Chapter 5
Phonons I
Thermal Properties
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Plank Distribution

<Ny,> Isthe thermal equilibrium occupancy of phonon wavevector K
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" A
Quantization of Elastic Waves

-- The energy of lattice vibration is quantized.
-- The quantum of energy called a phonon, and
the quantum number is denoted as n.
-- The elastic waves in crystals are made of phonons.
-- Thermal vibration in crystals are thermally excited phonons.

The energy of an elastic mode of angular frequency w is

€E=(n+ 3w (27)
when the mode is excited to quantum number n, that is,
when the mode is occupied by n phonons.
The term Y2 hw is the zero point energy of the mode.



Consider a situation where we have a set of identical oscillators in thermal
Equilibrium,

Compare the energy difference hw of
the two adjacent quantum states to the

thermal excitation energy kgT
|  n+1th

hw

The ratio of the number of oscillators in
their (n+1)th quantum state of

, , excitation to the number in nth quantum
n-1th state is

| - nth quantum state

N+ 1/N, = expl—haiT) , T = kg1 ,The Boltzmann factor(:3)

I

N, = N, exp (-nhw/7)
The ratio of the number of oscillators in the Nth quantum state
to the total number of oscillators is

N, exp(—nhw/7)

& = — . (4)
> N, :_\4 exp(—shw/7)
8 s = 1)
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We compute the average excitation quantum number n of an oscillator to be

D s exp(—shaw/7)

(n) = — \ (>)
b3 exp(—shw/7)

5

We let X = exp (ha)/ kgT), and 7 = kgT, the denominator becomes

S v

I — 2
Then, the numerator is
D, st =1 — Z = , (6)
p (11 p (1 — x)*
.I- ] . - . Baw 4
() = | —+  oxpthiain — 1 Plank Distribution, (1
: w | as the Eq.(2)




Plank Distribution

<Ny,> Isthe thermal equilibrium occupancy of phonon wavevector K
and polarization p

(n) =

Atlarge T, <n>~ linearinT
| <n>+%Y% ~(kgT)/ho
(<n>+ %) ho ~ KT, (2)
as in the classical limit

explhw/T) — 1

Fig. 1



The total energy of the phonons in a crystal is by summing over all phonon modes K, p

- - ~ - : -
(; =, >_J ‘\"_J (‘v}\'.,; cas >_.J :J <“K ;).>,I(UK.;J ’ (l)
N P A &

indexed by the phonon wave vector K,
We take < n > as the Plank distribution  and the polarization p

I
(n) = e (2)
explhw/7) — 1
e T T hm,\-’}, |
U=, 2, : : LR (8)
K p v.\p(h(u,\-‘,,/r) =1 Contributions from phonons only

Introducing D D (w) , the density of phonon modes (states) at polarization p of
frequency in the range from o to ® + dw

U = >_: f dw D, (w)

I

fiw

Let X=ha/kgT (9)
explhw/T) — 1 2aiel

2 where Cy = (aU/dl )y
X° exp x

NI -, .. |
Cra = kp 2, f do D)) 2 " Lattice Heat Capacit(y] Y
’)

exp x — 1)
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(1) For the density of states in one dimension :
(A) Fixed Boundary Condition

Consider a 1-dimensional line of N +1 atoms. Considering N = 10.
For fixed boundaries, the end atoms s =0, and 10 are held fixed, i.e. u; = 0.

- l‘ -

| o ’u b”N

Flg. 2 l.‘]\(‘d . “_‘_"‘ BT ey O~ _l SR ,_£_‘,;L,,W‘_.A_~_‘A "vl\l‘ll
p=4 ] 2 s = 10

The vibration takes up the form of a standing wave with the atomic displacement

u, = u(0) exp(—iwg ,,t) sin sKa (11)
The fixed boundary condition requires that at the end, u;,=0fors =0and s =N,
— s Fors =0, SinsKa=0.
s Fors=N,NKa=nxz, K=nz/Na=nz/L, wheren=1 to N-1.

