Chapter 6

Free Electron Fermi Gas
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Free electron model:

* The valence electrons of the constituent atoms become conduction
electrons and move about freely through the volume of the metal.

* The simplest metals are the alkali metals— lithium, sodium, potassium, Na,
cesium, and rubidium.

* The classical theory had several conspicuous successes, notably the
derivation of the form of Ohm’s law and the relation between the electrical and
thermal conductivity.

* The classical theory fails to explain the heat capacity and the magnetic
susceptibility of the conduction electrons. M =y B

* Why the electrons in a metal can move so freely without much deflections?

(a) A conduction electron is not deflected by ion cores arranged on a periodic
lattice, because matter waves propagate freely in a periodic structure.

(b) A conduction electron is scattered only infrequently by other conduction
electrons.

Pauli exclusion principle.

Free Electron Fermi Gas:a gas of free electrons subject to the Pauli Principle
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ELECTRON GAS MODEL IN METALS

Valence electrons form the electron gas
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Figure 1.1
(a) Schematic picture of an isolated atom (not to scale). (b) In a metal the nucleus and ion

core retain their configuration in the free atom, but the valence electrons leave the atom to
form the electron gas.



Sodium

Na : simple metal

3s valence electron
Atomic core 1s22s22P6

Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na* ions; they are
immersed in a sea of conduction electrons. The conduction electrons are derived from the 3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration

15°2572p% In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the
total volume of the crystal, but in a noble metal (Cu, Ag, Au) the atomic cores are relatively larger
and may be in contact with each other. The common crystal structure at room temperature is bee
for the alkali metals and fee for the noble metals.




Classical Theory

Drude Model, 1900AD, after Thompson’s discovery of electrons in 1897

Based on the concept of kinetic theory of neutral dilute ideal gas
Apply to the dense electrons in metals by the free electron gas picture

Classical Statistical Mechanics: Boltzmann Maxwell Distribution
The number of electrons per unit volume with velocity in the range dv about v

fa(v) = n (M/ 22k;T)32 exp (-mu?/2kgT)

Success:

(1) The Ohm’s Law
the electrical conductivity
J=0cE, o=ne?r/m,

(2) The Weidmann Frantz Law
Ke/ o, T=L ~a constant

Since K=1/3v2C, 7
/

Failure:

(1) Heat capacity C,~ 3/2 NKg

The observed heat capacity is only 0.01
too small.

(2) The observed thermal power Q is also
only ~0.01,as Q =-C,/3ne

(3) Magnetic susceptibility y is incorrect.

“

See Ashroft & Mermin, Ch. 1

(TF IT) —100 times:; 0.01 times‘—(T/TF)




Thermal Electrical Effect. (Seeback Effect)

As a temperature gradient is applied to a long thin bar,
it should be accompanied by an electrical field directed
opposite to the temperature gradient

E=QVT
—
E as the thermal electric field Q as the thermal power
Q=E/VT _
=-C,/(3ne) See Ashcroft Mermin, Chapter 1,

p. 24-25

As in Drude moZl, C, and Q are 100 times too small !
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Drude Model

*** Basic approximations:

(1) Between collisions:
-- Neglect electron - ion core interaction --- Free electron approximation
-- Neglect electron - electron interaction --- Independent electron approximation

(2) During collisions:
-- Assuming electrons bouncing off the ion core
-- Assuming some form of scattering

(3) Relaxation time approximation:
-- Collision mean free time ~
-- Independent of electron position and velocity

(4) The collisions are assumed to maintain the thermal equilibrium



Na : simple metal

Core ~15% in volume

Figure 1 Schematic model of a crystal of sodium metal. The atomic cores are Na* ions; they are

immersed in a sea of conduction electrons. The conduction electrons are derived from the_3s
valence electrons of the free atoms. The atomic cores contain 10 electrons in the configuration

15°2572p% In an alkali metal the atomic cores occupy a relatively small part (~15 percent) of the

total volume of the crystal, but in a noble metal (Cu, Ag, Au) the atomic cores are relatively larger

and may be in contact with each other. The common crystal structure at room temperature is bee

for the alkali metals and fee for the noble metals.
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Free Electron Gas Model (Sommerfeld) :
Quantum Statistical Mechanics:

The Pauli exclusion principle requires that the replacement of
Maxwell Boltzmann distribution with the Fermi Dirac distribution as

. I
(€) = - - — |
!. I'.'\[][l:lf = ’L.[J'I.J\.H.ff + I E

——

hat
™

**Can still use the dilute, neutral gas, kinetic picture as in the classical case.

** Justifications:

» One can still describe the motion of an electron classically,

If we can specify its positions and momentum as accurately as possible without
violating the Heisenberg uncertainty principle.

