Chapter 7

Energy Bands



Free Electron Model (Sommerfiled):

Success: Failure:
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» Thermal conductivity semimetals, and insulators.
» Magnetic susceptibility » Positive Hall coefficient
 Electrodynamics of metals | | - Magneto transport

Every solid contains electrons.

that electrons in crystals are arranged in_energy bands (Fig. 1) separated by
regions in energy for which no wavelike electron orbitals exist. Such forbidden
regions are called energy gaps or band gaps, and result from the interaction of
the conduction electron waves with the ion cores of the crystal.

The crystal behaves as an insulator if the allowed energy bands are either
filled or empty, for then no electrons can move in an electric field. The crystal
behaves as a metal if one or more bands are partly filled, say between 10 and 90
percent filled. The crystal is a semiconductor or a semimetal if one or two bands
are slightly filled or slightly empty.
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Figure 1 Schematic electron occupancy of allowed energy bands for an insulator, metal, semi-
metal, and semiconductor. The vertical extent of the boxes indicates the allowed energy regions;
the shaded areas indicate the regions filled with electrons. In a semimetal (such as bismuth) one
band is almost filled and another band is nearly emptv at absolute zero, but a pure semiconductor

(such as silicon) becomes an insulator at absolute zero. The left of the two semiconductors shown is
at a finite temperature, with carriers excited thermally. The other semiconductor is electron-defi-
cient because of impurities.
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Brief Review:

Free Electron Model

On the free electron model the allowed energy values are distributed es-
sentially continuously from zero to infinity. We saw in Chapter 6 that

2

€l =

e+ i+ k), (1)

2m
where, for periodic boundary conditions over a cube of side L,

2 4
B Ko ley =0 i%; i{-;

The free electron wavefunctions are of the form

Ya(r) = exp(ik - r) ; (3)
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To understand the difference between insulators and conductors, we must
extend the free electron model to take account of the periodic lattice of the
solid. The possibility of a band gap is the most important new property that

emerges.
The electrons’ respond to applied electric or magnetic fields as if the

electrons were endowed with an effective mass m*, which may be larger or

smaller than the free electron mass, or may even be negative. Electrons in

crystals respond to applied fields as if endowed with negative or positive

charges, —¢ or +e, and herein lies the explanation of the negative and positive
values of the Hall coeflicient.
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Nearly Free Electron Model

The band structure of a crystal can often be explained by the nearly free

electron model for which the band electrons are treated as perturbed only

weakly by the periodic potential of the ion cores. This model answers almost all
the qualitative questions about the behavior of electrons in metals.

We know that Bragg reflection is a characteristic feature of wave propaga-
tion in crystals. Bragg reflection of electron waves in crystals is the cause of
energy gaps. (At Bragg retlection wavelike solutions of the Schrodinger equa-
tion do not exist, as in Fig. 2.) These energy gaps are of decisive significance in
determining whether a solid is an insulator or a conductor.

We explain |physically the origin of energy gaps|in the simple problem of a
linear solid of lattice constant a.

for a 1-D linear lattice
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Figure 2 (a) Plot of energy € versus wavevector k for a free electron. (b) Plot of energy versus
wavevector for an electron in a monatomic linear lattice of lattice constant a. The energy gap E,
shown is associated with the first Bragg reflection at k = = m/a; other gaps are found at + nm/a, for
integral values of n.

The Bragg condition (k + G)* = k2 for diffraction of a wave of wavevector k

becomes in one dimension PR
k= *3G = =nma , Solutionsin1-D (4)
where G = 2an/a is a reciprocal lattice vector and n is an integer. The first

reflections and the first energy gap occur at k = = #/a. The region in k space
between —/a and 7/a is the first Brillouin zone of this lattice. Other energy

aaps occur for other values of the integer n.
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The wavefunctions at K = =+ 7/a are not the traveling waves exp(imx/a) or
exp(—imx/a) of free electrons. At these special values of k the wavefunctions are
made up of equal parts of waves traveling to the right and to the left. When the
Bragg reflection condition k = = 7/a is satisfied by the wavevector, a wave
traveling to the right is Bragg-reflected to travel to the left, and vice versa.
Each subsequent Bragg reflection will reverse the direction of travel of the
wave. A wave that travels neither to the right nor to the left is ajstanding wave

it doesn’'t go anywhere.

The time-independent state is represented by standing waves. We can

form two different standing waves from the two traveling waves exp( = imx/a),
namely Standing wave solutions

Y(+) = exp(imx/a) + exp(—imx/a) = 2 cos (wx/a) ;

(5)

Y(—) = exp(imx/a) — exp(—imx/a) = 2i sin (mx/a) .

