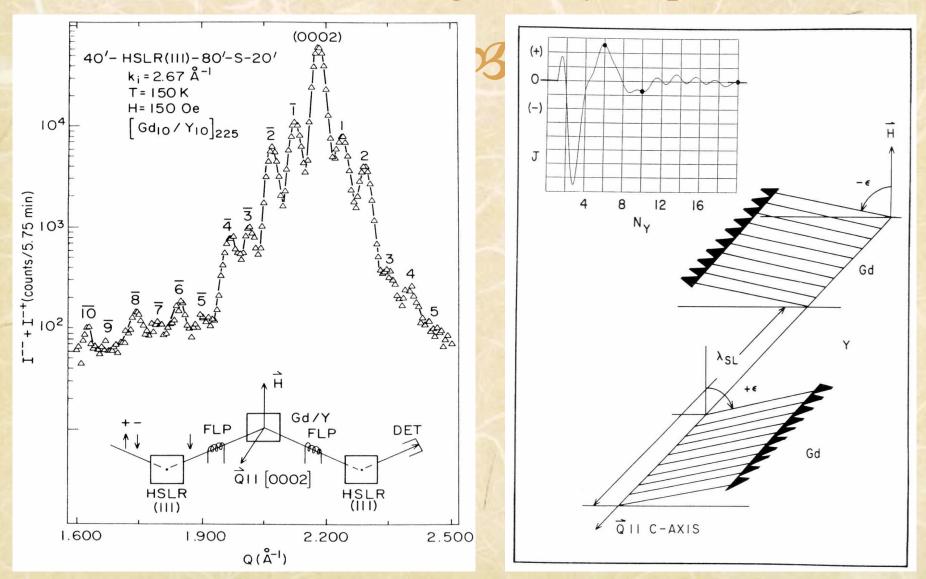
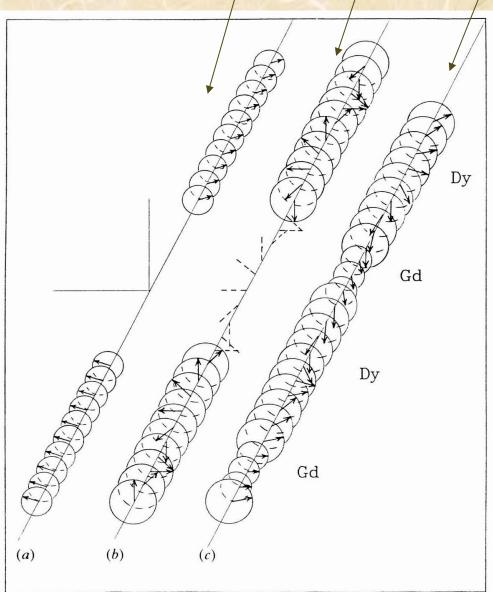

Artificial Superlattice

--- Matching the structural periodicity with physical length scale of superconductivity and magnetism -- Modulation of physical properties

Invention of metal molecular beam epitaxy in 1981 -- Single crystal epitaxial superlattices with Atomically abrupt interfaces

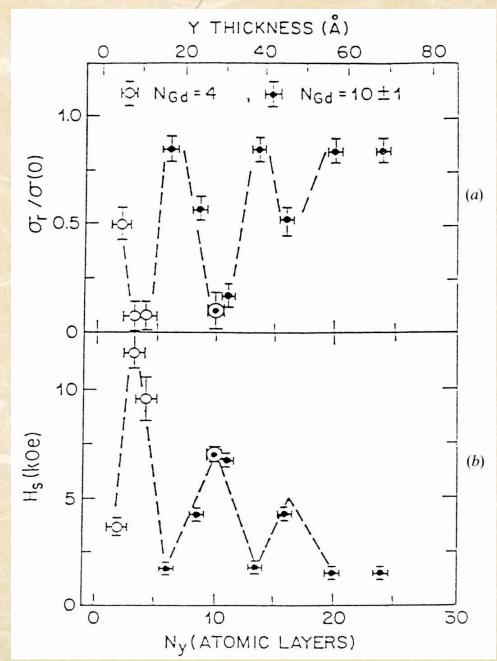

Caxis 0001 Gd, Dy Tm Dy

Spin structures of heavy rare - earths


HCP crystal structure

- Similar crystal- chemical nature of rare earth forms coherent superlattices
- Metallic superlattice effect
 - Long range nature of the indirect exchange interaction
 - Magnetic coupling of magnetic rare earth through non magnetic Y, Lu
 - Modulation of magnetic properties of Gd - Y Superlattices
 - Spin structure modification of Tm Y, Dy - Y Superlattices
- 2-dimensional magnetism
- Interfacial magnetism

Neutron Diffraction Studies of the Gd₅-Y₁₀ Magnetic Superlattice – Antiferromagnetically coupled



Spin Structure Tailoring in artificial Superlattices Gd-Y Dy-Y Gd-Dy

1984-1989

Modulation of Magnetic Properties

Chapter 12: Superconductivity

References:

C. Kittel ; Introduction to solid state physics
 M. Tinkham: Introduction to superconductivity
 J. R. Schrieffer: Superconductivity

Table of Contents

EXPERIMENTAL SURVEY

Occurrence of superconductivity Destruction of superconductivity by magnetic fields Meissner effect

