Reciprocal Lattice \ector

To proceed further with the Fourier analysis of the electron concentration we
must find the vectors G of the Fourier sum Zn¢ exp(iG - r) as in (9).

We construct the axis vectors by, b, b, of the reciprocal lattice: 3] 5 %%
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If a,, a,, a; are primitive vectors of the crystal lattice, then b,, b,, b, are
primitive vectors of the reciprocal lattice. Each vector defined by (13) is
orthogonal to two axis vectors of the crystal lattice. Thus by, by, b; have the

ropert
Sk b b;-a; =275, , (14)
whereS,-j = 1if¢ =jand8,.j = 0ifi #j.
Points in the reciprocal lattice are mapped by the set of vectors
G= Ulbl “ 'ngg T+ U3b3 3 (15)

where v,, v,, v; are integers. A vector G of this form is a reciprocal lattice vector.
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1. Every crystal has two lattices associated with it :
the crystal lattice, and the reciprocal lattice.
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2. The reciprocal lattice is a lattice in the Fourier space
associated with the crystal.

3. Adiffraction pattern of crystal is a map of the reciprocal
lattice of the crystal.



The vectors G in the Fourier series (9) are just the reciprocal lattice vectors (15),
for then the Fourier series representation of the electron density has the desired in-
variance under any crystal translation T = u,a; + u,a, + usa;. From (9),

nir+T)= 2 ng exp(iG * r) exp(iG * T) . (16)
G
But exp(iG * T) = 1, because

exp(iG - T) = expli(v;b; +voby +v3b3) * (ua; +usay + Usas)] a7)

— expli2m(vu, + vous + v5us)] .
The argument of the exponential has the form 27i times an integer, because
vy, + Osliy + Vaug is an integer, being the sum of products of integers. Thus by
(9) we have the desired invariance, n(r + T) =n(r) = 2 ng exp(iG * r).

This result proves that the Fourier representation of a function
periodic in the crystal lattice can contain components n; exp(iG «r)
only at the reciprocal lattice vectors G as defined by (15).



Diffraction Conditions

Theorem. The set of reciprocal lattice vectors G determines the possible

X-Tay reflections.

We see in Fig. 6 that the difference in phase factors is expli(k — k') - r]
between beams scattered from volume elements r apart.

The total amplitude of the scattered wave in the direction of k' is
proportional to the integral over the crystal of n(r) dV times the phase factor

expli(k — k') - r].

the quantity F that we call the scattering amplitude:

F = [ dVn(r) explitk — k') - r]=[ dV n(r) exp(—iAk * 1) , (18)
where k — k' = —Ak, or
k+ Ak =k’ . (19)

Here Ak measures the change in wavevector and is called the scattering
vector (Fig. 7).
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Figure 6 The difference in path length of the incident wave k at the points O, r is r sin ¢, and the

difference in phase angle is (27rr sin @)/A, which is equal to k - r. For the diffracted wave the dif-

ference in phz—lse angle_is —k' * r. The total difference in Phase angle is (k — k') - r, and the wave

scattered from dV at r has the phase factor exp[i(k — k') - r] relative to the wave scattered from a

volume element at the origin O.
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Figure 7 Definition of the scattering vector Ak such that
k + Ak = k'. In elastic scattering the magnitudes satisfy
k' = k. Further, in Bragg scattering from a periodic lattice,

any allowed Ak must equal some reciprocal lattice vector G.




We introduce into (18) the Fourier components (9) of n(r) to obtain for
the scattering amplitude

F=2 [dVngexpli(G— Ak) - r] . (20)
G

When the scattering vector Ak is equal to a particular reciprocal lattice vector,

And Fis ~0 when Ak # G Ak =G (21)

the argument of the exponential vanishes and F = Vng..

In elastic scattering of a photon its energy fw is conserved,

Thus the magnitudes k and k' are equal, and k* = k’?, a result that

holds also for elastic scattering of electron and neutron beams.

k + G = k', so that the diffraction condition is written as (k + G)? = k2, or

2k « G+G?=0 (22)




This is the central result of the theory of elastic scattering of waves in a
periodic lattice.

2k « G = (G2 (23)

This particular expression is ,Aften used as the condition for diffraction.

Equation (23) is anothg/r statement of the Bragg condition (1). The result
of Problem 1 is that the spacing d(hkl) between parallel lattice planes that are
normal to the direction ¢ = hb, + kb, + [b; is d(hkl) = 2m/IGl. Thus the
result 2k - G = G* may bg written as

2(27/A) sin @ = 2m/d(hkl) , |G| = 2n/d

or 2d(hkl) sin @ = A. Here 6 is the angle between the incident beam and the
crystal plane.

The integers hkl that define G are not necessarily identical with the in-
dices of an actual crystal plane, because the hkl may contain a common factor
n, whereas in the definition of the indices in Chapter 1 the common factor has
been eliminated. We thus obtain the Bragg result:

2d sin @ = nA (24)

where d is the spacing between adjacent parallel planes with indices h/n,
k/n, ln.



