CALCULATION OF ENERGY BANDS

Wigner and Seitz, who in 1933 performed the first serious band calcula-
tions, refer to afternoons spent on the manual desk calculators of those days,
using one afternoon for a trial wavefunction. Here we limit ourselves to three
introductory methods: the tight-binding method, useful for interpolation; the
Wigner-Seitz method, useful for the visualization and understanding of the
alkali metals; and the pseudopotential method, utilizing the general theory
of Chapter 7, which shows the simplicity of many problems.



Tight Binding Method for Energy Bands

Let us start with neutral separated atoms and watch the changes in the
atomic energy levels as the charge distributions of adjacent atoms overlap
when the atoms are brought together to form a crystal. Consider two hydrogen
atoms, each with an electron in the 1s ground state. The wavefunctions ¢, ¥z
on the separated atoms are shown in Fig. 16a.
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Figure 16 (a) Schematic drawing of wavefunctions of electrons on two hydrogen atoms at large
separation. (b) Ground state wavefunction at closer separation. (c) Excited state wavefunction.



As the atoms are brought together, their wavefunctions overlap. We con-
sider the two combinations ¢, = 3. Each combination shares an electron
with the two protons, but an electron in the state i, + 5 will have a some-
what lower energy than in the state ¢, — 3.

In ¢, + Y5 the electron spends part of the time in the region midway
between the two protons, and in this region it is in the attractive potential of
both protons at once, thereby increasing the binding energy. In , — 5 the
probability density vanishes midway between the nuclei; an extra binding does
not appear. |

As two atoms are brought together, two separated energy levels are
formed for each level of the isolated atom. For N atoms, N orbitals are formed
for each orbital of the isolated atom (Fig. 17).
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Figure 17 The 1s band of a ring of 20
hydrogen atoms; the one-electron energies
are calculated in the tight-binding approxi-
mation with the nearest-neighbor overlap
integral of Eq. (9).



As free atoms are brought together, the coulomb interaction between the
atom cores and the electron splits the energy levels, spreading them into
bands. Each state of given quantum number of the free atom is spread in the
crystal into a band of energies. The width of the band is proportional to the
strength of the overlap interaction between neighboring atoms.

There will also be bands formed from p, d, . . . states (Il = 1, 2, . . .) of the
free atoms. States degenerate in the free atom will form different bands. Each
will not have the same energy as any other band over any substantial range of
the wavevector. Bands may coincide in energy at certain values of k in the
Brillouin zone.

The approximation that starts out from the wavefunctions of the free atoms
is known as the tight-binding approximation or the LCAO (linear combination
of atomic orbitals) approximation. The approximation is quite good for the inner
electrons of atoms, but it is not often a good description of the conduction elec-
trons themselves. It is used to describe approximately the d bands of the transi-
tion metals and the valence bands of diamondlike and inert gas crystals.



Suppose that the ground state of an electron moving in the potential
U(r) of an isolated atom is ¢(r), an s state. The treatment of bands arising from
degenerate (p, d, . ..) atomic levels is more complicated. If the influence of
one atom on another is small, we obtain an approximate wavefunction for one

electron in the whole crystal by taking

i(r) = 2 Cyop(r — 1) (4)
J

where the sum is over all lattice points. We assume the primitive basis contains
one atom. This function is of the Bloch form (7.7) if C); = N~'? e** which

gives, for a crystal of N atoms,

Ya(r) =N 3 exp(ik * r)o(r — 1)) . (5)



We prove (5) is of the Bloch form. Consider a translation T connecting
two lattice points:

Yi(r + T) =N 3 exp(ik *r))o(r + T — 1))
j
= exp(ik -+ T) N™"2 X explik * (r; — T)]¢[r — (r; — T)] (6)
J

= exp(ik * T) a(r) ,

exactly the Bloch condition.
We find the first-order energy by calculating the diagonal matrix elements
of the hamiltonian of the crystal:

(k|H[k) = N7, Y explik - (r; — 1,)] {0,/ H|p,) , (7)

j m

where P == (p(r —— rm). ertlng pm = . = rj,

m

(k|H|k) = > exp(—ik - p,,) [ dV ¢*(r — p,)He(x) . (8)

m



We now neglect all integrals in (8) except those on the same atom and
those between nearest neighbors connected by p. We write

JdV ¢*(r)He(r) = —a ; [dV ¢*(r — p)He(r) = —vy ; (9)

and we have the first-order energy, provided (klk) = 1:

(k[Hk) = —a — v 3, exp(—ik - p,,) = & | (10)

The dependence of the overlap energy y on the interatomic separation p
can be evaluated explicitly for two hydrogen atoms in 1s states. In rydberg
energy units, Ry = me*/24>, we have

¥(Ry) = 2(1 + pl/a,) exp (—p/ay) , (11)

where a,=#*me®. The overlap energy decreases exponentially with the
separation.



For a simple cubic structure the nearest-neighbor atoms are at

pm = (i aaO:»O) > (07 i a,O) ; (O>07 i a) b (12)

so that (10) becomes

ex = —a — 2y(cos k,a + cos k,a + cos k.a) . (13)

Thus the energies are confined to a band of width 12y. The weaker the over-
lap, the narrower is the energy band. A constant energy surface is shown
in Fig. 15. For ka <1, ¢, = —a — 6y + yk®a®. The effective mass is m* =
#i*/2ya*. When the overlap integral y is small, the band is narrow and the effec-
tive mass is high.