Heat capacity

Energy gap

Microwave and infrared properties

Isotope effect

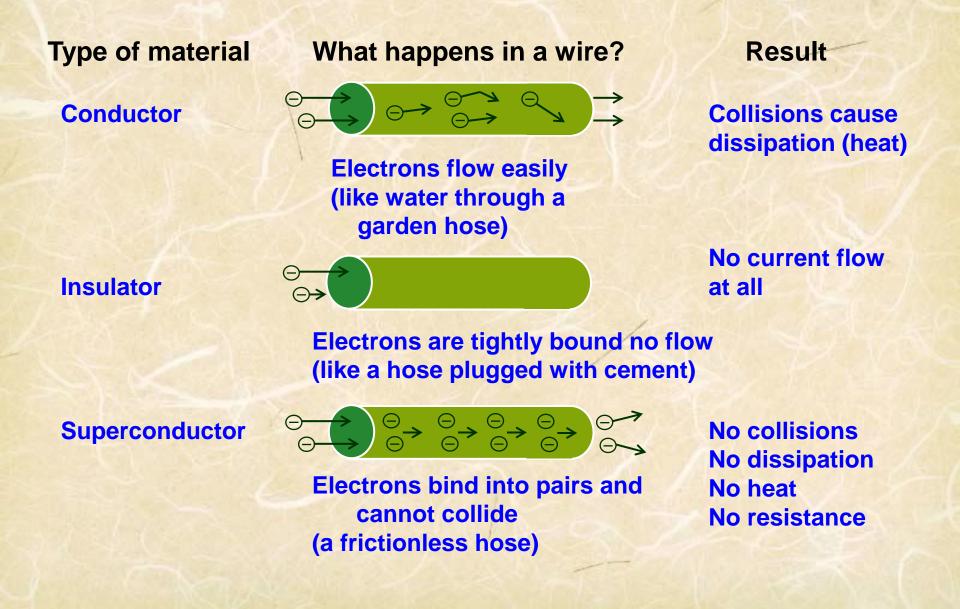
2 THEORETICAL SURVEY

Thermodynamics of the superconducting transition London equation Coherence length BCS theory of superconductivity BCS ground state Flux quantization in a superconducting ring Duration of persistent currents Type II superconductors Vortex state Estimation of H_{c1} and H_{c2} Single particle tunneling Josephson superconductor tunneling Dc Josephson effect Ac Josephson effect Macroscopic quantum interference

(3) HICH-TEMPERATURE SUPERCONDUCTORS

Critical fields and critical currents Hall number Fullerenes

SUMMARY


Li	Ве		terisk de	enotes	s an ele	mer	nt super	cond	ameter: ducting normal	only i	in thin	film	s or un		В	c		N	0	F		Ne
	0.026						Geball															
Na	Mg														AI	Si	*	P*	S	c	I	Ar
			Critica	l mag					ture in zero in		s (10 [−] 1	tesla	ι)		1.140 105							
<	Са	Sc	Ti	۷	Cr	*	Mn	Fe	Co		Ni	Cu	z	n	Ga	Ge	*	As*	• Se	* В	r	Kr
			0.39 100	5.38 1420	and a second second second								0	875 3	1.091 51			•				
Rb	Sr	Y*	Zr	Nb	Mo	,	Тс	Ru	Rh		Pd	Ag	С	d	In	Sn	(w)	Sb*	Те	* 1		Хе
			0.546 47	9.50 1980	and the second second	2	7.77 1410	0.5 70	1.00 .04	003 19			0 31	56)	3.403 293	5 3.7 30	COLUMN STREET,					
Cs*	Ba*	La fcc	Hf	Та	w		Re	Os	lr		Pt	Au	н	g (n)	TI	Pb		Bi*	Po	A	t	Rn
		6.00 1100	0.12	4.48 830	3 0.0 1.0	**************************************	1.4 198	0.6 65	55 0.1 19	Chief and and the party				153 12	2.39 171	7.1 80	Cherry and a local data a					
r	Ra	Ac	C	e*	Pr	Nd	Pn	n	Sm	Eu	Go	1	Tb	Dy	F	lo	Er	Т	Tm	Yb	Lu	
																					0.1	Lense
			T	,	Pa	U*((α) Np	,	Pu	Am	Cr	n	Bk	Cf	E	s	Fm	†	Md	No	Lr	
			and the second se	368 52	1.4			525		÷4												

Experimental Survey of Superconductivity Phenomenon

WHAT IS A SUPERCONDUCTOR?

- 1. Zero resistance
- 2. Complete expulsion of magnetic flux

SUPERCONDUCTIVITY

HOW SMALL IS THE RESISTANCE?

Copper Cylinder

- 1) Induce current
- 2) Current decays in about 1/1000 second

Superconducting Cylinder

Induce current
 Current does not decay

 (less than 0.1% in a year)
 so, resistance is smaller than copper
 by 1000 years
 1/1000 second
 i.e., at least 1 trillion times!

Why Superconductivity is so fascinating ?

- Fundamental SC mechanism
- Novel collective phenomenon at low temp
- Applications
 - Bulk: Persistent current, power storage
 - Magnetic levitation
 - High field magnet, MRI

Electronics:

- SQUID magnetometer
- Josephson junction electronics

POSSIBLE IMPACT OF SUPERCONDUCTIVITY

Energy

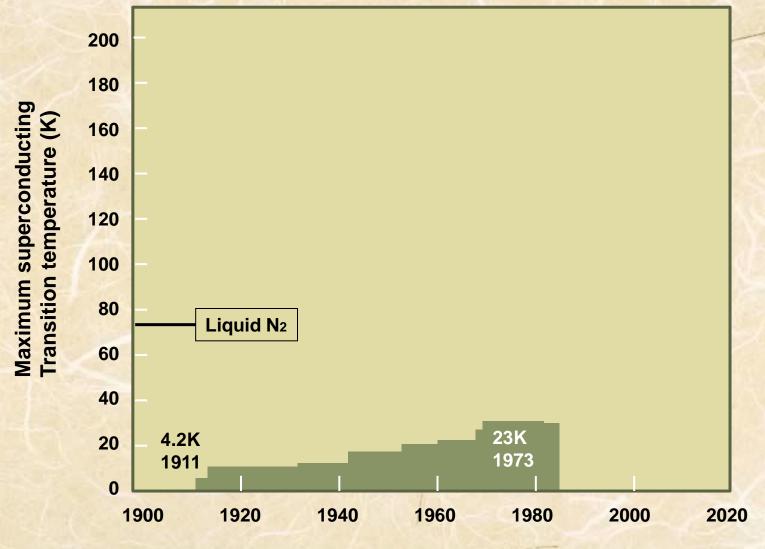
- Superconductivity generators & motors
- Power transmission & distribution
- Energy storage systems
- Magnets for fusion power
- Magnets for magneto-hydrodynamic power

Transportation

- Magnets for levitated trains
- Electro-magnetic powered ships
- Magnets for automobiles