The standing waves are labeled (+) or (=) according to whether or not they

change sign when —x is substituted for x. Both standing waves are composed of
equal parts of right- and left-directed traveling waves.
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HOrigin of the Energy Gap ‘

The two standing waves ¥(+) and ¥(—) pile up electrons at different re-
gions, and therefore the two waves have different values of the potential
energy. This is the origin of the energy gap. The probability density p of a
particle is ¥*¢ = [§|>. For a pure traveling wave exp(ikx), we have p =
exp(—ikx) exp(ikx) = 1, so that the charge density is constant. The charge den-
sity is not constant for linear combinations of plane waves. Consider the stand-
ing wave Y(+) in (5); for this we have  p(+) = |y(+)]2 « cos? mxla .

This function piles up electrons (negative charge) on the positive ions centered

at x =0, a, 2a, . . . in Fig. 3. where the potential energv is lowest.

Figure 3a pictures the variation of the electrostatic potential energy of a
conduction electron in the field of the positive ion cores. The ion cores bear a
net positive charge because the atoms are ionized in the metal, with the va-
lence electrons taken off to form the conduction band. The potential energy of
an electron in the field of a positive ion is negative, so that the force between
them is attractive.

For the other standing wave yy(—) the probability density is

p(=) = [@(=)]* < sin® mx/a

which concentrates electrons away from the ion cores. In Fig. 3b we show the
electron concentration for the standing waves Y(+), ¢(—), and for a traveling
wave.
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Figure 3 (a) Variation of potential energy of a conduction electron in the field of the ion cores of
a linear lattice. (b) Distribution of probability density p in the lattice for |y(—)|* o sin® mx/a;
Y(+)|* o« cos? mx/a; and for a traveling wave. The wavefunction y(+) piles up electronic charge on
the cores of the positive ions, thereby lowering the potential energy in comparison with the average
potential energy seen by a traveling wave. ﬂwaﬁgﬁumuuﬂ;)_pilcs up charge in the region
between the ions, thereby raising the potential energy in comparison with that seen by a traveling
wave. This figure is the key to understanding the origin of the energy gap.
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When we calculate the average or expectation values of the potential en-

ergy over these three charge distributions, we find that the potential energy of
p(+) is lower than that of the traveling wave, whereas the potential energy of
p(—) is higher than the traveling wave. We have an energy gap of width E, if the
energies of p(—) and p(+) differ by E,. Just below the energy gap at points A in
Fig. 2 the wavefunction is §(+), and just above the gap at points B the wave-
function is Y(—).
Magnitude of the Energy Gap

The wavefunctions at the Brillouin zone boundary k = m/a are
\V/2 cos mx/a and V2 sin mx/a, normalized over unit length of line. We write
the potential energy of an electron in the crystal at point x as

See Fig. 2 U(x) = U Cos2zx/a

The first-order energy difference between the two standing wave states is

Be= | de U [0+ ~ 1P

(6)
=2 J dx U cos(2mx/a) (cos®>mx/a — sin®mx/a) = U .

We see that the gap is equal to the Fourier component of the crystal potential.
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Awarded the 1952 Nobel Prize for Felix Bloch
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F. Bloch proved the important theorem that the solutions of the Schro-
dinger equation for a periodic potential must be of a special form:

Yi(r) = uy(r) exp(ik - r) , (7)

where uy(r) has the period of the crystal lattice with w(r) = w(r + T). The
result (7) expresses the Bloch theorem:

The eigenfunctions of the wave equation for a periodic potential are

the product of a plane wave exp(ik - r) times a function w(r) with the
periodicity of the crystal lattice.

A one-electron wavefunction of the form (7) is called a Bloch function and
can be decomposed into a sum of traveling waves, as we see later. Bloch func-
tions can be assembled into localized wave packets to represent electrons that
propagate freely through the potential field of the ion cores.



http://en.wikipedia.org/wiki/Nobel_Prize

We give now a [restricted proof of the Bloch theorem,| valid when ¢ is
nondegenerate.

We con-
sider N identical lattice points on a ring of length Na. The potential energy is
periodic in a, with U(x) = U(x + sa), where s is an integer.

We are guided by the symmetry of the ring to look for solutions of the wave
equation such that

Y(x + a) = Clx) , (8)
where C is a constant. Then, on going once around the ring,
Y(x + Na) = Y(x) = C~ (x) ,

because (x) must be single-valued. It follows that C is one of the N roots of
unity, or

C = exp(i2ws/N) ; =00, L2 . L e N = L, (9)

We see that =exp(i2msa/Na)
Y(x) = ur(x) exp(i2msx/Na) (10)
satisfies vided that u(x) has the periodicity a, so that ui(x) = ui(x + a).

With k = 27ws/Na] we have the Bloch result (7). For another derivation, see

(Z97.



