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Introduction

The BCS microscopic theory described in Chap. 2 gives an excellent account of
the data in those cases to which it is applicable, namely, those in which the energy
gap A is constant in space. However, there are many situations in which the entire
interest derives from the existence of spatial inhomogeneity. For example, in
treating the intermediate state of type I superconductors, we had to consider the
interface where the superconducting state joined onto the normal state. This sort
of spatial inhomogeneity becomes all-pervasive in the mixed state of type II
superconductors. In such situations, the fully microscopic theory becomes very

difficult, and much reliance is placed on the more macroscopic Ginzburg-Landau'
(GL) theory.
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Although a considerable body of work followed the appearance of the BCS
theory, serving to substantiate its predictions for various processes such as nuclear
relaxation and ultrasonic attenuation in which the energy gap and excitation
spectrum play a key role, the most exciting developments of the ensuing decade
came in another direction. This direction is epitomized by the Ginzburg-Landau
(GL) theory of superconductivity, which concentrates entirely on the supercon-
ducting electrons rather than on excitations. Already in 1950, 7 years before BCS,
Ginzburg and Landau' had introduced a complex pseudowave function  as an
order parameter for the superconducting electrons such that the local density of
superconducting electrons (as defined in the London equations) was given by

= [Y()F  (1-15)

Then, using a variational principle and working from an assumed expansion of the
free energy in powers of  and Vi, they derived a differential equation for
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which is very analogous to the Schrodinger equation for a free particle, but with a
nonlinear term. The corresponding equation for the supercurrent

e*h o*2

Jo= (WY =y W) — YA (1-17)
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was also the same as the usual quantum-mechanical one for particles of charge e*
and mass m*. With this formalism they were able to treat two features which were
beyond the scope of the London theory, namely,

I Nonlinear effects in fields strong enough to change n, (or |y |2)

2 Spatial variation of ng

A major early triumph of the theory was in handling the so-called intermediate
state of superconductors, in which superconducting and normal domains coexist
in the presence of H ~ H.. The interface between two such domains 1s shown
schematically in Fig. 1-4.
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FIGURE 1-4

Interface between superconducting and normal domains
in the intermediate state.



When first proposed, the theory appeared rather phenomenological, and its
importance was not generally appreciated, especially in the Western literature.
However, in 1959 Gor’kov! was able to show that the GL theory was in fact a
limiting form of the microscopic theory of BCS (suitably generalized to deal with
spatially varying situations), valid near T, in which  is directly proportional to
the gap parameter A. More physically, ¥ can be thought of as the wavefunction of
the center-of-mass motion of the Cooper pairs. The GL theory is now universally
accepted as a masterstroke of physical intuition which embodies in a most simple
way the macroscopic quantum-mechanical nature of the superconducting state
crucial for understanding its unique electrodynamic properties.

The Ginzburg-Landau theory introduces a characteristic length, now called
the temperature-dependent coherence length,

B h
= T2m*a(T) |17

&(T) (1-18)

which characterizes the distance over which (r) can vary without undue energy
increase. In a pure superconductor far from T;, &(T) = &,, the Pippard coherence
length; near T,., however, &(T) diverges as (T, — T)™ '/?, since « vanishes as
(T — T.). Thus these two “coherence lengths” are related but distinct.




The ratio of the two characteristic lengths defines the GL parameter

K =% (1-19)

Since /4 and & diverge in the same way at T, this dimensionless ratio is approxi-
mately independent of temperature. For typical pure superconductors 4~ 500 A
and & ~ 3000 A, so k < 1. In this case, one can see that there is a positive surface
energy associated with a domain wall between normal and superconducting mater-
ial in the intermediate state. [The qualitative argument is simply that one pays an
energetic cost ~ EH?Z/8n for the variation of i from its superconducting value to
zero, while reducing the diamagnetic energy only by ~AHZ?/8n (see Fig. 1-4).]
This positive surface energy stabilizes a domain pattern with a scale of subdivision
intermediate between the microscopic length & and the macroscopic sample size.
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As originally proposed, this theory was a triumph of physical intuition, in
which a pseudowavefunction y(r) was introduced as a complex-order parameter.
| (r) |* was to represent the local density of superconducting electrons, ny(r). The
theory was developed by applying a variational method to an assumed expansion
of the free-energy density in powers of ||* and |Vy |? leading to a pair of
coupled differential equations for Y(r) and the vector potential A(r). The result
was a generalization of the London theory to deal with situations in which n,
varied in space, and also to deal with the nonlinear response to fields strong
enough to change n,. The local approximation of the London electrodynamics
was retained, however. Although quite successful in explaining intermediate-state
phenomena, where the need for a theory capable of dealing with spatially inho-
mogeneous superconductivity was evident, this theory was generally given limited
attention in the Western literature because of its phenomenological foundation.