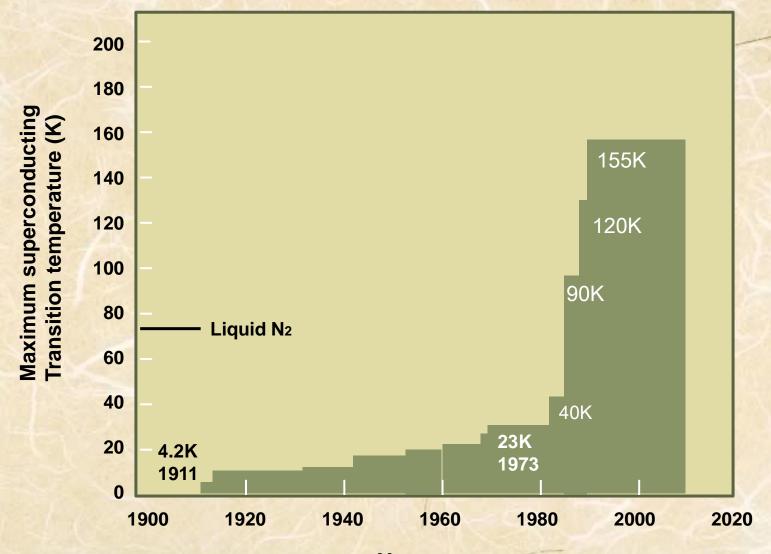
Health care

- Magnetic resonance imaging


Low-T_c Superconductivity Mechanism

Electron phonon coupling

 \square


 $\Theta \mathbf{k}$

PROGRESS IN SUPERCONDUCTIVITY

Year

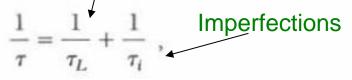
PROGRESS IN SUPERCONDUCTIVITY

Year

Low temperature Superconductors

-- Mediated by electron phonon coupling

-- the critical temperature T_c in the strong electron-phonon coupling limit

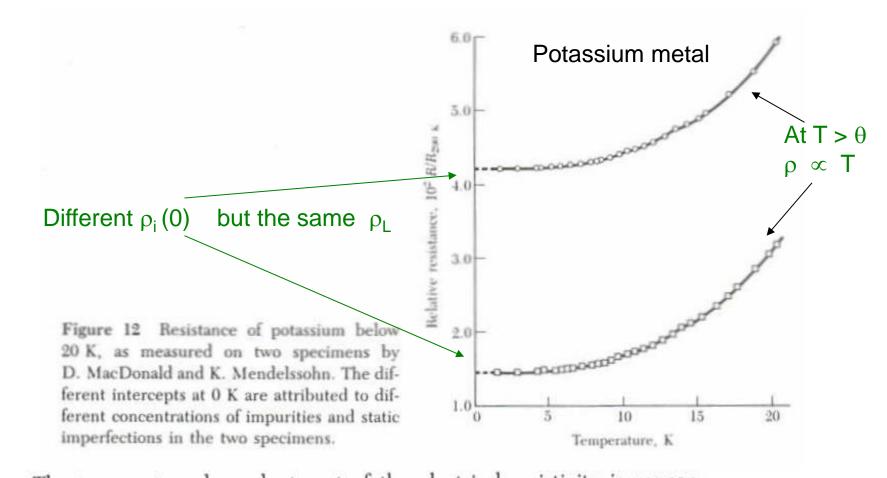

$$T_c = \frac{\Theta_D}{1.45} \exp\left\{-\left[\frac{(1+\lambda_{\rm ep})}{\lambda_{\rm ep}-\mu^*(1+0.62\lambda_{\rm ep})}\right]\right\}$$

 λ : electron phonon coupling constant μ*: Coulomb repulsion of electrons $\lambda \propto N(0) < I^2 > / M < \omega^2 >$

Experimental Electrical Resistivity of Metals

The electrical resistivity of most metals is dominated at room temperature (300 K) by collisions of the conduction electrons with lattice phonons and at liquid helium temperature (4 K) by collisions with impurity atoms and mechanical imperfections in the lattice (Fig. 11).

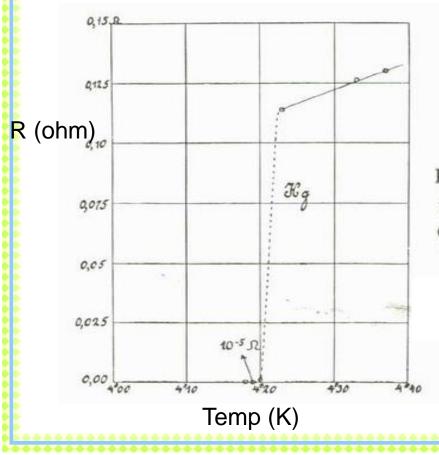
Lattice, phonons


To a good approximation the rates are often independent. And can be summed together

where τ_L and τ_l are the collision times for scattering by phonons and by imperfections, respectively. The net resistivity is given by

$$\rho = \rho_L + \rho_i$$
, Since $\rho \sim 1/\tau$ (47)

Often ρ_L is independent of the number of defects when their concentration is small, and often ρ_i is independent of temperature.


This empirical observation expresses Matthiessen's Rule.

The temperature-dependent part of the electrical resistivity is proportional to the rate at which an electron collides with thermal phonons One simple limit is at temperatures over the Debye temperature θ : here the phonon concentration is proportional to the temperature *T*, so that $\rho \propto T$ for $T > \theta$.

 $N_{ph} \propto T$ hence $\rho \propto 1/\tau \propto N_{ph} \propto T$

The electrical resistivity of many metals and alloys drops <u>suddenly to zero</u> when the specimen is cooled to a sufficiently low temperature, often a temperature in the liquid helium range. This phenomenon, called superconductivity, was observed first by Kamerlingh Onnes¹ in Leiden in 1911, three years after he first liquified helium.

First SC found in Hg by 1911 !

Figure 1 Resistance in ohms of a specimen of mercury versus absolute temperature. This plot by Kamerlingh Onnes marked the discovery of superconductivity.

Decay of persistent current from 1 year up to 10^5 year

Meissner Effect

It is an experimental fact that a bulk superconductor in a weak magnetic field will act as a <u>perfect diamagnet</u>, with zero magnetic induction in the interior. When a specimen is placed in a magnetic field and is then cooled through the transition temperature for superconductivity, the magnetic flux originally present is ejected from the specimen. This is called the <u>Meissner effect</u>.

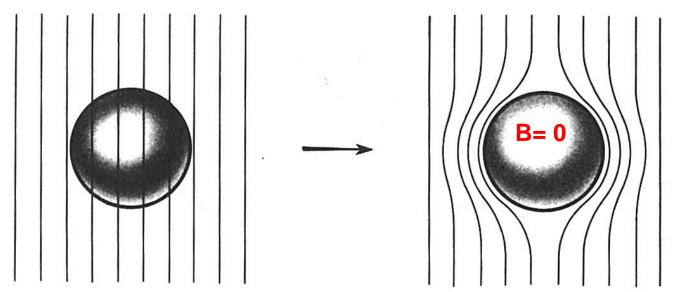


Figure 2 Meissner effect in a superconducting sphere cooled in a constant applied magnetic field; on passing below the transition temperature the lines of induction B are ejected from the sphere.