T 27T 37T (N — 1) ,
I = S ety s o S : (12)

Fig. 3 [a ol —eer s =S e - - T 107 jnK space
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Showing the N -1 allowed values of K



29T 37T (N — 1)

A SV e e . (12)
! L / !
For K= x/L,
U, X Sin (-5'77'(1/1,) US:Ofor s=0ands=N (].32

ForK=K  ,=Na@L=xn/a, u,=0 foreach atom, hence this K is not
a valid solution

There are N -1 allowed values of K . And there are N -1 atoms allowed to move.

*** Eor the one dimensional line, there is one mode for each interval,
AK=zx/L

*** And the number of modes per unit range of K is L/x forK <z /a,
and itis zeroforK > zr/a, thus D(K)=L/x




(B) Periodic Boundary Conditions :

For an bounded medium, and require the solutions be periodic over a
large distance L, namely, u (sa) =u (sa+ L), where L =Na

We use the traveling wave solution

U, = u (0) exp [ i(sKa- w,t)]

The periodic boundary condition leads to
exp (isaK) = exp (isaK +iKL), then exp (iKL)=1,

KL=2Z2nz, K=Z2nz/L, nisinteger from O, to N/2

K =0 s 21T . 477 67T N7
JEMER Rl et s R RSt ) B

e

(14)

There is one mode for every interval AK =2#4lL.
For periodic boundary conditions, the number of modes per unit range of K
Is L/2x for —ala<K < afa, andis zero otherwise.

L kK i dw
Dw dow = — — dw = . = (15)
7 dw ™ dw/dK —_

Group velocity v,
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Figure 4 Consider N particles constrained to slide on a circular ring. The
particles can oscillate if connected by elastic springs. In a normal mode the
displacement u, of atom s will be of the form sin sKa or cos sKa: these are
independent modes. By the geometrical periodicity of the ring the bound-
ary condition is that uy, = u, for all s, so that NKa must be an integral
multiple of 277. For N = 8 the allowed independent values of K are 0.
2m/8a, 4m/8a, 6m/8a, and 87/8a. The value K = 0 is meaningless for the
sine form, because sin s0a = 0. The value 87/8¢ has a meaning only for
the cosine form, because sin (s8ma/8a) = sin sm = 0. The three other val-
ues of K are allowed for both the sine and cosine modes, giving a total of
eight allowed modes for the eight particles. Thus the periodic boundary
condition leads to one allowed mode per particle, exactly as for the fixed-
end boundary condition of Fig. 3. If we had taken the modes in the com-
plex form exp(isKa), the periodic boundary condition would lead to the

eight modes with K = 0, +27/Na, +4m/Na, *+67/Na, and 87/Na, as in
Eq. (14).




Periodic Boundary Condition for a 1-D Lattice

»— — S - = @ 5 . 2 9
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K —

Figure 5 Allowed values of wavevector K for periodic boundary conditions applied to a linear
lattice of periodicity N = 8 atoms on a line of length L. The K = 0 solution is the uniform mode.
The special points =N#/L represent only a single solution because exp(imrs) is identical to
exp(—ims); thus there are eight allowed modes, with displacements of the sth atom proportional to
1, exp(xims/4), exp(*ims/2), exp(xidws/4), explitrs).
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For a 2D square lattice [ e

Figure 6 Allowed values in Fourier space of the phonon wavevector K for a square lattice of lattice
constant a, with periodic boundary conditions applied over a square of side L = 10a. The unitorm
mode is marked with a cross. There is one allowed value of K per area (2m/10a)* = 27/L)%, so that
within the circle of area #K? the smoothed number of allowed points is aK*(L/27)°.
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(2) For the density of States in 3D:
Considering N3 primitive cells each of edge L

explilKex + Ky + K.2)l = explilK.(x + L) + Ky + L) + Kz + L)]} , (16)
27T 47T Nar

