Chapter 8-3



Silicon and Germanium

The conduction and valence bands of germanium are shown in Fig. 14,
based on a combination of theoretical and experimental results. The valence
band edge in both Si and Ge is at k = 0 and is derived from P3s and py 5 states

of the free atoms, as is clear from the tight-binding approximation (Chapter 9)

“to the wavefunctions.
The pj, level is fourfold degenerate as in the atom; the four states corre-

spond to m; values * 5 ; and *+ LThe p1s level is doubly degenerate, with

my = & 5. The pas states are higher in energy than the p,, states; the energy
difference A is a measure of the spin-orbit interaction.
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Figure 14 Calculated band of germanium, after C. Y. Fong. The general featu:
good agreement with experiment The four valence bands are shown in gray. The fine str
o By

PO PRy SRS SRR RS R RO ARG T ISR ORISR T TN TR XV




The valence band edges are not simple. Holes near the band edge are

characterized by two effective masses, light and heavy. These arise from the

two bands formed from the ps, level of the atom. There is also a band formed
from the p,,; level, split off from the ps, level by the spin-orbit interaction.
The energy surfaces are not spherical, but warped (QTS, p. 271):

e(k) = Ak® x [B*%* + C*(k2k2 + k2k2 + k2k2)]V2 (33)
The choice of sign distinguishes the two masses. The split-off band has
e(k) = —A + Ak% The experiments give, in units A%2m,

Si: A= —4.29 ; IBI = 0.68 ; ICl = 4.87 ; A =0.044 eV
Ge: A= -13.38 ; IBl = 8.48 ; ICl = 13.15 ; A =0.29eV

Roughly, the light and heavy holes in germanium have masses 0.043 m and
0.34 m; in silicon 0.16 m and 0.52 m; in diamond 0.7 m and 2.12 m.



Figure 15 Standard labels of the symmetry points and axes of the Brillouin zones of the fcc and
bec lattices. The zone centers are I'. In (a) the boundary point at (27/¢)(100) is X; the boundary
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point at (27/a)(5 5 3) is L; the line A runs between I' and X. In (b) the corresponding symbols are
H, P, and A.




The conduction band edges in Ge are at the equivalent points L of the
Brillouin zone, Fig. 15a. Each band edge has a spheroidal energy surface ori-
ented along a (111) crystal axis, with a longitudinal mass m; = 1.59 m and a
transverse mass m, = 0.082 m. For a static magnetic field at an angle 6 with
the longitudinal axis of a spheroid, the effective cyclotron mass m, is

1 _ cos®f , sin’Q

+ (34)
m2 m? Tty

Results for Ge are shown in Fig. 16.

In silicon the conduction band edges are spheroids oriented along the
equivalent (100) directions in the Brillouin zone, with mass parameters
my = 0.92m and m, = 0.19 m, as in Fig. 17a. The band edges lie along the lines
labeled A in the zone of Fig. 15a, a little way in from the boundary points X.

In GaAs we have A = —6.98, B = —4.5, ICl = 6.2, A = 0.341 eV. The
band structure is shown in Fig. 17b. It has a direct band gap with an isotropic
conduction electron mass of 0.067 m.
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Figure 16 Effective cyclotron mass of electrons in germa- i

nium at 4 K for magnetic field directions in a (110) plane.
There are four independent mass spheroids in Ge, one
along each [111] axis, but viewed in the (110) plane two

ol 1
spheroids always appear equivalent. (After Dresselhaus, -10 0 10 20 30 40 50 60 70 80 90 100
Kip, and Kittel.) Angle in degrees in (110) plane from [001] axis
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Figure 17a Constant energy ellipsoids for Figure 17b Band structure of GaAs, after S. G. Louie.
electrons in silicon, drawn for my/m, = 5.



INTRINSIC CARRIER CONCENTRATION

We want the concentration of intrinsic carriers as a function of tempera-
ture, in terms of the band gap. We do the calculation for simple parabolic band
edges. We first calculate in terms of the chemical potential © the number of
electrons excited to the conduction band at temperature T. In semiconductor
physics u is called the Fermi level. At the temperatures of interest we may
suppose for the conduction band of a semiconductor that € — u > kT, so that
the Fermi-Dirac distribution function reduces to

f.= expl(u—e)/kpT] . (35)

This is the probability that a conduction electron orbital is occupied, in an
approximation valid when f, < 1.
The energy of an electron in the conduction band is
= E_+ #%¥2m, | (36)
where E, is the energy at the conduction band edge, as in Fig. 18. Here

m, is the effective mass of an electron. Thus from (6.20) the density of states
at € is

D) = —1—( o )‘W‘(e —Eye (37)



The concentration of electrons in the conduction band is

& om. \32
n = J'E D,(e)f,(e)de = 27172 ( me) exp(u/kzT) X

Py
j: (e — E,) exp(—e/kyT)de | .

which integrates to give
n = z( ’;‘;‘;Z )3/2 expl(n — E,)VkyT] . (39)

The problem is solved for n when u is known. It is useful to calculate the
equilibrium concentration of holes p. The distribution function f, for holes is
related to the electron distribution function f, by f, = 1 — f,, because a hole is
the absence of an electron. We have

fo1- 1 _ 1
‘ expl(€ — w/kgT]1 + 1  exp[(n — €)/kpgT] + 1 (40)

= expl(e — u)/kgT] ,

provided (u — €) > kpT.