Fundamental Mechanism

The superconducting state is an ordered state of the conduction electrons of the metal.

Electron-Phonon Coupling

Cooper Pair formed by two electrons *k* and *--k* with opposite spins, as coupled through **phonons** of the lattice

The nature and origin of the ordering was explained by Bardeen, Cooper, and Schrieffer.³ BCS Theory, 1957

³J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175 (1957).

The Discovery of Superconductivity

- Early 90's -- elemental SP metals like Hg, Pb, Al, Sn, Ga, etc.
- Middle 90's -- transitional metals, alloys, and compounds like Nb, NbN, Nb₃Sn, etc.
- Late 90's -- in perovskite oxides

	Т		T _c ,
Compound	in K	Compound	in K
Nb_3Sn A-15	18.05	V ₃ Ga	16.5
Nb ₃ Sn A-15 Nb ₃ Ge	23.2	V ₃ Si	17.1
Nb_3Al	17.5	YBa ₂ Cu ₃ O _{6.9} HTSC	90.0
NbN B1	16.0	YBa ₂ Cu ₃ O _{6.9} HTSC Rb ₂ CsC ₆₀	31.3
K ₃ C ₆ O	19.2	La ₃ In	10.4

 Table 2
 Superconductivity of selected compounds

A-15 compound A_3B , with $T_c = 15-23$ K

With three perpendicular linear chains of **A** atoms on the cubic face, and B atoms are at body centered cubic site

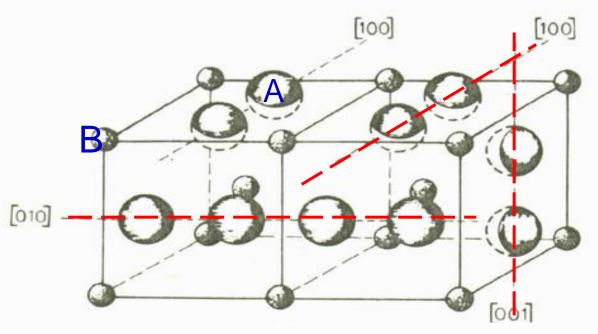
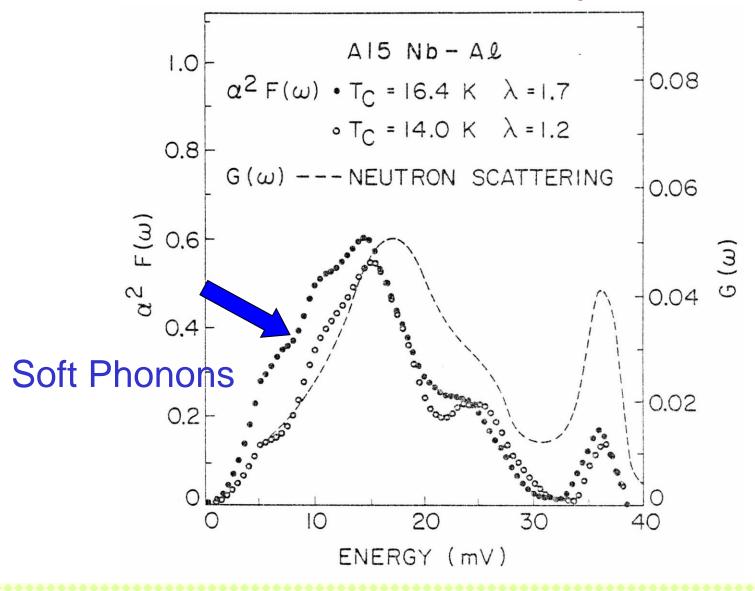


FIG. 34. (a) The position of A and B atoms in the unit cell of an A₃B compound possessing the β -W structure. (b) The fermi surface of an A₃B compound in the tight binding, nearest neighbors approximation. There are three degenerate bands corresponding to electrons localized on the three families of chains. (c) The first Brillouin zone (BZ) of the β -W lattice. The high symmetry points (Γ , X, M, R) and the high symmetry lines (Δ , Σ , Λ , Z, S, T) are indicated.

1973 Nb₃Ge, 23K !

Low temperature Superconductors

- -- Mediated by Electron phonon coupling
- -- McMillian formula for T_c

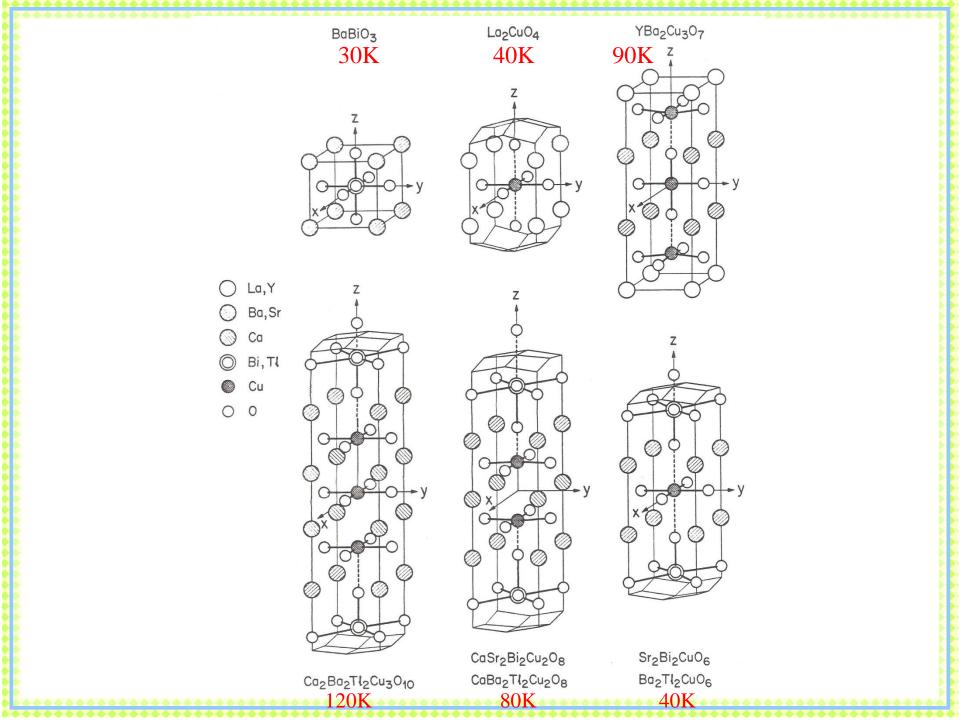

$$T_c = \frac{\Theta_D}{1.45} \exp\left\{-\left[\frac{(1+\lambda_{\rm ep})}{\lambda_{\rm ep}-\mu^*(1+0.62\lambda_{\rm ep})}\right]\right\}$$