Laue Equations

The original result (21) of diffraction theory, namely that Ak = G, may be
expressed in another way to give what are called the Laue equations.

Take the scalar product of both Ak and G successively with a), a,, a;.
From (14) and (15) we get

a, * Ak = 27mv, ; a, * Ak = 270, ; a, * Ak = 270, . (25)

These equations have a simple geometrical interpretation. The first equation

a, * Ak = 27rv, tells us that Ak lies on a certain cone about the direction of a,.
The second equation tells us that Ak lies on a cone about a, as well, and the
third equation requires that Ak lies on a cone about a.

Thus, at a reflection Ak must satisfy all three equations; it must lie at the
common line of intersection of three cones, which is a severe condition that

can be satisfied only by systematic sweeping or searching in wavelength or
crystal orientation—or by sheer accident.



Ewald Sphere Construction

Reciprocal lattice

Figure 8 The points on the right-hand side are reciprocal-lattice points of the crystal. The vector
k is drawn in the direction of the incident x-ray beam, and the origin is chosen such that k termi-
nates at any reciprocal lattice point. We draw a sphere of radius k = 2a/A about the origin of k.
A diffracted beam will be formed if this sphere intersects any other point in the reciprocal lattice.
The sphere as drawn intercepts a point connected with the end of k by a reciprocal lattice vector
G. The diffracted x-ray beam is in the direction k'’ = k + G. The angle 6 is the Bragg angle of
Fig. 2. This construction is due to P. P. Ewald.




BRILLOUIN ZONES

A Brillouin zone is defined as a Wigner-Seitz primitive cell in

the reciprocal lattice.
Take (23) divided by 4 at both sides

k-(:G)=(:G) (26)

We now work in reciprocal space, the space of the ks and G’s. Select a
vector G from the origin to a reciprocal lattice point. Construct a plane normal
to this vector G at its midpoint. This plane forms a part of a zone boundary
(Fig. 9a). An x-ray beam in the crystal will be diffracted if its wavevector k has
the magnitude and direction required by (26). The diffracted beam will then
be in the direction k — G, as we see from (19) with Ak = —G. Thus the
Brillouin construction exhibits all the wavevectors k which can be Bragg-

reflected by the crystal.




Planel Plane 2

Figure 9a Reciprocal lattice points near the point O at
the origin of the reciprocal lattice. The reciprocal lattice
vector G¢ connects points OC; and Gp connects OD.
Two planes 1 and 2 are drawn which are the perpendic-
ular bisectors of G¢ and Gp, respectively._Any vector
from the origin to the plane 1, such as k), will satisfy the
diffraction condition k, * 5 G¢) = (3 G¢)>. Any vector
from the origin to the plane 2, such as k;, will satisfy the
diffraction condition k, * (3 Gp) = (5 Gp)*




The set of planes that are the perpendicular bisectors of the reciprocal
lattice vectors is of general importance in the theory of wave propagation in
crystals. A wave whose wavevector drawn from the origin terminates on any
of these planes will satisfy the condition for diffraction.

These planes divide the Fourier space of the crystal into fragments, as
shown in Fig. 9b for a square lattice. The central square is a primitive cell of
the reciprocal lattice. It is a Wigner-Seitz cell of the reciprocal lattice.

lattice vectors shown as fine black lines. The lines

/ | Figure 9b Square reciprocal lattice with reciprocal

shown in white are perpendicular bisectors of the rec-
iprocal lattice vectors. The central square is the small-

est volume about the origin which is bounded entirely
by white lines. The square is the Wigner-Seitz primi-

_ tive cell of the reciprocal lattice. It is called the first
| \\ Brillouin zone.

First Brillouin zone



The central cell in the reciprocal lattice is of special importance in the the-
ory of solids, and we call it the first Brillouin zone. The first Brillouin zone is
the smallest volume entirely enclosed by planes that are the perpendicular bi-

sectors of the reciprocal lattice vectors drawn from the origin.

The first Brillouin zone of an oblique lattice in two dimensions is
constructed in Fig. 10, and of a linear lattice in one dimension in Fig. 11.
The zone boundaries of the linear lattice are at k = +m/a, where a is the
primitive axis of the crystal lattice.

Historically, Brillouin zones are not part of the language of x-ray diffrac-
tion analysis of crystal structures, but the zones are an essential part of the
analysis of the electronic energy-band structure of crystals.
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Figure 10 Construction of the first Brillouin

zone for an oblique lattice in two dimensions. We

first draw a number of vectors from O to nearby
points in the reciprocal lattice. Next we construct
lines perpendicular to these vectors at their mid-
points. The smallest enclosed area is the first Bril-
louin zone.



Figure 11 Crystal and reciprocal lattices in ong dimension. The basis vector in the reciprocal lat-
tice is b, of length equal to 27/a. The shortest reciprocal lattice vectors from the origin are b and
—b. The perpendicular bisectors of these vecjors form the boundaries of the first Brillouin zone.
The boundaries are at k = *7/a.

First Brillouin zone



