodecahedron, as shown in Fig. 13. The
vectors from the origin to the center of each face are

(2m/a)(xy * Z) ; (2m/a)(xx * Z) ; (2m/a)(£x *y) . (33)

All choices of sign are independent, giving 12 vectors,

Rhombic dodecahedron

Figure 13 First Brillonin zone of the bodyv-centered
eubie lattice. The figure s a regular rhombic
dodeeahedron.




Rhombic Dodecahedron

= +HR

The long diagonal of each face is exactly V2 times the length of the short
diagonal, so that the acute angles on each face measure arc Cos(1/3), or
approximately 70.53"



Reciprocal Lattice to fcc Lattice

Figure 14 Primitive basis vectors of the face-
centered cubice lattice.



Reciprocal Lattice to fcc Lattice
The primitive translation vectors of the fcc lattice of Fig. 14 are
a=gay +2); a,=3aR+2) ; a, = 5 a® +9) . (34)
The volume of the primitive cell is
V=|a - a, X a = %a3 (35)

The primitive translation vectors of the lattice reciprocal to the fcc lattice
are

b, = @ala)(—x+ 9y + 2) ; b, = 2nla)x — v + 2) ;

(36)
b; = 2nla)x + ¢y —2) .



These are primitive translation vectors of a bee lattice, so that the bece lattice is
reciprocal to the fee lattice. The volume of the primitive cell of the reciprocal
lattice is 4(2w/a).

The shortest G's are the eight vectors:

Qmla)(=% = ¥ £ Z) . (37)

The boundaries of the central cell in the reciprocal lattice are determined for
the most part by the eight planes normal to these vectors at their midpoints.
But the corners of the octahedron thus formed are cut by the planes that are the
perpendicular bisectors of six other reciprocal lattice vectors:

(2mla)(£2%) ; (2mla)(£2y) ; (2mla)(x2z) . (38)

Note that (27/a)(28) is a reciprocal lattice vector because it is equal to by + by,
The first Brillouin zone is the smallest bounded volume about the origin, the
truncated octahedron shown in Fig. 15. The six planes bound a cube of edge
4mla and (before truncation) of volume (41/a)’.
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Figure 15 Brillonin zones of the lace-centered
cubic lattice. The cells are in reciprocal space,

and the reciprocal lattice is body centered.



FOURIER ANALYSIS OF THE BASIS

When the diffraction condition Ak = G of Eq. (21) is satisfied, the scatter-
ing amplitude is determined by (18), which for a crystal of N cells may be
written as |

Fe. = NJ dV n(r) exp(—iG - r) = NS¢ (39)
cell

The quantity S is called the structure factor and is defined as an integral over
a single cell, with r = 0 at one corner.

Often it is useful to write the electron concentration n(r) as the superposi-
tion of electron concentration functions n; associated with each atom j of the

cell. If r; is the vector to the center of atom j, then the function nj(r — r;) defines
the contribution of that atom to the electron concentration at r. The total elec-
tron concentration at r due to all atoms in the cell is the sum

n(r) = 2 ny(r — ) (40)
j=1
over the s atoms of the basis. The decomposition of n(r) is not unique, for we
cannot always say how much charge is associated with each atom. This is not an
important difficulty.



The structure factor defined by (39) may now be written as integrals over
the s atoms of a cell:

Sc = z J dV nj(r — r;) exp(—iG - r) =
7

(41)
2, exp(—iG - 1)) [ dV ny(p) exp(=iG - p) ,
J
where p=r—r; .
We now define the atomic form factor as
f; = I dV ny(p) exp(—iG - p) , (42)

integrated over all space. If n;(p) is an atomic property, f; is an atomic property.

We combine (41) and (42) to obtain the structure factor of the basis in the

form

S¢c = E f; exp(—iG 1)) . (43)
J




The usual form of this result follows on writing for atom j:
r; = xa; + y;a; + za; , (44)

as in (1.4). Then, for the reflection labelled by v,, vy, v3 we have

G ' r; = (u;by + voby + vsbg) - (x;a, + yja; + z;a5) (45)
= 2m(v)x; + vgy; + vsz)) ,

so that (43) becomes

S¢(v1v903) = 2 ﬂ CXP[_iz”T(lej T voy; + Uazj)] - (46)
J

The structure factor S need not be real because the scattered intensity will
involve S*S, where S* is the complex conjugate of S so that S*S is real.