» One is able to specify the position of an electron on a scale small compared
with a distance A over which the field or temperature varies.
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Free Electron Gas Model (Sommerfeld) :

Success:

» Resolve the heat capacity anomaly

= Give correct C,, , thermal power, consistent with the experiments for
simple metals

» Good at low T, room T, but not at medium T for noble metals?
transition metals?

Approximations:
» Neglect the effect of ions between collisions.

» The role of ions as a source of collision is unspecified.
= The contribution of ions to the physical phenomenon is not included.

Ashroft & Mermin: Chapter 2



fus= exp (-mv2/2KgT)

Figure 2.1
(a) The Maxwell-Boltzmann and Fermi-Dirac distributions for typical metallic densities

at room temperature. WWM& The scale
is the same for both ns, and has been normalized so that the Fermi-Dirac
distribution approaches 1 at low energies. Below room temperature the differences between
the two distributions are even more marked. (b) A view of that part of (a) between x = 0
and x = 10. The x-axis has been stretched by about a factor of 10, and the f~axis has been

compressed by about 500 to get all of the Maxwell-Boltzmann distribution in the figure.
On this scale the graph of the Fermi-Dirac distribution s indistinguishable from the x-axis.
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-=EERRENEIettron Gas in One Dimension

Quantum Theory and Pauli Principle
Electron of mass M, in a 1-D line of length L confined to an infinite barrier

The wavefunction ¢,(x) of the electron is a solution of the Schrodinger equation
Hip = efs; with the neglect of potential energy
we have # = p*/2m, where p is the momentum. In quantum theory p may be
represented by —ih d/dx, so that
h®  d?y,
2m dx?
the term orbital - each orbital is a solution of a wave equation for one electron.

The boundary conditions are ¢,,(0) = 0; ¢, (L) = 0, as imposed by the infinite
potential energy barriers.

Hl#'l — = e E!-I re * { l }

Fixed boundary Conditions Standing wave solution
2
P, = £;sin (ﬁ_nt) . IN(,/2) =L L(iﬁr)="ﬂ_ K=nz/L
_a s BW dys, ( nn') ( nw ) d*y,, ( nmw )2 ( na )
n J'i E—x = OIS . . = - i g
¥ A sin I X s A I Ccos L X) = pE A 3 sin L x) ,
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the Paul exclusion principle no two electrons can have all their quantum numbers identical.

In a linear solid the gquantum numbers of a conduction electron orbital are

n and m,, where n is any positive integer and the magnetic quantum number
m, = =31, according to spin orientation.

Electron Electron
n m, occupancy n m, occupancy
1 1 | 3 T |
1 l 1 3 ! 1
2 1 1 4 1 0
2 | 1 4 l 0
degeneracy.

Let ng denote the topmost filled energy level,

The condition 2nr = N determines ng| the value of n for the uppermost filled level.

Fermi energy € o= (“F'ﬂ')ﬂ h* (Nw)z
! L 2m \ 2L

: 2m -
Fermi wavevector k.

Fermi Temperature T



L3T)=nm  or N(Ay2)= L

SO A, =2L/N o

Figure 2 First three energy levels and waves ™
functions of a free electron of mass m confined *
to a line of length L. The energy levels are
labeled according to the quantum number n
which gives the number of half-wavelengths
in the wavefunction. The wavelengths are
indicated on the wavefunctions. The energy

€, of the level of quantum number n is equal
to (h*2m)(n/2L)* 72
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——=—Energy levels

w— W avefunctions,
relative scale
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Quantum number, n
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EFFECT OF TEMPERATURE ON THE FERMI-DIRAC DISTRIBUTION
Ground State : at absolute zero temperature, how about for T>0 ?

The Fermi-Dirac distribution: the probability that an orbital at energy € will
be occupied in an ideal electron gas in thermal equilibrium:

I
fle) = expl(e = wVkgT] + 1 ~ )

£=&atT=0
1. At absolute zero . = €5, because in the limit T— 0 the function f(€)

changes discontinuously from the value 1 (filled) to the value 0 (empty) at € = € = p.

2 At all temperatures f(€) is equal to } when € = p, for then the denominator of (5)
has the value 2.

3. The quantity u is the chemical potential (TP, Chapter 5), and we see that
at absolute zero the chemical potential is equal to the Fermi energy

4. whiche—p > kgT;  so that f(e) = expl(p — €/ksT].