Demonstration of the energy gap !

KRONIG-PENNEY MODEL

A periodic potential for which the wave equation can be solved in terms of
elementary functions is the square-well array of Fig. 4. The wave equation is
h> d>y |

~ o gt Uy = e , (11)

where U(x) is the potential energy and € is the energy eigenvalue.
Ulx)

Figure 4 Square-well periodic potential as in-
troduced by Kronig and Penney. ~@+b) -b 0 aatb X —
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In the region 0 <x < a in which U = 0, the eigenfunction is a linear

combination,
= Ae’®™ + Be K (19)
of plane waves traveling to the right and to the left, with energy
e = h2K?*/2m . (13)
In the region —b < x < 0 within the barrier the solution is of the form

U= CeP* + De~ 9% (14)

with

Note €< U0 Uy — € = h2Q%/2m . (15)



"
We want the complete solution to have the Bloch form (7). Thus the solu-

tion in the region a < x < a + b must be related to the solution (14) in the
region —b < x < 0 by the Bloch theorem:  translate by a+b

pla<x<a+b)=iyYy(—b<x<0) gtiathy (16)

which serves to define the wavevector k used as an index to label the solution.

The constants A, B, C. D are chosen so that & and dd/dx are continuous at
x = 0 and x = a. These are the usual quantum mechanical boundary conditions
in problems that involve square potential wells. At x = 0,

w(0) = y*(0) A+B=C+D; (17)

dy(0)/dx = dy*(0)/dx iK(A — B) = O(C —D) . (18)
At x = a, with the use of (16) for y{a) under the barrier in terms of Y(—b),

Ae'®a + Be~Ka = (Ce™ Qb + De@P) letb) (19)

iK(Ae'k® — Be~iK9) = Q(Ce~ 9V — De?) giklath) (20)

y(a) = y*(-b) exp{ik(a+b)}
dy(a)/dx = dy*(-b)/dx exp{ik(a+h)}
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The four equations (17) to (20) have a solution only if the determinant of

the coefficients of A, B, C, D vanishes, or if

[(Q?% — K?)/2QK] sinh Qb sin Ka + cosh Qb cos Ka = cos k(a + b) .(21a)

The result is simplified if we re[—)resent the potential by the periodic delta
function obtained when we pass to the limit b = 0 and Uy = % in such a way
that Q?ba/2 = P, a finite quantity. In this limit Q > Kand Qb < 1. Then (21a)

reduces to

(P/Ka)sin Ka + cos Ka = cos ka .

(21b)

The ranges of K tor which this equation has solutions are plotted in Fig. 5,
for the case P = 3m/2. The corresponding values of the energy are plotted in
Fig. 6. Note the energy gaps at the zone boundaries. The wavevector k of the
Bloch function is the important index, not the K in (12), which is related to the

energy by (13).



(P/Ka) sin Ka + cos Ka

N/

Certain allowed values of Ka, thus giving rise to allowed values of ¢
Figure 5 Plot of the function (P/Ka) sin Ka + cos Ka, for P = 3m/2. The allowed values of the
energy € are given by those ranges of Ka = (2me/f?)!"?a for which the function lies between = 1.
For other values of the energy there are no traveling wave or Bloch-like solutions to the wave
equation, so that forbidden gaps in the energy spectrum are formed.
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Figure 6 Plot of energy vs. wavenumber for the Kroni

-Penney potential, with P = 37/2. Notice
the energy gaps at ka = m, 27, 3. . . .

Energy gaps ineatnm !



" A
Exact Proof of the Bloch Theorem

We considered in Fig. 3 the approximate form we expect for the solution of
the Schrédinger equation if the wavevector is at a zone boundary, as at k = 7/a.
We treat in detail the wave equation for a general potential, at general values of

k. Let U(x) denote the potential energy of an electron in a linear lattice of lattice
constant a. We know that the potential energy is invariant under a crystal
lattice translation: U(x) = U(x + a). A function invariant under a crystal lattice

translation may be expanded as a Fourier series in the reciprocal lattice vectors
G. We write the Fourier series for the potential energy as

U(x) = E il &% (22)

The values of the coefficients U, for actual crystal potentials tend to decrease
rapidly with increasing magnitude of G. For a bare coulomb potential Ug de-
creases as 1/G2. |

We want the potential energy U(x) to be a real function:

Ulx) = 2 Usle™® 4+ g =2 Z U cos Gx . (23)

G>0 G>0

For convenience we have assumed that the crystal is symmetric about x = 0
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The wave equation of an electron in the crystal is # = e, where # is the

hamiltonian and € is the energy eigenvalue. The solutions ¢ are called eigen-
functions or orbitals or Bloch functions. Explicitly, the wave equation is

The wavefunction (x) may be expressed as a Fourier series summed over
all values of the wavevector permitted by the boundary conditions, so that

v=2, CK) *, (25)
k

where k is real.