This situation changed in 1959 when Gor’kov'! showed that the GL theory
was in fact derivable as a rigorous limiting case of the microscopic theory, suitably

reformulated in terms of Green functions to allow treating a spatially inhomogen-

eous regime. The conditions for validity of the GL theory were shown to be a
restriction to temperatures sufficiently near 7, and to spatial variations of y and A
which were not too rapid. In this reevaluation of the GL theory, ¥/(r) turned out to
be proportional to the gap parameter A(r), both being in general complex quanti-
ties. At first it was thought that | A(r) |, found from solving the newly interpreted
GL equations, was simply a BCS gap which might vary in space or with applied
magnetic fields, or both. This led to a period in which experiments were (incor-
rectly) interpreted in this overly simple way. It has now become clear, however,
that a solution to the GL equations for a given problem is only a useful first step
toward understanding the spectral density of excitations. The key point is that
fields, currents, and gradients act as “pairbreakers” which tend to blur out the
sharp edge of the BCS gap as well as reducing the value of A.

A London Equation




The greatest value of the theory remains in treating the macroscopic beha-
vior of superconductors, in which the overall free energy is important instead of
the detailed spectrum of excitations. Thus, it will be quite reliable in predicting
critical fields and the spatial structure of ¥(r) in nonuniform situations. It also
provides the qualitative framework for understanding the dramatic supercurrent
behavior as a consequence of quantum properties on a macroscopic scale.

Although one could in principle now give a derivation of the GL theory
following Gor’kov, this would require techniques beyond the level of our presenta-
tion. Instead, we shall follow Ginzburg and Landau in phenomenologically postu-
lating the form of the theory on grounds of plausibility, and then simply appealing
to the results of microscopic theory (or experiment) to evaluate the few par-
ameters of the theory by considering simple special cases.




4-1 THE GINZBURG-LANDAU FREE ENERGY

The basic postulate of GL is that if y is small and varies slowly in space, the
free-energy density f can be expanded in a series of the form

f=totalvlP+ 510+ 5|1V - Ay
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L (4-1)

Evidently, if y = 0, this reduces properly to the free energy of the normal state

fuo + h?/8w, where f,o(T) = f,0(0) — 3yT>. We now consider the remaining three
terms describing the superconducting effects.

In the absence of fields and gradients, we have

o= fo=alyP+3B[y[* (4-2)
which can be viewed as a series expansion in powers of | |*> or n,, in which only

the first two terms are retained.’ These two terms should be adequate so long as

one stays near the second-order phase transition at 7., where the order parameter
|y > — 0.



As 1s illustrated in Fig. 4-1, two cases arise, depending on whether o is
positive or negative. If o is positive, the minimum free energy occurs at |/ |* = 0,
corresponding to the normal state. On the other hand, if « < 0, the minimum
occurs when

o
[P = Yol = — 7 (4-3)

p
where the notation y/, is conventionally used because v approaches this value
infinitely deep in the interior of the superconductor, where it is screened from any

surface fields or currents. When this value of y is substituted back into (4-2), one
finds

—H?> —o?
Js =Jn= 8n 28

using the definition of the thermodynamic critical field H..

(4-4)

Evidently oT) must change from positive to negative at T, since by
definition T, is the highest temperature at which |y |* # 0 gives a Tower free
energy than |y |*> = 0. Making a Taylor’s series expansion of o(T) about T, and
keeping only the leading term, one has

alt) =o't —1) o' >0 (4-5)
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FIGURE 4-1
Ginzburg-Landau free-energy functions for T > T (« > 0) and for T < T(x < 0).

Heavy dots indicate equilibrium positions. For simplicity, i has been taken to be
real.

where ¢t = T/T,. Note that in view of (4-4), this assumption is consistent with the
linear variation of H, with (1 — t), if § is regular at T,. Putting these temperature
variations of a and f into (4-3), we see that

[ Y [* oc (1 —1) (4-6)

near 7;. This is consistent with correlating |y |* with ng, the density of supercon-
ducting electrons in the London theory, since n, oc A2 oc (1 — t) near T,.