This limit is called the Boltzmann or Maxwell distribution.

Chemical Potential « is a function of T, and « is such that /D(¢) f(¢) de = N
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Fermi Dirac Distribution Function fle) = 1 ‘
expl(e = w/ksT] + 1
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Figure 3 Fermi-Dirac distribution function at various temperatures, for Ty =¢€/kg = 50,000 K
The results apply to a gas in three dimensions. The total number of particles is constant, indepen-
dent of temperature. The chemical potential at each temperature may be read off the graph as the
energy at which f= 0.5,



Figure 2.3

The Fermi function, f(§) =
[ ™ + 1] versus & for
given p, at (@) T=0 and
(b) T = 0.01u (of order room
temperature, at typical me-
tallic densities). The two
curves differ only in a region
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FREE ELECTRON GAS IN THREE DIMENSIONS

A (L )i = @t )
2m \ ax* dy* az2 /"™ . '
(1) For electrons confined to a cubic of edge L standing wave k=n z/L
Y(r) = A sin (7nx/L) sin (7n,y/L) sin (7rn.z/L) , (7)
(2) Periodic boundary conditions
Ux+ L,y z)=¥x, vy, z) , (8)

Wavefunctions satisfying the free particle Schrédinger equation and the
periodicity condition are of the formr of a_traveling plane wave:

n(r) = exp (ik - r) , > Exp (ikl—) =1 (92)
k=+n2xn/L

2 +-11T
E T Tk °

and similarly for &, and k.. Any component of k is of the form 2n#/L,

k=0: = (10)

explik,(x + L)] = exp|i2nm{x + L)L)}

= exp(i2nmx/L) exp(i2nm) = exp(i2nmx/L) = explik.x) .

(11)
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Fermi Sphere k.
Fermi Surface At the surface & , K;

Figure 4 In the ground state of a system of N free (lt.‘(\A

trons the occupied orbitals of the system fill a sphere of
radius ky, where € = #%k3/2m is the energy of an electron

_~Fermi surface,
al enerey
€

having a wavevector k; k,

e—ﬁ2k2— ﬁz(k2+k2+k2) 12
¥ 2m 2m . 2 2)

k,

the operator p = —ihV, Linear momentum operator
_Pr) = —ihVi(r) = hkia(r) . (13)

so that the plane wave Jj _is an eigenfunction of the linear momentum wi eigenvalue fik.

In the ground state of a system of N free electrons the occupied orbitals
may be represented as points inside a sphere in k space.

R .
2 k¥ - At the Fermi surface & , k;

Lt (14)
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there is one allowed wavevector—that is. one dis-

tinct triplet of quantum numbers k,, k,, k.—for the volume element (27/L)” of
k space. Thus in the sphere of volume 47k}/3 the total number of orbitals is

47ki/3 V
2 GlP ~am N =

where the factor 2 on the left comes from the two allowed values of m,, the spin quantum number,

ke = ( 37:/2‘\? )m ; (16)

N (3:&\7 )“ I

= 2m | %4 (17)
hk h 37N |13
Up = ) - ) ) 2 (18)
m m Vv

&, Kg, T See table 1
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the number of orbitals per unit energy range, D(e), called the density of states.

V [2me\**
- ()

(19)

From eq. 17 =32\ 52
~dN ) 3
PO="2 " 27 (f:*) ;
3
In N =—In € + constant ; Lo
2 N
dN 3N
D BE e—— i e—
L

Figure 5 Density of single-particle states as a function
of energy, for a free electron gas in three dimensions.
The dashed curve represents the density fle, T)D(e) of
filled orbitals at a finite temperature, but such that kT
is small in comparison with €. The shaded area repre-
sents the filled orbitals at absolute zero. The average
energy is increased when the temperature is increased
from 0 to T, for electrons are thermally excited from

region 1 to region 2.

Density of orbitals, relative scale

@ In 3-dimension

aT =0, D)~ E2

kT —=

f(& 1) D(e)

4

Energy, ¢ —
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Heat Capacity of the Electron Gas

Classical theory, C, = 3/2 NKg

But the observed electronic contribu-tion at room temperature is usually less than 0.01 of this value.

The question was answered

only upon the discovery of the Pauli exclusion principle and the Fermi distribition function.