λ : electron phonon coupling constant
 μ* : Coulomb repulsion of electrons

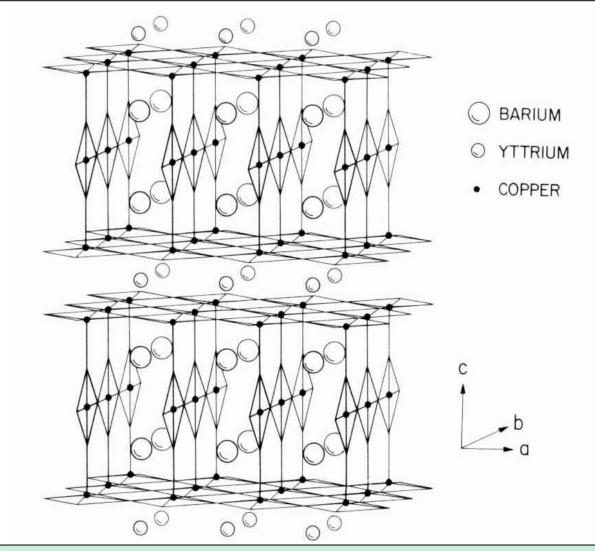
 $\lambda \propto N(0) < l^2 > / \omega^2$

Are electrons or phonons more important?

The Phonon Spectrum of the low T_c A-15 compound Nb₃Al

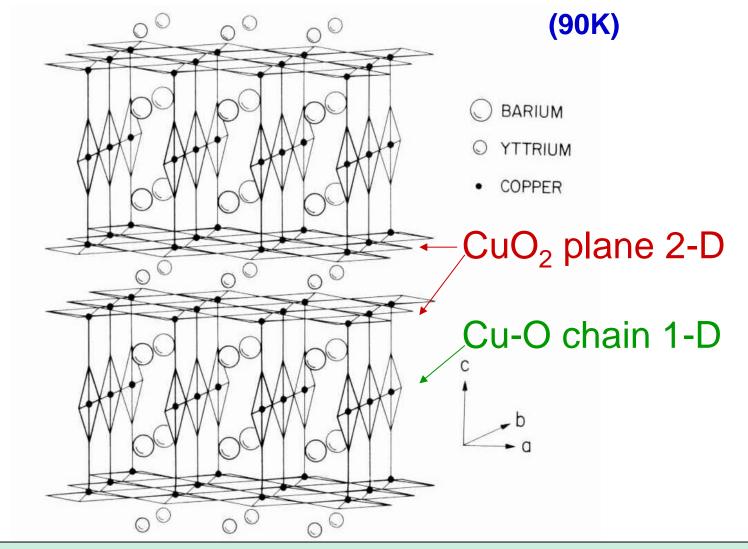


Can we raise the T_c higher than 30K?


Are we reaching the limitation of the BCS Theory ?

Breakthrough in late 1986 By Bednorz and Muller

Start the HTSC Era !



High Temperature Superconductor YBa₂Cu₃O₇

Invention of Oxide Molecular Beam Epitaxy in 1988 For HTSC Single Crystal Films.

High Temperature Superconductor YBa₂Cu₃O₇

Invention of Oxide Molecular Beam Epitaxy For HTSC Single Crystal Films.

Will all non magnetic metal become SC at low T?

(I) Destruction of Superconductivity by Magnetic Impurities

It is important to eliminate from the specimen even trace quantities of foreign paramagnetic elements

(II) Destruction of Superconductivity by Magnetic fields

At the critical temperature the critical field is zero: $H_c(T_c)=0$

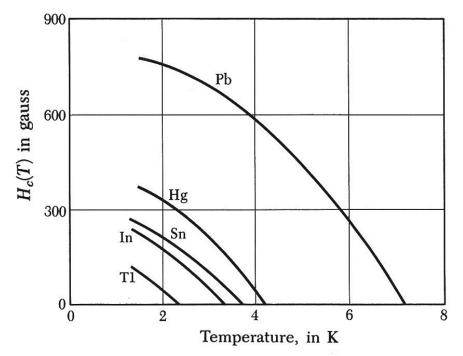
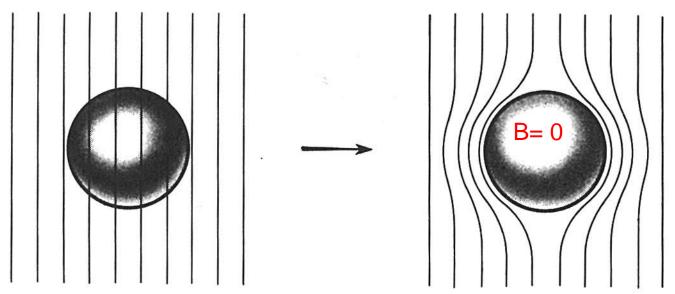



Figure 3 Experimental threshold curves of the critical field $H_c(T)$ versus temperature for several superconductors. A specimen is superconducting below the curve and normal above the curve.

Meissner Effect

It is an experimental fact that a bulk superconductor in a weak magnetic field will act as a <u>perfect diamagnet</u>, with zero magnetic induction in the interior. When a specimen is placed in a magnetic field and is then cooled through the transition temperature for superconductivity, the magnetic flux originally present is ejected from the specimen. This is called the <u>Meissner effect</u>.

Figure 2 Meissner effect in a superconducting sphere cooled in a constant applied magnetic field; on passing below the transition temperature the lines of induction **B** are ejected from the sphere.

Meissner Effect

$$B = B_a + 4\pi M = 0$$
; $\frac{M}{B_a} = -\frac{1}{4\pi}$ Eq.(1)

Perfect Diamagnetism

The magnetic properties cannot be accounted for by the assumption that a superconductor is a normal conductor with zero electrical resistivity.

The result B = 0 cannot be derived from the characterization of a superconductor as a medium of zero resistivity. From Ohm's law, $\mathbf{E} = \rho \mathbf{j}$, we see that if the resistivity ρ goes to zero while \mathbf{j} is held finite, then \mathbf{E} must be zero. By a Maxwell equation $d\mathbf{B}/dt$ is proportional to curl \mathbf{E} , so that zero resistivity implies $d\mathbf{B}/dt = 0$. This argument is not entirely transparent, but the result predicts that the flux through the metal cannot change on cooling through the transition. The Meissner effect contradicts this result and suggests that perfect diamagnetism is an essential property of the superconducting state.