The set of values of k has the form 27n/L, because these values satisty
periodic boundary conditions over length L. Here n is any integer, positive or
negative.
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We can label a wavefunction ¢ that contains a component k as ¢y or,

equally well, as Y., because if k enters the Fourier expansion then k + G
may enter.
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Figure 7 The lower points represent values of the wavevector k = 27n/L allowed by the periodic
boundary condition on the wavefunction over a ring of circumference L composed of 20 primitive
cells. The allowed values continue to =%. The upper points represent the first few wavevectors

which may enter into the Fourier expansion of a wavefunction (x), starting from a particular
wavevector k = ko, = —8(27/L). The shortest reciprocal lattice vector is 27/a = 20(27/L).

We shall usually choose as a label for the Bloch function that k which lies
within the first Brillouin zone.




To solve the wave equation, substitute (25) in (24) to obtain a set of linear
algebraic equations for the Fourier coefficients. The kinetic energy term is

L 1 ( d )2 h% d*y fi2
——— o — e (. S === — 2 A [
By ) o % dx ¥x) om dx® 2m Ek: SOl e™ ;

and the potential energy term is
(Z UC eiCx) 2 2 szC zl\x
G
The wave equation is obtained as the sum:

> LAY (k) e”"*’+2; UcC(k) e**Cx = > C(k) e .  (26)
& 3 k

k 2m
Each Fourier component must have the same coefficient on both sides of the
equation. Thus

(Ax +ZU k-G)=0 . (27)

central equation to solve the C(K), and ¢

with the notation _Ax = A%k*2m . (28)

there are, in principle, an infinite number of C(k — G) to be determined.
In practice a small number will often suffice, perhaps two or four.
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Restatement of the Bloch Theorem
Once we determine the C’s from (27), the wavefunction (25) is given as

Yil(x) = %‘, Ck — G) ek=Gx (29)

which may be rearranged as

Ui(x) = (Z Clk - G) 8_‘G‘) ™t = e*u(x) |

with the definition

tu(x) = z Ck—-G)e o,
G

Because ui(x) is a Fourier series over the reciprocal lattice vectors, it is
invariant under a crystal lattice translation T, so that ug(x) = ui(x + T). We
verifty this directly by evaluating ui(x + T):

u(x+T)=2 Clk — G) e ¢+ = o7iCT[F C(k — G) e %] = e T uy(x) .

Because exp(—iGT) = 1 by (2.17), it follows that ugx + T) = ur(x), thereby es-
tablishing the periodicity of uy. This is an alternate and exact proof of the Bloch
theorem and is valid even when the ¢, are degenerate.
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Crystal Momentum of an Electron

e Under a crystal lattice translation which carries r to r + T we have

h(r + T) = e*T kT y (r + T) = e*Th(r) , (30)
Thus exp(ik - T) is the phase factor’ by which a
Bloch function is multiplied when we make a crystal lattice translation T.

e If the lattice potential vanishes, U=0
(Ax — €)C(k) = 0, so that all C(k — G) are zero except C(k), and thus u(r)
is constant. We have ¢y (r) = ", just as for a free electron.

* Thus #k is called the crystal momentum of an electron. If an electron k
absorbs in a collision a phonon of wavevector q, the selection rule isk + q =
k' + G. In this process the electron is scattered from a state k to a state k',
with G a reciprocal lattice vector.
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Solution of the Central Equation

Equation (27) may be called the central equation:

(A — CKk) + 2, UsClk — G) =0 (31)
(o~

represents a set of simultaneous linear equations that connect the coefficients
C(k — G) for all reciprocal lattice vectors G. It is a set because there are as
many equations as there are coefficients C. These equations are consistent if
the determinant of the coefficients vanishes.

Let us write out the equations for an explicit problem. We let g denote the
shortest G. We suppose that the potential energy U(x) contains only a single
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Fourier component U, = U_,, denoted by U. Then a block of the determinant
of the coeflicients is given by:

k=k-2g k-g k k+g k+2g
Ak—oy — € U 0 0 0
U "-k—g — € U 0 0
0 U A, — € U 0 (32)
0 0 U Akiyg — € U
0 0 0 U )’Lk+2g — £

To see this, write out five successive equations of the set (31). The determinant
in principle is infinite in extent, but it will often be sufficient to set equal to zero
the portion we have shown.

At a given k, each root € or € lies on a different energy band, except in case
of coincidence. The solution of the determinant (32) gives a set of energy eigen-

values €,. where n is an index for ordering the energies and k is the wavevector

that labels C;.
Most often k will be taken in the first zone,