Ko K., K. =0 ; S T X o : SR QI : 17)

; L. L. L i

There is one allowed value of K per volume of (24/L)3 or

(,, F ).-; v Allowed value of K per unit volume of

T S K space. (18)

For a volume of a sphere of radius of K , the total number of modes of
wavevectors less than K is

N = (L/2m7)X47K>/3) (19)

The density of states for each polarization is

D(w) = dN/dw = (VK*127)dK/dw) . (20)
— (dN/dK) / (dK/d @)



" A
Debye Model for Density of States

In the Debye approximation, the velocity of sound is taken as a constant.
v Is the velocity of sound, this usually applies for small ® and small K ,
such as for the acoustic mode for an elastic continuum.

w = vK , (21)
N = (Vw3) / 612V after Eq. 19
Diw) = Vu™I27°v" . (22)

In the Debye model, we define a maximu cuttoff frequency ey ,
and a maximum cutoff wavevector Ky

Wi = 6" NIV . (23)
K = wplo = B NIV . (24)

The thermal energy of phonons in a crystal is

: gt Vo’ how |
U= f dw D(w)n(w)hew = J dw (2 = _.;)( e l) . (25)
\ ot ‘) P—

() Tr '\'
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Figure 4 Plot of w versus K. The region of K <€ 1/a or A > a corresponds to the contin-
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uum approximation; here w is directly proportional to K.
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Assuming phonon velocity v is independent of polarization for all three direction,
We can multiply a factor of three

3Vh [« w” IVksT* [* x |
U= : f dw = 2 f dx ; (26)
0 € 0

¢ ‘ / ¢ ‘
277.2[;\3 ho v _ l .271,2!:3,1.} (,.r k. l

where X = hay / KgT

Xp = flw,)/k,;'l' = Wil . (27)
We Define Debye temperature &
0= hay/kg
hie 67N\
0 =—- : (28)
RN WL
The total phonon energy is
'1‘ 3 " Xp l.fi
U = ONAgT\ — ’ ey (2¢
B ( H) ) lll Brr (2())
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'y = (oU/al )y- By differentiating the eq. (26) , we get

C VA J’ wy) ; w! M@ N ( i i )-’l [lu ]
= - e dw : = = ONKkg| — (dx
27‘__[_.5,\_“1 B S ((,I:m T - l 2 B O f

For large T, x is small, we can expand the integrand, and
C, = 3Nkg, since U =3NkgT inthe large T limit.

For low T, X IS approaching to infinity, thus in Eq. (29),

e

(e* — 1)*
l (30)

fdx X2

~ _'; 3 5 s
X O . St T
J dx = J d¥ 1" L exp(—sx) =6 2,
( () -

) g = | s= 1] I .S"
lzTTl , 1 2 ,1;
Cy = Nk (—— = 234 Nk (—
v = —— Nks |} ()

The Debye T2 Law for low temp
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A qualitative Approach of e Ko o Rk L
Deriving the Debye T3 Law | heKy = kaT

—~—
—
N
" ‘ >
~ =
o e e //

At temp T, the phonons modes )
are excited to have a wavevector K, 2 Fig. 10
with thermal energy kgT .

Of the allowed volume in K space, the fraction occupied by the excited modes
is of the order of (&;/a@p)® or (K{/Kp)3, where K; is the thermal wavevector
defined as hao= kgT, @ = Vv K.

hv K= kgT , and hvKgy= kg8

Thus the fraction occupied is (T/8)® of the total volume in the K space:
For 3N modes of energy KgT, we get U = 3NKgT (T/6)3,
and C,,~JdU/dT =12 NKyz(T/6)3 asthe T3 dependence



Einstein Model of Density of States

We have N oscillators of identical fequency w,,

D (w) = N o(w-w,)

Nt
U= Nnhw = hw{:w P (33)
(‘l ' —
o ((IU) - N (hw)z il 34
s a1 7/ g (g7 — 1)F i

At high T, x is << 1, C,, = 3N kg, as the Dulong and Petit value.

