
Chapter 5  

Phonons II  

Thermal Properties 



Plank Distribution  

Fig. 1 

< n k,p >   is the thermal equilibrium occupancy of phonon wavevector K  

and polarization p 



Quantization of Elastic Waves 

-- The energy of lattice vibration is quantized.  

-- The quantum of energy called a phonon, and  

    the quantum number is denoted as  n.  

-- The elastic waves in crystals are made of phonons. 

-- Thermal vibration in crystals are thermally excited phonons. 

 

The energy of an elastic mode of angular frequency w is 

 

 
when the mode is excited to quantum number n, that is,  

when the mode is occupied by n phonons.  

The term  ½  ћw  is the zero point energy of the mode.  



The Boltzmann factor 

Consider a situation where we have a set of identical oscillators in thermal  

Equilibrium,   

n -1 th 

nth quantum state 

n +1 th 
hw 

Compare the energy difference hw of  

the two adjacent quantum states to the  

thermal excitation energy kBT 

 

The ratio of the number of oscillators in  

their (n+1)th quantum state of  

excitation to the number in nth quantum  

state is  

The ratio of the number of oscillators in the Nth quantum state 

to the total number of oscillators is  

Nn  =  N0  exp (-nhw /t) 



Plank Distribution, 

as the Eq.(2) 

We let  x = exp (hw / kBT),  and t  = kBT,   the denominator becomes 

Then, the numerator is 

We compute the average excitation quantum number n of an oscillator to be 



Plank Distribution  

Fig. 1 

< n k,p >   is the thermal equilibrium occupancy of phonon wavevector K  

and polarization p 
At large T,   <n> ~  linear in T 

<n> + ½    ~ (kBT)/hw 

(<n> + ½  ) hw ~  kBT ,  

as in the classical limit 



The total energy of the phonons in a crystal is by summing over all phonon modes  K, p 

We take < n > as the Plank distribution 

Introducing D p (w) , the density of phonon modes (states) at polarization p of  

frequency in the range  from w  to w + dw 

where   
 

Lattice Heat Capacity 

indexed by the phonon wave vector K, 

and the polarization p 

Let X = hw / kBT 

Contributions from phonons only 



Fig. 2 

(1) For the density of states in one dimension :  
 (A) Fixed Boundary Condition 

Consider a 1-dimensional line of N +1 atoms.   Considering  N = 10.   

For fixed boundaries, the end atoms s = 0, and 10  are held fixed, i.e. us = 0.  

The vibration takes up the form of a standing wave with the atomic displacement 

The fixed boundary condition requires that at the end, us = 0 for s = 0 and s = N, 

              For s = 0,  Sin sKa = 0.   

              For s = N, NKa = n p ,   K= np / Na = np / L ,  where n = 1  to  N-1.   

Fig. 3 

Showing  the N -1 allowed values of K 

in K space 



*** For the one dimensional line, there is one mode for each interval,  

      K = p / L 

 

*** And the number of modes per unit range of K  is  L/p  for K < p / a ,  

     and it is zero for K > p /a,   thus   D(K) = L /p 

For K = K max= Np/ L = p / a ,   us = 0  for each atom , hence this K is not 

a valid solution 

For K =  p / L,  

 us = 0 for  s = 0 and s = N  

There are N -1 allowed values of K .  And there are N -1 atoms allowed to move. 



(B) Periodic Boundary Conditions : 

 

For an bounded medium, and require the solutions be periodic over a 

large distance L, namely,  u (sa) = u (sa + L), where  L = Na 

We use the traveling wave solution  

Us = u (0) exp [ i(sKa- wkt)] 

 

The periodic boundary condition leads to  

exp (isaK) = exp (isaK + iKL),  then  exp (iKL ) = 1 ,  

 

                 KL = ± 2np ,     K = ± 2np / L,  n is integer from 0, to N/2 

There is one mode for every interval      K = 2p/L.    

For periodic boundary conditions, the number of modes per unit range of K  

is   L/ 2p,   for  –p/a < K < p/a,   and is zero otherwise.   

