

1

Quantity	K3C60	Rb ₃ C ₆₀	Reference
Space group	Fm3 <u>3</u>	Fm3 <u>3</u>	[14.10]
C_{60} — C_{60} distance (Å)	10.06	10.20	[14.10]
M-C ₆₀ closest distance (Å)	3.27	3.33	[14.10]
Volume per C ₆₀ (cm ³)	7.22×10^{-22}	7.50×10^{-22}	[14.10]
cc lattice constant a (Å)	14.253	14.436	[14.11]
$(-d \ln a/dP)$ (GPa ⁻¹)	1.20×10^{-2}	1.52×10^{-2}	[14.12]
Bulk modulus (GPa)	28	22	[14.13]
Thermal expansion coefficient (Å/K)	2×10^{-5}		[14.10]
Cohesive energy (eV)	24.2	_	[14.13]
Heat of formation (eV)	4.9	—	[14.13]
Density of states" [states/(eV/C ₆₀)]	25	35	[14.14]
Carrier density ^a (10 ²¹ /cm ³)	4.155	4.200	[14.10]
Electron effective mass (m_e)	1.3	—	[14.13]
Hole effective mass (m_e)	1.5, 3.4	_	[14.13]

22

41

Summary	
	0D - Fullerene
	Fullerene structure : C _{20+h*2}
	• An example of strongly correlated electronic system Insulator – undoped C_{60} Metallic – Alkali-doped C_{60} Superconductivity – A_3C_{60} (A=K, Rb,CsK,RbCs)
	• T _c increase linearly with lattice constant : BCS theory prediction
	1D - Carbon nanotube
	Label for a CNT (n,m), 1/3 of the CNTs with random (n,m) is metallic.
	• 1-D band structure of CNTs : slicing 2-D band structure of graphene
	Application : CNT FETs, chemical sensors, Fuel cell storage medium, mechanical reinforcement
	2D - Graphene
	Chiral Fermionic excitation in single layer and bilayer graphene
	Unconventional QHE
	Phase coherent transport at the Dirac point
	- Appearance of band gap in graphene nanoribbon, ${\rm E_g} \sim 1 / {\rm W}$
	Novel phase near CNP at spin-polarized QH regime