Atlow T, x is >>1, C,= exp (-halkgT)

D(w) ,

»
»

Q)
®g

This model usually applies to optical phonon modes where wis
nearly independent of K.
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Einstein Model for D(w) Optical phonon modes
D(w) - &
f | [ LS Optical phonon bran¢h
12C| + J
M, M
v ‘ p
| (2C/M,)"
\‘1 > \’3 :
(2CIM )

W

Acoustical
phonon branch
Figure 7 Optical and acoustical branches of the
dispersion relation for a diatomic linear lattice,
showing the limiting frequencies at K = 0 and T
K = K,,.« = ma. The lattice constant is a. a

This model usually applies to optical phonon modes,
where w is nearly independent of K.



Optical and Acoustic Branches of the
Dispersion for a Diatomic Linear Lattice

r:ﬂ l l }} Optical phonon branch

(2C/M5)'*?

\h > \ll
(2CIM )12

Acoustical
phonon branch

Figure 7 Optical and acoustical branches of the
dispersion relation tor a diatomic linear lattice,

showing the limiting frequencies at K = 0 and m
K = K.« = ma. The lattice constant is a. a



High T, Cy, =3NKkg
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Fig. 11 Experimental C,, vs T/ for diamond compared to the Einstein Model
' In dashed line
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General Expressions for D (w) :
As the density of states per unit frequency range at a given a(K)

For phonon frequency between w and o + dw

o e _
D(w) dw = — K . (35)
27/ Jihel

The integral is extended over the volume of shell in K space bounded between
two surfaces of constant frequency @ , and constant frequency @ + dw

The volume between the constant frequency surfaces w and o + dw is a right
cylinder of base dS_, and altitude dK

J d°K = f dS,,dK
ll('”

S

Where dK, is the perpendicular distance
between two constant frequency surfaces,
and dS,, is an element of area of the constant
frequency surface of @ in K space.
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Surface w + dw = constant

J’s;hell dSK - j dcylinders

=[ds, dK,

¢ Surface w = constunt
Fig. 13

The quantity dK, is the perpendicular distance between two constant
frequency surfaces @ , and o+ dw
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The gradient of w, which is Vi, is also normal to the surface @ constant,

and the quantity

IVko| dK, = dw
is the difference in frequency between the two surfaces connected by dK, .
Thus the element of the volume is

({w o IS (’(U
Ivl\'“)l s Ug |

ds.. dK;. =dS,

where v, = [Vxal is the magnitude of the group velocity of a phonon. For (35)

we have

B dS
Diw) dw = ( ) J : dw .

277 Up

P f(/Sw
D)= oy | 1)
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Near the brilllouin zone boundary,

D_ebye Model, @ = v K’.U 'S a constant, Vq Is approaching to zero, and the
It is a good approximation for small

. dispersion of @ vs K is very flat.
and for the accoustic mode, D (@) ~ & This leads to a peak in the D()

Diw) Dw) \

(97 )
(a) a / (b)

Fig. 14 cut off freq. Debye term

The density of states D (o) vs w for (a) the Debye Solid, (b) the a
The spectrum for the crystal structure starts as &7, but disconti
singular points (v,= 0)

ity develops at the

Known as the Van Hove Singularity
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Optical phonon branch

Near the zone boundary, alarge ~ —
population of stat_es in K apeakin 44
D(@), corresponding v, is zero. @ i

o = v K, acoustic mode

Figure 7 Optical and acoustical branches of the
dispersion relation for a diatomic linear lattice,

showing the limiting frequencies at K = 0 and
K = K.« = ma. The lattice constant is a.
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Harmonic interaction: Two phonon waves do not interact, no thermal expansion.
Anharmonic Crystal Interactions

The energy includes higher order terms than the quadratic (harmonic) term.
U3 =A exxeyyezz

Three phonon processes are caused by the third order terms in

the lattice potential energy.

