Introduction to Nanophysics

Prof. J. Raynien Kwo

Department of Physics National Tsing Hua University 2/2014

What is the size for a "nano" ?

One (nm) equals to 1/100000000 (10-9) meter

10⁻³ m , **Macro** 10⁻⁶ m , **Micro** 10⁻⁹ m , **Meso**

R. Feymann Already Knew about this !

" There's plenty of room at the bottom ! " in 1959.

Physicists noticed the "Nano" as early as

- 4th Century, Roman glassmaker: the color of glasses can be changed by mixing in metal particles
- In 1883, Films containing silver halides for photography were invented by George Eastman, founder of Koda.k
- 1908, Gustay Mie first provided the explanation of the size dependence of color.
- Vision from Feynman in 1959: "There is plenty room at the bottom", and also recognized there are plenty of nature-given nanostructures in biological systems.
- 1950-1960, small metal particles were investigated by physicists.
- 1957, Ralph Landauer realized the importance of quantum mechanics plays in devices with small scales.
- Before 1997 => **mesoscopic** (or low dimensional) physics : quantum dots, wells, wires.....are known already.

Major Topics of Nanoscience and Technology

What is the Nano Technology?

Science and Technology Down scaling to size under100 nm:

Via the "Top-down" lithographic pattering. -- Moore's law !

Manipulate the atomic and molecular structures : "Bottom-up" nano materials, growth and assembly.

Feymann: There's plenty of room at the bottom

Major Driving Force pushing for Nano Is due to the bottle neck met in Microelectronics

Moore's Law : A 30% decrease in the size of printed dimensions every two years.

BASIC CHIPMAKING PROCESS

Bottom-up Nano systems & Self-Assembly enabling of designing large molecules and nano materials

Two basic modern electronic technologies in key condensed matter physics platforms

Metal-Oxide-Feld Effect Transistor

1960 Kahng and Atalla, First MOSFET 1970 First IC, 1 kbit, 750 khz microprocessor

電子科技之基礎--MOSFET (metal-oxide-semiconductor field-effect transistor)

電子科技之基礎--磁記錄

The First Lesson :

Bulk-to-nano Transition

Ex: size-dependence of melting temperature

Ph. Buffat and J-P. Borel, Phys. Rev. A13, 2287 (1976)

Ex: size-dependence of color

powered cadmium selenide

Ex: size-dependence of magnetism

A. J. Cox et al. Phys. Rev. B49, 12295 (1994)

The Second Lesson :

• The ability of growing the nano scale materials and structures

• The ability of detecting and manipulating on the nano scale.

(I) Advance in thin film growth:

Such as Molecular Beam Epitaxy, atomic layer depositon, laser MBE, etc...

For Nano electronics in metals, oxides, and semiconductors

(II) Detection at nano scale : STM, AFM, MFM, STEM, Cs-TEM

➢ In 1982, Binning, and Rohrer in IBM invented scanning tunneling microscope.

➢ In 1986, Binning, Quate, and Gerber invented the atomic force microscope AFM.

Integrated MBE Multi-chamber System

Now located in the Nano Technology Center, ITRI, Hsin Chu, Taiwan

For Metal, Oxide and Semiconductor Films On the Nano scale

Scanning Tunneling Microscope (STM)

Figure 1.10 Scanning tunneling microscope. (From C. Julian Chen, Introduction to Scanning Tunneling Microscopy, Oxford: Oxford University Press, 1993.)

Scanning Tunneling Microscope (STM) – Physicist used to detect nano structures

Nature 409, 304(2001)

Quantum Corral

of 7.13 nm radius, 48 Fe atoms

Crommue, Luts, and Eigler, Science 262, 218-220, 1993

Scanning Transmission Electron Microscope Laboratory

1-Å STEM 2-Å STEM ∆E~0.2 eV **∆E~0.9 eV** Electron Monochromator EDX C_s corrector EELS **EELS**

Prof. C. H. Chen and Dr. M.-W. Chu.

Spherical Aberration Corrected (球面相差) Cs-STEM by C. H. Chen at CCMS, NTU

High-Angle ADF: Si dumbbell, 1.36 Å spacing

15s exposure

6.6

Si [110]

O <mark>(440);</mark> 0.96Å

(004) 1.36Å

60s exposure

Drift ~1Å/min !!

InGaAs/InAIAs superlattices on InP Substrate

• Determining the interface location and sharpness is easy.

• The In-distribution seems to be inhomogeneous in the InAIAs layer (blue arrows).

• Note that InP substrate is Interminated (red arrow).

Atomic Resolution STEM Imaging: Z-contrast

Electronic Exc.: Electron Energy-Loss Spectroscopy (EELS)

Inelastic Scattering (ΔE) Probability

$$\frac{d^{2}\sigma}{d\Omega d\Box E} \sim \sum_{f} \left| \langle \psi_{f} | v(q) | \psi_{i} \rangle \right|^{2} \delta(E_{i} - E_{f} - \Delta E)$$
$$\sim \frac{1}{q^{4}} \cdot S(\omega, q) \longrightarrow X\text{-ray}$$
$$\sim \frac{1}{q^{2}} \cdot \operatorname{Im} \left[\frac{1}{\varepsilon(\omega, q)} \right] \longrightarrow \text{EELS}$$

Spectral Imaging at Ultimate Spatial Resolution

Plasmonic Mapping: STEM-EELS (2-Å Probe)

M.-W. Chu et al., Nano Lett. 9, 399 (2009).

Chemical Mapping: STEM-EDX (1-Å Probe)

InGaAs

M.-W. Chu et al., Phys. Rev. Lett. 104, 196101 (2010).

The Third Lesson:

The importance of Quantum Physics

The cause for variation of scaling

- Influence of Boundary
 - --Increase of proportion of boundaries
 - --Existence of surface / edge modes
 - --Geometrical reconstruction
- Decrease of the number of particles decrease of confinement, increase of purturbation
- Different scaling for different physical entity

Quantum Effect:

=> Most likely to have new breakthough !

Bulk Limit 🖨 Nano Limit

Bulk
materials
 $\lambda << L$

Nano λ~L

L

Major Qauntum Effect at the nano scale

- Interference
- Quantization
- Tunneling
- Quantum Spin

(I) Interference

The wonder of electron in waves

The wave property of electrons

Nr.Mi Min-Kin

Double Slit Interference of Electrons

 \sim