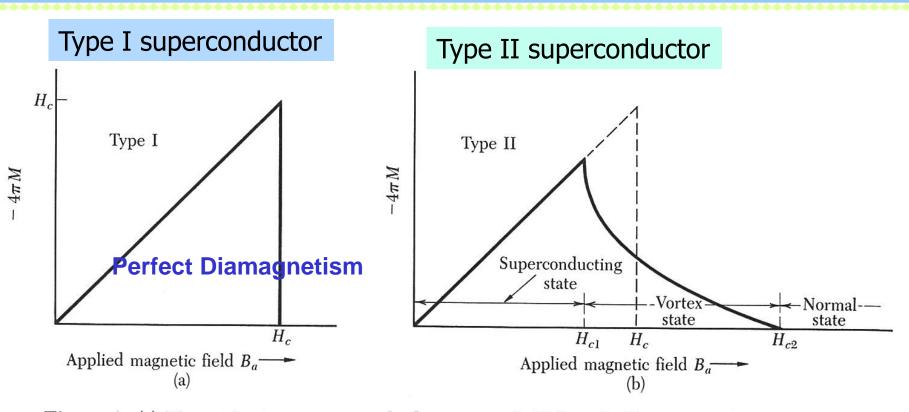
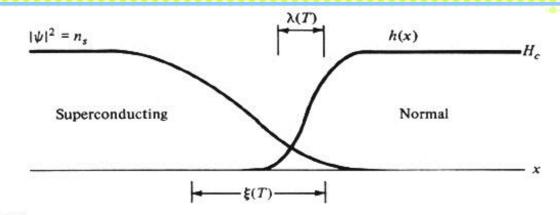
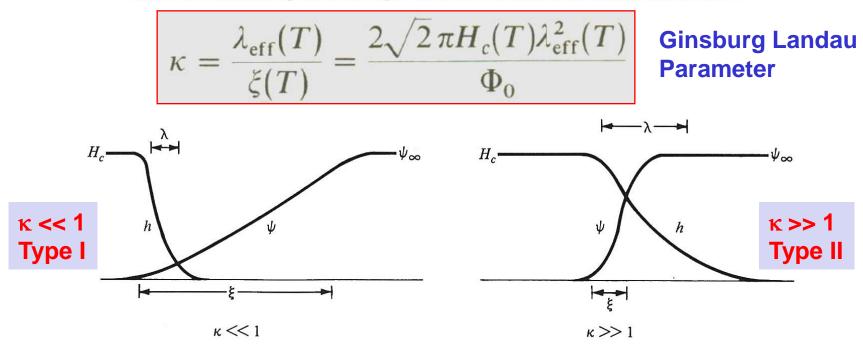



Figure 4 (a) Magnetization versus applied magnetic field for a bulk superconductor exhibiting a complete Meissner effect (perfect diamagnetism). A superconductor with this behavior is called a type I superconductor. Above the critical field H_c the specimen is a normal conductor and the magnetization is too small to be seen on this scale. Note that minus $4\pi M$ is plotted on the vertical scale: the negative value of M corresponds to diamagnetism. (b) Superconducting magnetization curve of a type II superconductor. The flux starts to penetrate the specimen at a field H_{c1} lower than the thermodynamic critical field H_c . The specimen is in a vortex state between H_{c1} and H_{c2} , and it has superconducting electrical properties up to H_{c2} . Above H_{c2} the specimen is a normal conductor in every respect, except for possible surface effects. For given H_c the area under the magnetization curve is the same for a type II superconductor as for a type I. (CGS units in all parts of this figure.)


Type II superconductors

- (1) They tend to be alloys (as in Fig. 5a) or transition metals with high values of the electrical resistivity in the normal state: that is, the electronic mean free path in the normal state is short.
- (2) Type II superconductors have superconducting electrical properties up to a field denoted by H_{c2} .
- (3) Between the lower critical field H_{c1} and the upper critical field H_{c2} the flux density $B \neq 0$ and the Meissner effect is said to be incomplete.
- (4) In the region between H_{c1} and H_{c2} the superconductor is threaded by flux lines and is said to be in the vortex state.

FIGURE 1-4

Interface between superconducting and normal domains in the intermediate state.

FIGURE 4-2

Schematic diagram of variation of h and ψ in a domain wall. The case $\kappa \ll 1$ refers to a type I superconductor (positive wall energy); the case $\kappa \gg 1$ refers to a type II superconductor (negative wall energy).