Thermal Expansions:

i

> ] p

Ulx) = ex* —|gx —| Ix

U(x) I \ /

. Including anharmonic energy terms (35)

g : asymmetry of mutual repulsion interaction

f . softening of the vibration at large x

v
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By using the Boltzmann distribution, we calculate average displacement < x>
as the ratio of the following two terms:

J 7 dx x exp|—BU(x)]

o Rl
f dx exp[—BU(x)]

J dx x exp(—BU) : p=1/k,T
Ef([.t'[(%?([)(—ﬁ(‘_l" ] + qu +ﬁf\ = 37,-"-/4 )/Z)B 3/2

J dx exp(—BU) = [ dx vxp('—,B('.rz)? (7l Bc)'"* (39)
3 , -
(x) = — 5 ka] (KgT)? (40)

<x> is linear at higher T, but
<x> is~0 atverylow T
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Lattice constant of solid Argon as a function of temperature
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THERMAL CONDUCTIVITY

T ju as the flux of thermal energy transmitted
ju = —K . per unit time per unit area (41)
dx dT / dx is the temperature gradient

The transfer of thermal energy process is not a straight path, but a random
diffusion process with frequent collisions.
Ju=<N¢>c AT, <N;> isthe particle flux = n <v,> in the x direction
Here we introduce
AT =dT/dx €, =dT/dx v,z £ is the mean free path between collisions
7 is the average time between collisions

dT dT
iv=—n{tder — = —in(v®) cT — . (43)
: dx dx
II | = — ‘
l.l" o ( " _(__ ‘ et /=vr, C=nc (‘14)
" clx

= 3Cvuvf€ , Debye’s Expression for K (42)
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Table 2 Phonon mean free paths

[Calculated from (44), taking ¢ = 5 X 107 cm/sec as a representative sound velocity. The
£'s obtained in this wayv refer to umklapp processes. |

Crystal T, 50 C, in ] em *deg ™! K, in W cem 'deg™! ¢, in A

Quartz* 0 2.00 0.13 40
— 190 0.55 0.50 540

NaCl 0 1.88 0.07 23
- 190 1 .00 0.27 100

“Parallel to optic axis



The Thermal Resistivity of Phonon Gas

Phonon mean free path /¢
/ \

Crystal boundary scattering,
Lattice imperfections

Other phonon scattering

Purely harmonic interaction Anharmonic interactions with
third phonon
Atlow T
Z is limited by sample width D At high T, frequency of collisions <f>
A <f>a <N > ~KgT
b ¢ o 1f ac1/T

l
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Open end tube
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Figure 16a Flow of gas molecules in a state of drifting equilibrium down a long open tube with
frictionless walls. Elastic collision processes among the gas molecules do not change the momentum
or energy flux of the gas because in each collision the velocity of the center of mass of the colliding
particles and their energy remain unchanged. Thus energy is transported from left to right without
being driven by a temperature gradient. Therefore the thermal resistivity is zero and the thermal

» * ' . ~ .
conductivity is infinite.

J, Is finite, dT/dX = 0, thus the thermal conductivity K is infinite !
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Close end tube

y
- " v
MMJ‘M-L‘_—» s a nmedli bl i L

Hot | T R
Fig. 16b

Figure 16b The usual definition of thermal conductivity in a gas refers to a situation where no mass
flow is permitted. Here the tube is closed at both ends, preventing the escape or entrance of

molecules. With a temperature gradient the colliding pairs with above-average center of mass
velocities will tend to be directed to the right, those with below-average velocities will tend to be
directed to the left. A slight concentration gradient, high on the right, will be set up to enable the
net mass transport to be zero while allowing a net energy transport from the hot to the cold end.