At a zero of S¢ the scattered intensity will be zero, even though G is a
perfectly good reciprocal lattice vector. What happens if we choose the cell in
another way, as a conventional cell instead of a primitive cell, for example? The
basis is changed, but in such a way that the physical scattering is unchanged.
Thus for two choices, 1 and 2, it is not hard to satisfy yourself from (39) that

N,(cell) X §,(basis) = Ny(cell) X So(basis) .



Structural Factor of the bcc Lattice
The bee basis referred to the cubic cell has identical atoms at 1, = y, =
z; = 0 and at x5 = y, = z, = 4. Thus (46) becomes

S(vyvevs) = f{l + exp|—im(v, + vy + vy)]} (47)

where f is the form factor of an atom. The value of S is zero whenever the
exponential has the value —1, which is whenever the argument is —im X (odd
integer). Thus we have

S=0 when v, + vo + v3 = odd integer

b

S =2f when v, + vy + vy = even integer

Metallic sodium has a bee structure. The diffraction pattern does not con-
tain lines such as (100), (300), (111), or (221), but lines such as (200), (110), and
(222) will be present; here the indices (v,v-04) are referred to a cubic cell. What

difference 27 :

3rd plane

Figure 16 Explanation of the absence of a (100) reflection from a body-centered cubic lattice.

The phase difference between successive planes is 77, so that the reflected amplitude from two
adjacent planesis1 + e =1—-1=0.



Structure Factor of the fce Lattice

The basis of the fee structure referred to the cubice cell has identical atoms
at 000; 0%%; 305 H0. Thus (46) becomes

-~

S(Ulugl);;) =j{l = (?.\'[)["i?T(Ug % U;;)l = CX[)[—i'n’(U] i U;;)] (48)
+ exp[—im(v; + va)]} .

If all indices are even integers, S = 4f; similarly if all indices are odd integers.

But if only one of the integers is even, two of the exponents will be odd multi-
ples of —im and S will vanish. If only one of the integers is odd, the same
argument applies and S will also vanish.

Thus in the fee lattice no reflections can occur for which the indices are
partly even and partly odd.

T | T r | T Figure 17 Comparison of x-ray reflections from KC|

(200)’
and KBr powders. In KCI the numbers of electrons
KBr of K" and CI™ ions are equal. The scattering ampli-
tudes f(K") and f(CI7) are almost exactly equal, so
that the erystal looks to x-rays as if it were a mona-
o tomic simple cubic lattice of lattice constant /2.
Only even integers oceur in the reflection indices
when these are based on a cubie lattice of lattice con-
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Figure 17 Comparison of x-ray reflections from KC|
and KBr powders, In KCI the numbers of electrons
of K md Cl ions are equal. The scattering ampli-
tudes f(K*) and f(CI7)

that the erystal Tooks to x-rays as if it were a mona-

) are almost exactly equal, so

tomic simple cubic lattice of lattice constant a/2.
Only even integers oceur in the reflection indices
when these are based on a cubie lattice of lattice con-
stant a. In KBr the form factor of Br™ is quite differ-
ent than that of K*', and all reflections of the fee lat-
tice are present. (Courtesy of R, van Nordstrand.)



Atomic Form Factor

In the expression (46) for the structure factor, there occurs the quantity f;,
which is a measure of the scattering power of the jth atom in the unit cell. The
value of f involves the number and distribution of atomic electrons, and the
wavelength and angle of scattering of the radiation. We now give a classical
calculation of the scattering factor.