Group velocity g 





Periodic Boundary Condition for a 1-D Lattice 



Fig. 6 

For a 2D square lattice 



(2) For the density of States in 3D:  
Considering  N3 primitive cells each of edge L 

There is one allowed value of  K  per volume of  (2p/L)3  or  

Allowed value of K per unit volume of  

K space. 

For a volume of a sphere of radius of K , the total number of modes of  

wavevectors less than K  is 

The density of states for each polarization is  

=  (dN/dK) / (dK/dw) 



Debye Model for Density of States 

 In the Debye approximation, the velocity of sound is taken as a constant.   
  is the velocity of sound, this usually applies for small w and small K , 

such as for the acoustic mode for an elastic continuum. 

N = (Vw3) / 6p2v3 

In the Debye model, we define a maximu cuttoff frequency wD ,  

and a maximum cutoff wavevector KD 

The thermal energy of phonons in a crystal is  

after Eq. 19  



w  vs k  Dispersion for Monoatomic Lattice 

Linear 



Assuming phonon velocity  is independent of polarization for all three direction,  

We can multiply a factor of three  

where x = hwD / kBT 

q = hwD /kB 

We Define  Debye temperature  q 

The total phonon energy is   



By differentiating the eq. (26) , we get 

For large T,  x is small, we can expand the integrand, and  

Cv = 3NkB ,  since U = 3NkBT  in the large T limit. 

 

For low T,  xD  is approaching to infinity, thus in Eq. (29), 

∫dx X2 

The Debye T3 Law for low temp 



Fig. 7 

, CV ~T3 term  

CV 

3 N kB 

At  t/q < 0.1 



Fig. 8 



Fig. 9 
The low temperature heat capacity of solid Argon linear dependence 

of T3 



Fig. 10 

Of the allowed volume in K space, the fraction occupied by the excited modes 

 is of the order of (wT/wD)3 or (KT/KD)3, where KT is the thermal wavevector  

defined as  hwT= kBT,  wT = v KT.      

 

          hv KT  =  kBT   ,  and    hv KD =  kBq 
 
Thus the fraction occupied is  (T/q)3  of the total volume in the K space.   

For 3N  modes of energy KBT, we get   U = 3NKBT (T/q)3,  

and     CV ~  U/ T = 12 NKB(T/q)3    as the T3 dependence 

A qualitative Approach of 

Deriving the Debye T3 Law 

At temp T, the phonons modes  

are excited to have a wavevector KT , 

with thermal energy kBT . 



Einstein Model of Density of States 

D (w) = N d(w-wo) We have N oscillators of identical fequency wo,  

At high T, x is << 1, CV  = 3N kB,  as the Dulong and Petit value. 

 

At low T, x is >>1 , CV =  exp (-hw/kBT)  

This model usually applies to optical phonon modes where w is  

nearly independent of K. 

wo 

D(w) 

w 



wo 

D(w) 

w 

This model usually applies to optical phonon modes, 

where w is nearly independent of K. 

Optical phonon modes Einstein Model for D(w)  



Optical and Acoustic Branches of the  
Dispersion for a Diatomic Linear Lattice 



Fig. 11 Experimental CV  vs  T/q  for diamond compared to the Einstein Model 

In dashed line  

Low T,  CV =  exp (-hw /kBT) 

 

High T , CV  = 3NkB 



Fig. 12 

General Expressions for D (w) : 

As the density of states per unit frequency range at a given w(K)  

For phonon frequency between w and w + dw 

The integral is extended over the volume of shell in K space bounded between  

two surfaces of constant frequency w , and constant frequency w + dw 

The volume between the constant frequency surfaces w and w + dw  is a right  

cylinder of base dSw, and altitude dK 

Where dK is the perpendicular distance  

between two constant frequency surfaces,  

and dSw is an element of area of the constant  

frequency surface of w  in K space.  