If the holes near the top of the valence band behave as particles with
etfective mass my,, the density of hole states is given by

2 3/2
Dyje) = 27172( ;;’) (E,— €)' , (41)

where E, is the energy at the Vale%ce band edge. Proceeding as in (38) we obtain

il \
<mthT)3/2

ES
i f  Dielfilee = 2o T5 | expl(— wksT] (42)

for the concentration p of holes in the valence band.
We multiply together the expressions for n and p to obtain the equilibrium
relation, with the energy gap E, = E, — E, as in Fig. 18,
m

e
np = 4( 2k :_;2 )3(1%0m,,)3’2 exp(—Ey/kgT) . (43)

This usetful result does not involve the Fermi level . At 300 K the value of np
is 2.10 X 10" ecm™°, 2.89 X 10%® cm™®, and 6.55 X 102 cm~®, for the actual
band structures of Si, Ge, and GaAs, respectively.



A€
Conduction
- band
o E,
E,=E,-E,
Fermi level
" € v . i 5 . ~ |
3 fle)
G >
Figure 18 Energy scale for statistical calcula-
e tions. The Fermi distribution function is shown
72 band on the same scale, for a temperature kT < E,.
The Fermi level u is taken to lie well within the
band gap, as for an intrinsic semiconductor. If
€ = u, then f=3.




We have nowhere assumed in the derivation that the material is intrinsic:
the result holds for impurity ionization as well. The only assumption made is
that the distance of the Fermi level from the edge of both bands is large in
comparison with k5T

A simple kinetic argument shows why the product np is constant at a given
temperature. Suppose that the equilibrium population of electrons and holes
is maintained by black-body photon radiation at temperature T. The photons
generate electron-hole pairs at a rate A(T), while B(T)np is the rate of the re-
combination reaction e + A = photon. Then

dn/dt = A(T) — B(T)np = dp/dt - (44)
In equilibrium dn/dt = 0, dp/dt = 0, whence np = A(T)/B(T).



Because the product of the electron and hole concentrations is a constant
independent of impurity concentration at a given temperature, the introduction
of a small proportion of a suitable impurity to increase n, say, must decrease p.
This result is important in practice—we can reduce the total carrier concentra-
tion n + p in an impure crystal, sometimes enormously, by the controlled intro-
duction of suitable impurities. Such a reduction is called compensation.

In an intrinsic semiconductor the number of electrons is equal to the
number of holes, because the thermal excitation of an electron leaves behind a
hole in the valence band. Thus from (43) we have, letting the subscript i de-
note intrinsic and E, = E, — E,,

kpT %2
n,=p; = 2(2:%2 ) (m,my,)** exp(— E/2kgT) . (45)




The intrinsic carric. _-oncentration depends exponentially on E,/2kgT,
where E, is the energy gap. We set (39) equal to (42) to obtain, for the Fermi
level as measured from the top of the valence band,

 expu/kyT) = (my/m,)** exp(E /kgT) ; (46)
p =3 E, + 3kgT In (my/m,) . (47)

If my, = m,, then w = -;-Eg and the Fermi level is in the middle of the forbid-
den gap.



Intrinsic Mobility

The mobility is the magnitude of the drift velocity of a charge carrier per
unit electric field:

= |o|/E . (48)

The mobility is defined to be positive for both electrons and holes, although
their drift velocities are opposite in a given field. By writing u, or u;, with
subscripts for the electron or hole mobility we can avoid any confusion be-
tween w as the chemical potential and as the mobility.

The electrical conductivity is the sum of the electron and hole contributions:

J=oE=newv

c=nev/E=neu
where n and p are the concentrations of electrons and holes. In Chapter 6 the
drift velocity of a charge g was found to be v = q7E/m, whence

o = (new, + pew;,) , (49)

He = eT/m, 5 Wy, =em/my, (50)

where 7 is the collision time.



The mobilities depend on temperature as a modest power law. The tem-
perature dependence of the conductivity in the intrinsic region will be
dominated by the exponential dependence exp(—E,/2k;T) of the carrier con-
centration, Eq. (45).

Table 3 gives experimental values of the mobility at room temperature.
The mobility in SI units is expressed in m*/V-s and is 107 of the mobility in
practical units. For most substances the values quoted are limited by the scat-
tering of carriers by thermal phonons. The hole mobilities typically are smaller
than the electron mobilities because of the occurrence of band degeneracy at
the valence band edge at the zone center, thereby making possible interband
scattering processes that reduce the mobility considerably.




Table 3 Carrier mobilities at room temperature, in cm?*/V-s
EXPERIMENTAL VALUES

Crystal Electrons Holes Crystal Electrons Holes

e s e G R T U S G S A R R N R G S G b e S RS O R e L ¥ S O K e S s e A
Diamond 1800 1200 GaAs 8000 300
Si 1350 480 GaSb 5000 1000
Ge 3600 1800 PbS 550 600
InSb 800 450 PbSe 1020 930
InAs 30000 450 PbTe 2500 1000
InP 4500 100 AgCl 50 —

AlAs 280 — KBr (100 K) 100 —

AlSb 900 400 SiC 100 10-20

Chap. 8, eq. 24
m, o U
u oc 1/m,

In some crystals, particularly in ionic crystals, the holes are essentially
immobile and get about only by thermally-activated hopping from ion to ion.
The principal cause of this “self-trapping” is the lattice distortion associated

with the Jahn-Teller effect of degenerate states. The orbital degeneracy neces-

sary for self-trapping is much more frequent for holes than for electrons.
There is a tendency for crystals with small energy gaps at direct band edges
to have high values of the electron mobility. Small gaps lead to small effective

masses, which favor high mobilities. The highest mobility observed in a bulk

semiconductor is 5 X 10° cm*V-s in PbTe at 4 K, where the gap is 0.19 eV.



