The First Result from the AMS-02 Experiment – Positron ratio in the primary cosmic rays

ISS: 109 m x 80 m Cost: \$ 100 billion Life time 20 years

Yuan-Hann Chang NTHU, May 1, 2013

The AMS collaboration

Strong support from

NASA (D. Goldin, C. Bolden, L. Garver, G. Abbey, W. Gerstenmaier, M. Sistilli, T. Martin, K. Bollweg, ...)

The AMS Detector

AMS: A TeV precision, multipurpose spectrometer TRD TOF Particles and nuclei are defined by their Identify e⁺, e⁻ **Z**, **v** charge (Z) and energy ($E \sim P$) Magnet **Silicon Tracker** TRD Z, P TOF 5-6 7-8 **FOF RICH** RICH **Z**, v **ECAL** E of e⁺, e⁻, γ 9 EC. **Z**, **P** are measured independently by the Tracker, RICH, TOF and ECAL

AMS Electronics (and detectors)

Reliability: operational for 20 years.

Same spec. as the best ground experiment.

However:

- Strong radiation
- Extreme temperature variation
- Vacuum
- Vibration during launch
- No Maintenance

AMS Space qualification:

- Redundant design (2x in general, 4x for main CPU)
- Radiation hardness (component selection)
- Thermal cycling
- Thermal vacuum test
- Vibration test

AMS Main Data Computers, each with:

AMS in the ESA Thermal Vacuum Chamber, April 2010

Intensive Tests at CERN

Strong support from CERN (R. Heuer, A. Siemko, S. Meyers, C. Garguilo)