Figure 2.3
iy s=/0 The,hrml function, f(§) =
10 1[&* + 1] versus & for
given p, at (a) T=0 and
c (b) T = 0.01y (of order room
u 3 temperature, at typical me-
() tallic densities). The two
curves differ only 1n a region
/ T>0 of order k, T about pu.
10 y
\%
Do
“ ) I~
®) it AN ~ N (T/Tp), AU ~ N (T/Tp) KgT
(AE~ kD)
electronic heat capacity €, = gU/aT = Nkg(T/T¢) X 2 (23)

At room temperature C,; is smaller than the classical value $Nkp by a factor
of the order of 0.01 or less, for T ~ 5 x 10* K. T/TF ~0.01
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The total energy increase for heating from T=0 to T

= € — SinceatT=0,f (& =1
AU = U(T) — U(0) AU = J; de eD(e) f(e) — J; de eD(e) . for &< & (24)
We multiply the identity /
N =j de D (16 D(e (25)
0
by €z to obtain
( f g j ) de exfle)D(e) = f " de ezD(e) . (26)
0 & 0
AU = I d?(e — €x)fle)D(e) + f de(ep — Te )1 — f(e)]D(e) . (27)
€ 0
The first integral on the right-hand side The second integral gives the energy
of (27) gives the energy needed to take needed to bring the electrons to €
electrons from € to the orbitals of energy € > & from orbitals below €. &< &
dU - df
g =——= le(e — 28
Ca=—r . i ele — €p)— - Dle ) . (28)

Since only f (¢) is temperature dependent
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Figure 6 Temperature dependence of the
energy of a noninteracting fermion gas in
three dimensions. The energy is plotted in
normalized form as AU/Neg, where N is the
number of electrons. The temperature is
plotted as kyT/e,.
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KeT ~ aor—

Figure 7 Plot of the chemical potential p versus temperature kg7 for a gas of noninteracting
fermions in three dimensions. For convenience in plotting, the units of g and kg7 are 0.763€;.

105

U is determined by
satisfying /D(¢) f(e) de= N

. Atvery low T, limu = E,

e For the 3-D case, see Ashcroft
& Mermin, P. 45-47
u=«& [ 1-1/3 (akgT/12&)7]

vt ! L« For the 2-D case, see Kittel
: = ** problem 6.3
S=KT /&
Figure 8 Variation with temperature of the chemical potential 1, for free electron Fermi gases in

one and three dimensions. In common metals 7/e; = 0.01 at room temperature, so that u is closely

equal to €¢. These curves were calculated from series expansions of the integral for the number of
particles in the system.

1-D

One dimension

Three dimensions -

3-D
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(€ — €g) dfIdT has large positive peaks at energies near €. It is a good
approximation to evaluate the density of states D(e) at €7 and take it outside of
the integral: when kT < € we ignore the temperature dependence of the

chemical potential p in the Fermi-Dirac distribution function and replace p by

the constant €x. + = kzT, At very low T, &}ﬂ u= EF
df _ € —. €F expl(e — €x)/7] - (30)
dr v {expl(e — e€x)/7] + 1}
x = (e — €F)/T (31)
C.i=ksT Die;) Jt dx 1‘2—51— ; (32)
—& T (gl + ”2

We may safely replace the lower limit by —o because | &/ 7>> 1

- g & B T
J;I d.'l‘.l (.g"‘ T 1}2 = 3 : {33}
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heat capacity of an electron gas is

Cua = 47 D(ep)kET .
D(EF) — SNfEEF — 3Nf2k5Tf. [35}

CIT, in m}/mol-K*

Cﬂ‘ e iﬂENkHTJ"TF .

Tg is called the Fermi temperature,

3.0

(34)

(36) Compare with C,,= 2NkgT/T,
where & = KgTe

i CIT=2.08+257 T «_ ./-/.
ol g e Figure D Experimental heat capacity values
i L i, : [Aftes W. H.
B ‘..’..,.,o- K metal for potassium, plotted as C/T versus T2, (Alter W, |
/’ Lien and N. E. Phillips.)
20 | = =
0 01 02 03
T in K*
Y = }a*NkgT/Te Since € = T = 1/m Sy xm (See Eq. 17)

At temperatures much below both the Debye temperature and the Fermi
temperature, the heat capacity of metals may be written as the sum of electron
and phonon contributions: C = yT' + AT

CIT =y + AT? ,

y, called the Sommerfeld parameter

(37)

At low T, the electronic term dominates
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express the ratio of the observed to the free electron values of the electronic heat capacity as a ratio

Of a thermal elfective mass m,, to the electron mass m, where my, is defined

My _ yYlobserved) | 38)
m yfree)

See Table 2
The departure from unity involves three separate effects:

’

A The interaction of the conduction electrons with the periodic potential of the rigid crystal
lattice band effective mass

B: The interaction of the conduction electrons with phonons.