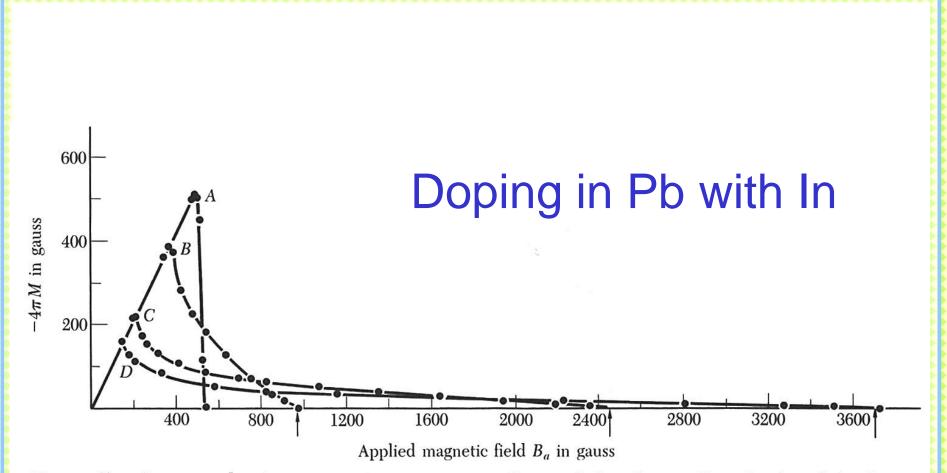
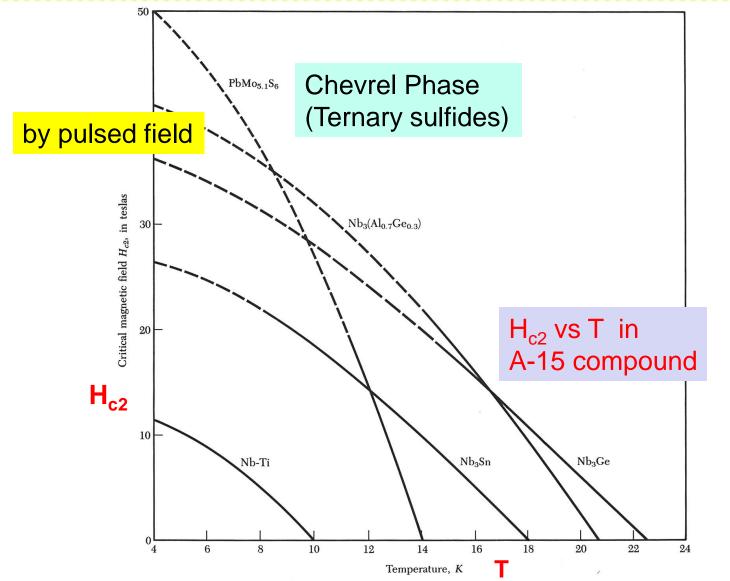
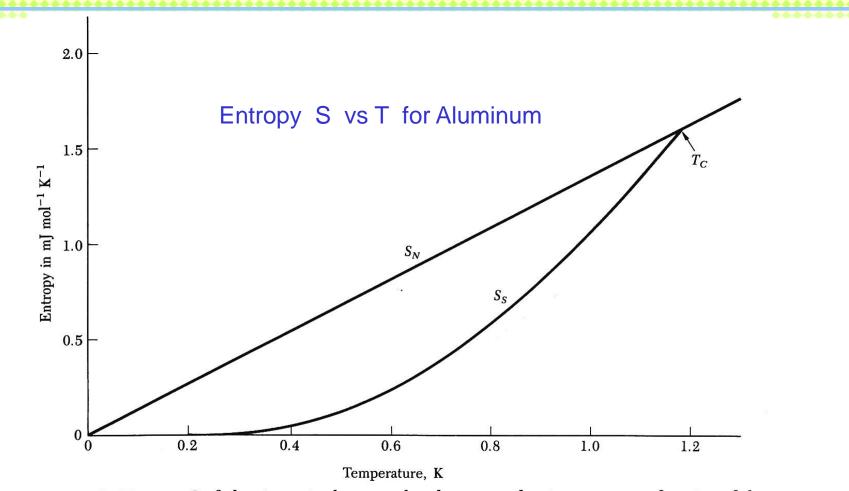




Figure 5a Superconducting magnetization curves of annealed polycrystalline lead and leadindium alloys at 4.2 K. (A) lead; (B) lead-2.08 wt. percent indium; (C) lead-8.23 wt. percent indium; (D) lead-20.4 wt. percent indium. (After Livingston.)

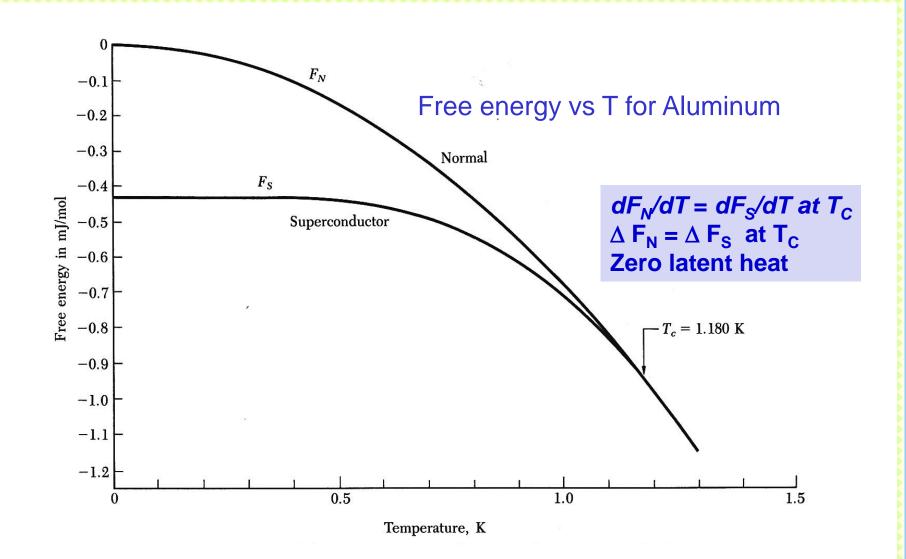
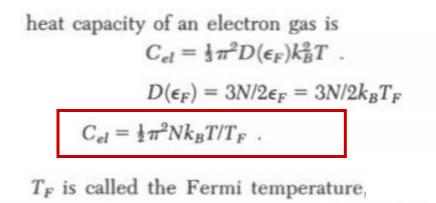
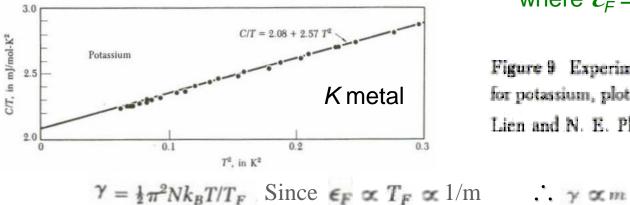


Figure 5b Stronger magnetic fields than any now contemplated in practical superconducting devices are within the capability of certain Type II materials. These materials cannot be exploited, however, until their critical current density can be raised and until they can be fabricated as finely divided conductors. (Magnetic fields of more than about 20 teslas can be generated only in pulses, and so portions of the curves shown as broken lines were measured in that way.)




Figure 6 Entropy S of aluminum in the normal and superconducting states as a function of the temperature. The entropy is lower in the superconducting state because the electrons are more ordered here than in the normal state. At any temperature below the critical temperature T_c the specimen can be put in the normal state by application of a magnetic field stronger than the critical field.

The small entropy change must mean that only a small fraction (of the order of 10^{-4}) of the conduction electrons participate in the transition to the ordered superconducting state.

So that the phase transition is second order (there is no latent heat of transition at T_c).

(35) (36) Compare with $C_V = 2Nk_BT/T_F$

where
$$\mathcal{E}_F = k_B T_F$$

(34)

Figure 9 Experimental heat capacity values for potassium, plotted as C/T versus T². (After W. H. Lien and N. E. Phillips.)