To make these considerations quantitative, we now consider the remaining

term in the expansion (4-1), the term dealing with fields and gradients. If we write
Y = | |e?)it takes on the more transparent form

1 e*A
vy + (o - A e[ @)
The first term gives the extra energy associated with gradients in the magnitude of

the order parameter, as in a domain wall. The second term gives the kinetic energy
assoclated with supercurrents in a gauge-invariant form. In the London gauge, ¢

2m

is constant, and this term is simply e** A% [ [*/2m*c?. Equating this to the energy
density for a London superconductor as given in (3-28), namely 4%/8nA%;, we find

m*c?

A7 | |2e*?
With the identification n¥ = |/|?, this agrees with the usual definition of the

/’{eff (4-8)

London penetration depth, except for the presence of the starred effective number,
mass, and charge values. The kinetic-energy density term can then be written as
n¥(Gm*v?), where the supercurrent velocity is given by
e*A e*A
m*v,=p, ——— = hVp — — 4-9

= Py ¢~ (4-9)
It should be noted that by writing the energy associated with the vector potential
in the simple form (4-7), we have restricted the theory to the approximation of
local electrodynamics. An expression of the sort found in (3-26) would be required

to describe properly a nonlocal superconductor.



Now let us deal with the starred effective parameters. In the original formu-
lation of the theory, it was thought that ¢* and m* would be the normal electronic
values. However, experimental data turned out to be fitted better if e* x~ 2e. The
microscopic pairing theory of superconductivity makes it unambiguous that
e* = 2e exactly, the charge of a pair of electrons. In the free-electron approxima-
tion, it would then be natural to take m* = 2m and n* = in_, where n, is the
number of single electrons in the condensate. With these conventions,

n¥e*?/m* = nye?/m, so the London penetration depth is unchanged by
the pairing.

The situation is more complicated in real metals. Band structure and
phonon “dressing ™ effects may lead to an effective mass for a single electron in the
normal state which typically differs from the free-electron mass by 50 percent.
Moreover, the most important class of applications of GL theory is to dirty
superconductors, in which A2, ~ A2({o//) > A2. These increased penetration

depths can be attributed formally to either an increase in m* or a decrease in n. . It




In view of the experimental inaccessibility of m*, we can assign it an arbi-
trary value, and it is probably most convenient to choose twice the mass of the free
electron. (This arbitrariness was emphasized by de Gennes, who suggested that
one could equally well take the mass of the sun!) With m* = 2m fixed, all varia-
tions of A, whether due to temperature, band structure, phonons, impurities, or
even nonlocal electrodynamics, are taken up by an appropriate value of | i 1P =
n¥ = 3n,. Even at T = 0 this number will no longer correspond to any obvious
integral number of electrons per atom. Rather, our point of view is that n, simply

measures that part of the oscillator strength in the sum rule

-x'.

Jo Jl(w) i = 2m

nne?

(4-10)

which is located in the superfluid response at w = 0 in the form of a term

(nnge?/2m) §(w).



Having noted that e* = 2¢,'and taking the convention that m* = 2m, we can
now evaluate the parameters of the theory by solving (4-3), (4-4), and (4-8). The
results are

2 2
2o e M me” :
Vol =i = 2 dme**k;  8me?Al, (4-11a)
e*? 28 5 "
oT) = — -y HZ(T)Ago(T) = — e’ HI(T)A&(T)  (4-11b)
4re** 167e*
B(T) = g 4H2(T)}~eff( ) = P HXT )Acff( ) (4‘116)

where e and m are now the usual free-electron values, and A, and H, are
measured values, or those computed from the-microscopic theory.



Since the true electrodynamics of superconductors is nonlocal, it is evident

that this prescription in terms of an effective L.ondon A is straightforward only
sufficiently near T, that A,(T) > &,, or in samples dirty enough that é & 7 <

A(T), that is, where the nonlocality is unimportant. It is only under these condi-
tions that the GL theory is really exact. Fortunately, the qualitative conclusions of

the theory seem to have much wider validity; semiquantitative results can usually
be obtained even when nonlocality is important by using a suitable A, such as
we computed for films, (3-29) or (3-31). For pure bulk samples, as noted above, it
is probably most appropriate to take A = A, the experimental value, if one
attempts to apply the theory far enough below T, that the nonlocality of the
electrodynamics makes A, > 4, .