L C: The interaction of the conduction electrons with themselves.

Heavy Fermions |The heavy fermion compounds include UBe,;, CeAl,, and CeCuySis,.

f electrons in these com pounds may have inertial masses as high as 1000 m, because of the weak

cover lap of wavelunctions of [ electrons on neighboring ions  (tight binding model)



ELECTRICAL CONDUCTIVITY AND OHM'S LAW

In an electrical field E , magnetic field B, the force F on an electron ,
the Newton second law of motion becomes

q=-€
- : dv dk |
(CGS) =m—=h—=—e|E+—vxB) . (39)
dt dt C
In the absence of collisions the Fermi sphere (Fig. 10) in k space is displaced at
a uniform rate by a constant applied electric field.
First considering B =0, in zero magnetic field
kit) — ki0) = —eEt/h . (40)
If the field is applied at time t then at a later time ¢ the sphere will be

displaced to a new center at

ok = —eEt/h . (41)



At the ground state

he displacement of Fermi sphere
Under force F

Fermi sphere 1
at time 1 =0 o
. -
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Figure 10 (a) The Fermi sphere encloses the occupied electron orbitals in k space in the ground
state of the electron gas. The net momentum is zero, because for every orbital k there is an
occupied orbital at —k. (b) Under the influence of a constant force F acting for a time interval ¢
every orbital has its k vector increased by 8k = Ft/h. This is equivalent to a displacement of the
whole Fermi sphere by 8k. The total momentum is_ NA8k. if there are N electrons present. The

(a)

th)

application of the force increases the energy of the system by N(A5k)/2m.
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If collision time is 7, the displacement of the Fermi sphere in the steady state
is given by (41) with t = 7. The incremental velocity is v =—eE7/m.

q=-e
j = ngv = ne"rE/m . (42)

electrical conductivity o is defined by j = ¢E, so that

Conductivity 2
.. Ohm’s Law (43)

m

g ctivity o i defined as the reciproc ' tivity,
electrical resistivity p is defined as the reciprocal of the conductivit S sl 2

Resistivit 2 .
4 p = m/ne’t . (44)
r=2% 107" s at 4 K. The mean free path € of a condue-
tion electron is defined as € = g1, (45)

v is the velocity at the Fermi surface,

we have vp = 1.57 X 10° em s~ for Cu
€4 K)=03cm ; €300 K)=3x 10" em .
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Experimental Electrical Resistivity of Metals

The electrical resistivity of most metals is dominated at room temperature
(300 K) by collisions of the conduction electrons with lattice phonons and at
liquid helium temperature (4 K) by collisions with impurity atoms and mechan-

ical imperfections in the lattice (Fig. 11). To a good approximation the rates are
Lattlcezphonons often independent.
1 1 . 1 Imperfections  And can be summed together
— T — — [ b ]

T TL, Ti

where 7, and 7, are the collision times for scattering by phonons and by imperfections, respectively.

The net resistivity is given by

p=p.+p, Since p~1/ 7 (47)

Often p;. is independent of the number of defects when their concentration is small,

and often p; is independent of temperature.

This empirical observation expresses Matthiessen’s Rule.
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The residual resistivity, p/(0), is the extrapolated resistivity at 0 K because

py. vanishes as T — 0. The lattice resistivity, p,(T) = p — p{0), is the same for

different specimens of a metal, even though p(0) may itself vary widely.

p (T) A )

Figure 11 Electrical resistivity inMmost metals arises from Collisions of/electrons with irregularities
in the lattice, as in (a) by phonons and in (b) by impurities and vacant lattice sites.

Resistivity Ratio = p (300K)/ p.(0)

resistivity ratio of a specimen is usually defined as the ratio of its resistivity at
room temperature to its residual resistivity. It is a convenient approximate

indicator of sample purity



60
Potassium metal
AtT> 6
i R p oC T

Different p (0) but the same p

AN

Relative reststancy
?

Figure 12 Resistance of potassium below
20 K, as measured on two specimens by

D. MacDonald and K. Mendelssohn. The dif- e

ferent intercepts at 0 K are attributed to dif- 10 L 1 | |
ferent concentrations of impurities and static 0 5 10 15 20
imperfections in the two specimens. Temperature, K

The temperature-dependent part of the electrical resistivity is propor-
tional to the rate at which an electron collides with thermal phonons

One simple limit is at temperatures over the Debye temperature 0.
here the phonon concentration is proportional to the temperature T, so that p = T for T > 0.