Fig. 13 

The quantity dK is the perpendicular distance between two constant  

frequency surfaces w  , and w + dw  

dSw 

 shell d
3K  =  dcylinders 

 

 

                     =  dSw dK 
 





Fig. 14 

The density of states D (w) vs w for (a) the Debye Solid, (b) the actual solid.   

The spectrum for the crystal structure starts as w2 , but discontinuity develops at the 

singular points (g= 0) 

Known as the Van Hove Singularity 

Debye Model, w =  K,   is a constant, 

It is a good approximation for small w  

and for the accoustic mode, D (w) ~ w2 

Near the brilllouin zone boundary, 

vg  is approaching to zero, and the 

dispersion of w  vs K is very flat.   

This leads to a peak in the D(w) 

Debye term 

wD 

cut off freq. 

w0 



w =  K, acoustic mode 

w 
w + dw 

Near the zone boundary, a large  

population of states in K, a peak in 

D(w), corresponding g is zero.  

g is zero  
g 

At zone boundary 

K   K + dK 



 

 Anharmonic Crystal Interactions 

The energy includes higher order terms than the quadratic (harmonic) term. 

                                              U3 = A exxeyyezz  

Three phonon processes are caused by the third order terms in  

the lattice potential energy. 

Thermal Expansions:   

g : asymmetry of mutual repulsion interaction 

 

f : softening of the vibration at large x 

U(x) 

0 

Including anharmonic energy terms 

x 

    Harmonic interaction: Two phonon waves do not interact, no thermal expansion.  



<x>  is linear at higher T, but 

<x>  is ~0  at very low T 

By using the Boltzmann distribution, we calculate average displacement < x>  

as the ratio of the following two terms:  

 

 = 1/ kBT 

(kBT)2 



Fig. 15 Lattice constant of solid Argon as a function of temperature 



THERMAL CONDUCTIVITY 

jU  as the flux of thermal energy transmitted  

per unit time per unit area 

dT / dx is the temperature gradient 

The transfer of thermal energy process is not a straight path, but a random 

diffusion process with frequent collisions. 

jU = <Nf> c T ,    <Nf>  is the particle flux =  n < vx>  in the x direction 

Here we introduce 

T = dT/dx łx = dT/dx vxt      łx is the mean free path between collisions 

                                                    t  is the average time between collisions 

let   l = vt ,   C= nc 

Debye’s Expression for K 





Phonon mean free path  l 

Purely harmonic interaction  

Crystal boundary scattering, 

Lattice imperfections 
Other phonon scattering 

Anharmonic interactions with  

third phonon 

At high T, frequency of collisions <f> 

<f>   <N >  ~ KBT 

l    1/f  1/T 

 

The Thermal Resistivity of Phonon Gas 

 

At low T 

l  is limited by sample width D 

l 

T 

D 



Fig. 16a 

Open end tube 

Ju is finite, dT/dX = 0, thus the thermal conductivity K is infinite ! 

Hot Hot 



Fig. 16b 

Close end tube 

Hot Cold 

Net energy tansfer = Ju is finite  



(A)For a three phonon collision process:  the total momentum of the phonon  

gas is not changed by such a collision.   

The total phonon momentum is conserved.   

(B) The Umklapp Process: the three phonon process that caused thermal  

Resistivity,  

G is a reciprocal lattice vector, 

the U process  

   G = 0,        the N  process 



Fig. 16c 

The  N  Process 

Shine light on  

K = 0 



Fig. 16d 

The  U  process 

The momentum G, and the energy are transmitted to the crystal, 

causing the temperature change. 

 

                         Ju = finite,   dT/dx = finite. 

source sink 

Net energy transfer 



The Normal process The Umklapp process 

In the first Brillouin zone 



Crystal imperfections:  

At high T, l ~ 1/T  

 

At low  T, l ~ D, limited by the sample width 

 

At low T, C ~T3 

 
 

K  varies as T3 at low T, and  

displays a maximum feature due to  

the temperature dependence of ł . 

 

 

T3 1/T 



This leads to a significant increase in thermal conductivity 

Isotope effect increases  

the thermal conductivity 

by a factor of 2-3. 

Ge 