The scattered radiation from a single atom takes account of interference
cffeets within the atom. We defined the form factor in (42):

Ji= T dV nyr) exp(=iG-r) , (49)

with the integral extended over the electron concentration associated with a
single atom. Let r make an angle « with G; then G - r = Gr cos a. I the clece-
tron distribution is spherically symmetric about the origin, then

1 = 2w [ dr r2 d(cos a) n;(r) exp(—iGr cos a)

. (,i{;r o L,—i(-':'
= 27 [ dr ringr) - — ;
; iGr

after integration over d(cos @) between —1 and 1. Thus the form factor is
given by

sin Gr

fj = 4m [ dr ny(n)r® o

(50)




If the same total electron density were coneentrated at = 0, only Gr = 0
would contribute to the integrand. In this limit (sin Gr)/Gr =1, and

fi=dm [ dr njrir==17, (51)
the number of atomic electrons. Therefore fis the ratio of the radiation ampli-
tude scattered by the actual electron distribution in an atom to that scattered by
one electron localized at a point.

In the forward direction G = 0, and f reduces again to the value Z.

The overall electron distribution in a solid as seen in x-ray diffraction is
fairly close to that of the appropriate free atoms. This statement does not mean
that the outermost or valence electrons are not redistributed in forming the
solid; it means only that the x-ray reflection intensities are represented well by
the free atom values of the form factors and are not very sensitive to small
redistributions of the electrons.



End of Chapter 2






As an example, Batterman and co-workers find agreement within 1 per-
cent in a comparison of the x-ray intensities of Bragg reflections of metallic iron,
copper, and aluminum with the theoretical free atom values from wavefunction
calculations. The results for aluminum are shown in Fig. 18.

There have been many attempts to obtain direct x-ray evidence about the

actual electron distribution in a covalent chemical bond, particularly in crystals
having the diamond structure. "
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Figure 18 Absolute experimental atomic scattering factors for metallic aluminum, after Bat-

terman, Chipman, and DeMarco. Each observed reflection is labeled. No reflections oceur for
indices partly even and partly odd, as predicted for an fee erystal.



QUASICRYSTALS Aly gsMn, 14

In 1984 quasicrystals were first observed;' these are structures which can-
not be indexed to any Bravais lattice and “which have symmetries intermediate
between a crystal and a liquid.” They were first observed in grains of size 2 wm
in an alloy of Al with 14 at pect Mn. The smaller Mn atoms are each surrounded
by 12 Al atoms arranged at the corners of an icosahedron. The structure is made
up ol parallel icosahedra attached at their edges. Crystals cannot exhibit the
fivefold symmetry of an icosahedron, but a erystal can be constructed by nucle-
ation at a center cell, followed by outward growth from there. All of the space of
a nodule cannot be filled by repeating the basic unit (see Figures 19 and 1.7 for
the picture in two dimensions), although the “parallel” part of the specification
does give a long-range orientational order to the structure. It is perhaps sur-
prising that the x-ray diffraction pattern of such a structure can have fivelold
symmetry; that is how they were first observed.

The known quasicrystals are intermetallic alloys and are very poor electri-
cal conductors; they are nearly insulators with a somewhat well-defined band

gap (Chapter 7) at the Fermi level. They are of great interest intellectually in
expanding the definition of erystal lattice.



A distinctly different erystal diffraction pattern results from an almost peri-
odic structure, one that is neither rigorously periodic nor simply amorphous (as
for a glass, Chapter 17). An almost periodic structure can be expressed in one
dimension if we are given the electron charge density wave:

px) = Z|C,, cos|2mn(l + 7xla] | (52)

where 7 is an irrational fraction. The terms in 27n/a by themselves give the
usual lattice with translational periodicity . When the terms in 7 are added,
the charge density is almost periodic; that is, the period (1 + 7)a is not an
integral multiple of the period @, because 7 is irrational. The period gives a
long-range nonrandom order to the structure, and the long-range order gives a
diffraction pattern, which appears split ofl’ from the pattern defined by the
short-range order. This is dominated by the reciprocal lattice points in ny, but
will appear to be clustered and spread out (broadened). The diffraction pattern
of a three-dimensional quasicrystal is quite different, however; the pattern is
well defined and can have the fivefold symmetry by which quasicrystals were
first discovered. A computer-generated diffraction pattern with fivefold sym-
metry is shown in Figure 20.



Figure 19 A quasicrystal tiling in two dimensions,

after the work of Penrose. The long-range
orientational order and the long-range nonperiodic
order are shown.