Ny ¢ T poec T
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Umklapp Scattering

Umklapp scattering of electrons by phonons (Chapter 5) accounts for most
of the electrical resistivity of metals at low temperatures. These are electron-
phonon scattering processes in which a reciprocal lattice vector G is involved,

the normal electron-phonon collision k' =k + q, Normal process
This scattering is an umklapp process, k'=k+q+ G Umklapp process

At low enough temperatures the number of phonons available for umklapp scattering falls as

[?KI}{ v E;UfT},

q,, 8, related to the geometry of - G
the Fermi surface

Figure 13 Two Fermi spheres in adjacent zones: a
construction to show the role of phonon umklapp
processes in electrical resistivity. o

Bloch obtained an analytic result for the normal scattering, with p, = T%/6°

at very low temperatures. Bloch’s T° Law



" &l MOTION IN MAGNETIC FIELDS

The free particle acceleration term is (hd/dt) 8k and the effect of collisions (the
friction) is represented by A8k/r, where 7 is the collision time.

The equation of motion is

1
F = —e<E+?va) . (49)
{ 1
ﬁ(.(— £ _) 5k = F : (48) TSR3 5 3y T TN A e 1
dt 7 F=eE4vxn)
mV = hK
d 1 1
m—-!-—)v=—e Et+—viB] . (50)
dt T c
(CGS) (i i l) = —e(E et )
m g7 : Oy =0y
d 1 B -
m (-———- + -—-) v, = —(’(E,, - —u,) : (51)
dt T y c
d 1 )
— 4+ —)v. = —¢eE. .
m( 5 - U- eE.

Ina steady state in a static electric field the time derivatives are zero,

er
Oy = ——— B, =0
m

eT

eT
Oy=— b, F wav; ; O, = ——F_ (52)

m m

w. = eB/mec is the cyclotron frequency,
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Hall Effect

The Hall field is the electric field developed across two faces of a conductor,

in the direction of jx B

If current cannot flow out of the rod in the y

direction we must have 8p, = 0. and V, =0

- " BT
transverse electric field E = —wrE, = -"E. . (53)
¥ : me Bz
‘ eBT
(SI) E, = ~w7E, = ———E,
o x ™ g
E/ o Ex
= : e E, When the transverse field E,
Hall coefficient. "= ;B | (Hall field) balances the Lorentz force
H;_jll resistance, ne Ey =e jx B
(CGS) R eB7TE /mc ] (55)
A S = : (B 19)
. ne*7E B/m nec
(SI) Ry = 4 | (assume all relaxation z are equal.)
ne

Py = BRy = f'..,,},



Figure 14 The standard geometry for the Hall effect: a rod-shaped specimen of rectangular cross-
section is placed in a magnetic field B,, as in (a). An electric field E, applied across the end
electrodes causes an electric current density j, to flow down the rod. The drift velocity of the
negatively-charged electrons immediately after the electric field is applied as shown in (b). The
deflection in the y direction is caused by the magnetic field. Electrons accumulate on one face of
the rod and a positive ion excess is established on the opposite face until, as in (¢), the transverse
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See R, listed in Table 4

The problem of an apparent positive sign for the charge carriers arises also
for Be and As, as seen in the table. The anomaly of the sign was explained by
Peierls (1928). The motion of carriers of apparent positive sign, which Heisen-

berg later called “holes,” cannot be explained by a free electron gas, 1

butby the energy band theory
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Thermal conductivity of Metals

From eq. (36) for C,, in K, and & =1/2 mvg?

7 nkT wnkzTT
= . . - f = ——— 56
Ket 3  mo o - € 3m (56)
- 2 112 k 2
o ne m 3 e
The Lorenz number L is defined as L= KloT . (58)

Ratio of Thermal to Electrical Conductivity

The Wiedemann-Franz law states that for metals at not too low tempera-
tures the ratio of the thermal conductivity to the electrical conductivity is di-
rectly proportional to the temperature, with the value of the constant of propor-

tionality independent of the particular metal.

e (kp)\2 e . o
L = ".; (““’i) = 272 X 10~ '3 (erg/esu — deg)”

=2 45 x 107" watt-ohm/deg” (59)

This remarkable result involves neither n nor m. It does not involve 7 if the

relaxation times are identical for electrical and thermal processes.

NANOSTRUCTURES