(See Eq. 17)

At temperatures much below both the Debye temperature and the Fermi temperature, the heat capacity of metals may be written as the sum of electron and phonon contributions: $C = \gamma T + AT^3$

 $C/T = \gamma + AT^2 \quad , \tag{37}$

γ, called the Sommerfeld parameter

At low T, the electronic term dominates,

Heat Capacity of Ga at low T

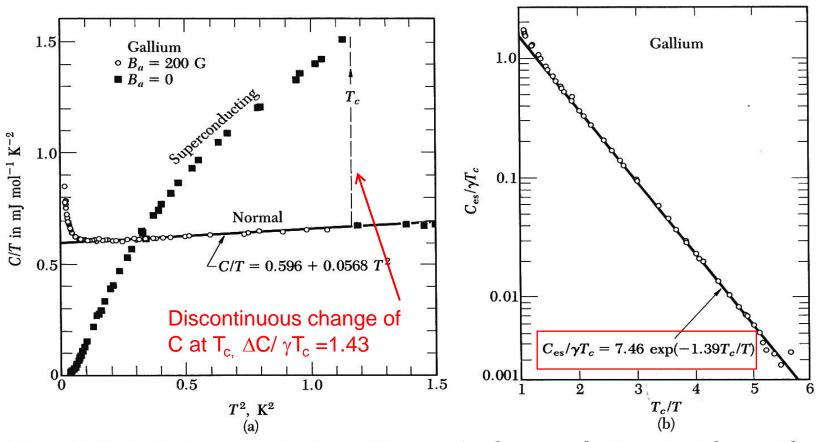


Figure 8 (a) The heat capacity of gallium in the normal and superconducting states. The normal state (which is restored by a 200 G field) has electronic, lattice, and (at low temperatures) nuclear quadrupole contributions. In (b) the electronic part $C_{\rm es}$ of the heat capacity in the superconducting state is plotted on a log scale versus T_c/T : the exponential dependence on 1/T is evident. Here $\gamma = 0.60 \text{ mJ mol}^{-1} \text{ deg}^{-2}$. (After N. E. Phillips.)

Electronic part of heat capacity in SC state: $C_{es}/\gamma T_c \propto a \exp(-b T_c/T)$

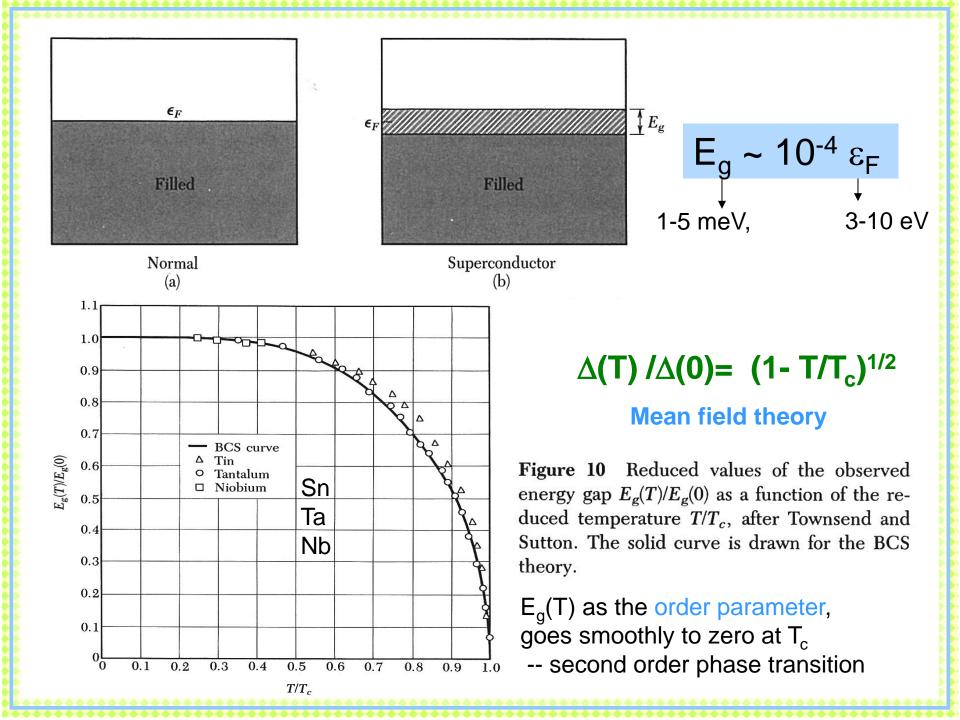
proportional to -1/T, suggestive of excitation of electrons across an energy gap

Energy Gap

In a superconductor the important interaction is the electron-electron interaction which orders the electrons in k space with respect to the Fermi gas of electrons.

the exponential factor in the electronic heat capacity of a superconductor is found to be $-E_g/2k_BT$

The transition in zero magnetic field from the superconducting state to the normal state is observed to be a second-order phase transition.


Energy Gap of superconductors in Table 3

 $E_q(0)/k_BT_c = 3.52$ Weak electron-phonon coupling

 $E_q(0)/k_BT_c > 3.52$ Strong electron-phonon coupling

Table 3 Energy gaps in superconductors, at $T = 0$									AI	Si	
				E _g (0) in E _g (0)	10 ⁻⁴ eV)/k _B T _c .					3.4 3.3	
Sc	Ti	v	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge
		16. 3.4				V. S. A			2.4 3.2	3.3 3.5	(<u>(</u>)
Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn (w)
	ţ	30.5 3.80	2.7 3.4						1.5 3.2	10.5 3.6	11.5 3.5
	Contraction of the second second second			1					and the second division of the second divisio		
La fcc	Hf	Та	W	Re	Os	lr	Pt	Au	Hg (a)	TI	Pb

Table 3 Energy gaps in superconductors, at T = 0

Isotope Effect

It has been observed that the critical temperature of superconductors varies with isotopic mass.

The experimental results within each series of isotopes may be fitted by a relation of the form

 $M^{\alpha}T_c = \text{constant} \quad \alpha \sim 0.5$

Table 4Isotope effect in superconductors

Experimental values of α in $M^{\alpha}T_{c}$ = constant, where M is the isotopic mass.

Substance	α	Substance	α	
Zn	$\begin{array}{c} 0.45 \pm 0.05 \\ 0.32 \pm 0.07 \\ 0.47 \pm 0.02 \\ 0.50 \pm 0.03 \\ 0.49 \pm 0.02 \end{array}$	Ru	0.00 ± 0.05	
Cd		Os	0.15 ± 0.05	
Sn		Mo	0.33	
Hg		Nb ₃ Sn	0.08 ± 0.02	
Pb		Zr	0.00 ± 0.05	

From the dependence of T_c on the isotopic mass we learn that lattice vibrations and hence electron-lattice interactions are deeply involved in superconductivity.

$$\theta \propto \upsilon \propto M^{-1/2}$$
 $T_c \propto \theta_{\text{Debye}} \propto M^{-1/2}$, so that $\alpha = \frac{1}{2}$