It is worth noting that if we insert the empirical approximations
H.oc (1 —t*)and A2 o« (1 — ¢*) into (4-11), we find

ocl—tzfvl t
RTE e
1
B oc ~ const (4-12)




Since the theory is usually exactly valid only very near T, it is customary to carry
only the leading dependence on temperature; that is, |, |* and o are usually
taken to vary as (1 — t) and f is taken to be constant, as anticipated in our
preliminary discussion. Still, the more complete forms in (4-12) give some idea of
how the theory can be extended over a wider range of temperature, and they have
a certain amount of experimental support.

Finally, we recall that, although our discussion of (4-7) has centered on the
kinetic energy of the supercurrent, this term also describes the energy associated
with gradients in the magnitude of yy. Moreover, no additional parameters are
introduced, since gauge invariance requires a particular combination of V and A
in (4-1). Thus the coefficients in the theory are completely determined by the
values of A.(T) and H,(T). Since we showed earlier how the microscopic theory
determines these parameters, we have effectively shown how the GL theory is set
up to serve as an extension of BCS to the case of gradients and strong fields, but

with a restriction to T ~ T..




4-2 THE GINZBURG-LANDAU DIFFERENTIAL EQUATIONS

In the absence of boundary conditions which impose fields, currents, or gradients,
the free energy is minimized by having y = {__everywhere. On the other hand,
when fields, currents, or gradients are imposed,|/(r) = |(r)| €™ pdjusts itself to
minimize the overall free energy, given by the volume integral of (4-1). This

variational problem leads, by standard methods, to the celebrated GL differential
equations

o+ Bl + (”v—§A)2w=o (@-13)

2m*\ i
C ' e*h
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d m e XYY — ¥) _ &y ]
an J i curl h T (V*Vy — YyVy*) m*c,’ll WA (4-14)

e* 2 e* 2
or J=Z*~||p| hV(p—?A = e* |y | (4-14a)



where in the last step we have repeated the identification (4-9). Note that the
current expression (4-14) has exactly the form of the usual quantum-mechanical
expression for particles of mass m*, charge e*, and wavefunction ¥(r). Similarly,
apart from the nonlinear term, the first equation has the form of Schrodinger’s
equation for such particles, with energy eigenvalue —a«. The nonlinear term acts
like a repulsive potential of Y on itself, tending to favor wavefunctions y/(r) which
are spread out as uniformly as possible in space.

In carrying through the variational procedure, boundary conditions must be
provided. A possible choice, which assures that no current passes through the

surface is
%k
(f’-v » e—A)lp

=0  (4-15)

n

l C

This is the boundary condition used by GL, and it is appropriate at an insulating
surface. Using the microscopic theory, de Gennes' has shown that for a metal-
superconductor interface with no current, (4-15) must be generalized to

(fv-Sa)

= g.p (4-15a)

where b 1s a real constant. It is easily seen that if A, = 0, hb is the extrapolation
length to the point outside the boundary at which  would go to zero if it
maintained the slope it had at the surface. The value of b will depend on the nature
of the material to which contact is made, approaching zero for a magnetic mate-
rial and infinity for an insulator, with normal metals lying in between.

l c

n




4-2.1 The Ginzburg-Landau Coherence Length

To help get a feeling for the differential equation (4-13), we first consider a
simplified case in which no fields are present. Then A = 0, and we can take y to be
real, since the differential equation has only real coefficients. If we introduce a

normalized wavefunction f= Y/, where Y5 = —o/f >0, the equation be-
comes (in one dimension)

h*  d*f

2m* | o | dx?

+f=f2=0  (416)

This makes it natural to define the characteristic length &(T') for variation of by

SR SRV S PRTA
C2m*|a(T)| 11—t

E4(T)

Note that this £(T) is certainly not the same length as Pippard’s ¢, which we used
in our discussion of the nonlocal electrodynamics, since this &(T') diverges at T,
whereas the electrodynamic €& is essentially constant. In fact, on the face of it, 1t 1s
not clear why they should even be related. We retain this traditional notation,
despite its considerable power to confuse, because it is almost invariably used in
the literature, and because it does turn out that &(T') =~ &, for pure materials well
away from T,. In terms of &(T), (4-16) becomes



MLy r-2=0 (@)

The significance of £(T) as a characteristic length for variation of ¥ (or f)
can be made even more evident by considering a linearized form of (4-18), in
which we set f(x) = 1 + g(x), where g(x) < 1. Then we have, to first order in g,

Eg'x)+ (L+g)—(1+3g+-)=0

- 3)
or g—(ézg

so that g(x) ~ e* V23 (4-19)

which shows that a small disturbance of y from y/_, will decay in a characteristic
length of order &(T).