Net energy tansfer = Ju is finite
>
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(A)For athree phonon collision process: the total momentum of the phonon
gas is not changed by such a collision.

K, + K = Ky G =0, the N process (45)
The total phonon momentum is conserved.
e ' o
J = > nghK (46)
K
(B) The Umklapp Process: the three phonon process that caused thermal
Resistivity,
X ; ; : G Is areciprocal lattice vector, o
Ki+ 8 = Ky + 6 , the U process (3.0)

The energy of phonons K, K; suitable for umklapp to occur is of the order

of 1kg0. because each of the phonons 1 and 2 must have wavevectors of the

order of 4G in order for the collision (47) to be possible.



Net flow of phonons

Phonon
source

The N Process

Figure 16¢ In a crystal we may arrange to create phonons chiefly at one end, as by illuminating the
left end with a lamp. From that end there will be a net flux of phonons toward the right end of the
crystal. If onlv N processes (K, + K, = K;) occur, the phonon flux is unchanged in momentum on
collision and some phonon flux will persist down the length of the crystal. On arrival of phonons at

the right end we can arrange in principle to convert most of their energy to radiation, thereby

creating a sink for the phonons. Just as in (a) the thermal resistivity is zero.

K=0



HORCE The U process Sink

Figure 16d In U Processes there is a large net change in phonon momentum in each collision
event. An initial net phonon tlux will rapidly decay as we move to the right. The ends may act as

sources and sinks. Net energy transport under a temperature gradient occurs as in (b)

Net energy transfer S

The momentum G, and the energy are transmitted to the crystal,
causing the temperature change.

J, = finite, dT/dx = finite.
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The Normal process The Umklapp process

In the first Brillouin zone

(a) (h

1 117

Figure 17 (a) Normal K, + K, = Ky and (b) umklapp K, + K, =K, + G phonon collision pro-

cesses in a two-dimensional square lattice. The square in each figure represents the first Brillouin

zone in the phonon K space; this zone contains all the possible independent values of the phonon
wavevector. Vectors K with arrowheads at the center of the zone represent phonons absorbed in

the collision process; those with arrowheads away from the center of the zone represent phonons
cmitted in the collision. We see in (b) that in the umklapp process the direction of the x-component
of the phonon flux has been reversed. The reciprocal lattice vector G as shown is of length 2m/a,
where ais the lattice constant of the crystal lattice, and is parallel to the K, axis. For all processes, N

or U, energy must be conserved, so that w, + w, = w,,
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Crystal imperfections:

We must consider scattering by erystal boundaries, the distribution of isotopic

masses in natural chemical elements, chemical impurities, lattice imperfec-

tions, and amorphous structures.

Athigh T, £~ 1T

At low T, Z~ D, limited by the sample width

Atlow T, C ~T3

K=CuD .

K varies as T3 at low T, and

displays a maximum feature due to
the temperature dependence of £.

| | I | |
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100 b—
<
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"g 10 |— 33
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1 | T | | | /\ |

| 2 3 10 20 S 100
Temperature, K
Figure 18 Thermal conductivity of a highly

purified ervstal of sodium Nuoride, after
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Figure 19 Isotope effect on thermal conduction in germanium, amounting to a lactor of three at

YOonatural germaninm is 20

the conductivity maximum. The enriched specimen is 96 percent Ge!
percent Ge™, 27 percent Ge™, 8 percent Ge™', 37 percent Ge™, and 8 percent Ge™™. Below 5 K
the enriched specimen has K = 0.060 T, which agrees well with Casimir’s theorv for thermal

resistance caused by boundary scattering. (After T H Geballe and G W Hull )
In an otherwise perfect crystal, the distribution of isotopes of the chemical
elements often provides an important mechanism for phonon scattering. The

random distribution of isotopic mass disturbs the periodicity of the density as

This leads to a significant increase in thermal conductivity