Now that we have an idea of the significance of the length &(T), let us see
what its value is. Substituting the value of o from (4-11b) into the definition (4-17),
we find

D,
- 4-20
=3 Fantitiam) |
he hc
where Dy = Py (4-21)

is the fluxoid quantum which will play an important role in our future discussions.

The fact that this £(T') is at least related to the &, of Pippard and BCS is shown by
the existence of the relation

1/2
@, = (%) L O0H0)  (422)

which follows readily from our earlier [BCS results &, = fwy/nA(0)|and H?(0)/

8n = 3N(0)A%(0), if one assumes the free-electron relation between N(0) and .
Combining (4-20) and (4-22), we can write




From this we can see that near T,

Dirty limit: At very small
mean free path /
In impure SC

A=A (&/6)"*

6(T) _ T HC(O) AL(O)
b T2 AHM ) ¢
E(T) = 0.74 a _5(;)1/2 pure  (4-24a)
E(T) = 0.855 (550_/2;52 dirty ~ (4-24b)

The precise coefficients here were determined using the exact results of BCS in the

limit of T ~ T,, namely,

At (t)
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(4-25)

(4-26a)

(4-26b)




The relation (4-24a), giving &(T') for pure superconductors, has clear validity only
in the extremely narrow temperature range near 7, in which the local electrody-
namics are valid; outside this range, the appropriate effective value of £ will be
dependent on the sample configuration. Equation (4-24b) has a much broader

range of validity for dirty superconductors, because there the local approximation
remains good.

It is also useful to introduce the famous dimensionless Ginzburg-Landau
parameter x, which is defined as the ratio of the two characteristic lengths

ieff(T) _ 2 2'I’:I_Ic("r)/lcgff(T')
&(T) D,

With the empirical approximations H, oc (1 — t*)and A~ 2 oc (1 — t*), we see that

x should vary as (1 + t2)~!. Of course this is only a rough approximation, but we

can safely conclude that x is regular at T,, and varies only slowly with tempera-

ture. Using the numerical results above, we find the following results in the pure
and dirty limits at 7:

K =

(4-27)

2.0

k =056 Lé( ) pure  (4-27a)
0
A0

x = 0.715 LE) dirty  (4-27b)

In typical pure superconductors, k < 1, but in dirty superconductors x may be
much greater than 1. As will be discussed later in more detail, the value x = 1 /\/5
separates superconductors of types I and II.



4-4 CRITICAL CURRENT OF A THIN WIRE OR FILM

Having taken a quick look at the calculation of the interface energy, in which one
immediately finds that numerical solutions are required, let us now step back and
treat a number of important simpler examples in which exact analytic solutions
are possible. In this way we will develop some familiarity with the GL theory
before returning to more complex problems.

The very simplest applications are those in which the perturbing fields and
currents are so weak that |y | =y everywhere, and the GL theory reduces to
the London theory.

A more interesting class of examples is that in which strong fields or currents
change |y | from ¥, but in which |y | has the same value everywhere. This will

be the case if the sample is a thin wire or film so oriented with respect to any
external field that any variation of |y | would need to occur in a thickness
d < ¢(T). In that case, the term in the free energy proportional to (V | | )* would
give an’excessively large contribution if any substantial variations occurred. As a
result they do not, and| we can approximate y(r) by |y |e®), where |¢| is

constant.|In this case, the expressions for the current and free-energy densities take

on the simple forms



2e

w(hwf-—A = 2e |y |2,

f=foo+ ‘ ——|w|‘*+|w|‘/

Although it is our standard convention to set m*

(4-32)

= 2m, we retain the more general

formulas here to permit other normalizations of i to be used, if desired, and also
as a reminder of the conventional nature of the parameter m*.

Let us now apply these equations to treat the case of a uniform current
density through a thin film or wire. Since the total energy due to the field term
h?/8x is less than the kinetic energy of the current by a factor of the order of the
ratio of the cross-sectional area of the conductor to A%, we can always neglect it for
a sufficiently thin conductor. Then, for a given v,, we can minimize (4-33) to find

the optimum value of |y |*. The result is

m*v?

2| o]

v =1

-]

Em*

h

)|

(4-34)



where the second form is stated in terms of ¢ and m*v,, quantities invariant under
changes in conventions. The corresponding current 1s

. .
- 2e1l/§o(1 - ;"I ;l )vs (4-35)

As indicated in Fig. 4-3, this has a maximum value when ¢J,/cv, = 0, namely,
when sm*v? = |o|/3 and |¢|*p2 = 2/3. We identify this maximum current
with the crltlcal current. Thus,

o« (1— ) | (4-36)

J—2en//oo3(2|°") } cH(T)

3f 6mA(T

where, again, the second form is entirely in terms of operatlonally significant
quantities and the indicated proportionality to (1 — ¢)*2 holds near T,. The corre-
sponding critical momentum is

3 m*

S .
A e R \/ng) (4-37)

The critical velocity itself is poorly defined, since it depends on the conventional
choice of m*.
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FIGURE 4-3 |
Variation of |y |* and of J, with the superfluid velocity v,.



It may be noted that we have taken v, rather than J oc |y |*v, as our
independent variable. This was not a capricious choice; it was necessary since we
are using the Helmholtz free energy, which is appropriate only if there are no
induced emfs to effect energy interchanges with the source of current. This corre-
sponds to specifying v, since an emf is needed to change that. If we wish to use the
current as independent variable, then we must introduce a Legendre transforma-
tion on the free energy, as we did in (3-40) in dealing with magnetic energies. The
appropriate term to subtract here to take account of work done by the generator
is m*v, + J./2e, so we could consider a Gibbs free-energy density

m*v, J,

g=f-—3, (4-384)
B m*J2 h?
or g=f"0+a|¢|2+§-'¢|4—862|d/|2+8n (4-38b)

where we have used (4-32) to eliminate v,. Minimizing this with respect to |y |?
for given J; leads to a cubic equation in |y |>. Although algebraically more
awkward, this condition is consistent with what we found above. For example, we
can write it in the form

m*J?

o= —alult - Bl (439)




whose maximum value occurs when |y |> = —%(¢/B) = %y2 , at which J; has the
critical value J, found in (4-36).
It is of interest to compare this GL critical currerit with that of the London

theory, where it is found by equating the density of kinetic energy to that of
condensation energy

s H?
— ,12 D
1n. mv? J =3
CH.
so that J. = = (4-40)

This exceeds the more exact GL result (4-36) by a factor of (3,/6/4) =-1.84
because it fails to take account of the decrease in |y |* with increasing current
given by the nonlinear treatment.

It is also of interest to compare the GL result with that of the microscopic
theory, where; of course, numerical computations must be made except in special
cases. Bardeen has given a very useful review' of such calculations. Near T, the
GL results are recovered, as expected. In the zero-temperature limit, the situation
is quite different. In the presence of a uniform velocity v, the quasi-particle ener-
gies are shifted by £k : v;. [This may be seen from (2-108) by noting that a velocity

ea(0)/mc is induced by\\:n\it”orm vector potential a(0).] Thus, the gap goes to zero
for some states when A(0)



L A(0) A
" hkp  mwmé,

(4-41)

Below this “depairing velocity,” all electrons contribute to the supercurrent, and
J; 1s strictly proportional to v,. Above this depairing velocity, some excitations
occur at zero energy, the gap drops precipitously, and the maximum possible
current is only 2 percent more than that at the velocity where depalrmg begins.
The resulting J(v,) curve for T = 0 therefore shows a linear rise followed by a
very steep drop to zero, in marked contrast with the GL result plotted in Fig. 4-3,
appropriate near T,. :

Experimental confirmation of these results is most straightforward if both
transverse dimensions of the conductor can be made small compared to both A

and £ It is then safe to take both J; and |y |* to be constant over the cross
section, as is assumed in the theory. Some of the first careful experiments on
samples of this sort were those of Hunt,” who worked on very narrow strips of a
thin evaporated film. More recently, several groups have been working with tin
“whiskers ” only about 1 um (micrometer) in diameter, generally composed of a
single crystal and having smooth surfaces, which are nearly ideal for the purpose.
Since these experiments have concentrated on the fluctuation effects giving rise to
resistance even at currents below the J. computed above, we shall defer further
discussion of them until a later chapter.



For reasons of experimental simplicity, many other measurements of critical
currents have been made on thin-film samples which are not narrow on the scale
of A or £. With these, the measured J is usually much less than (4-36) for a
‘number of reasons. First, it is somewhat difficult to make films of uniform
thickness and structure. More seriously, the electrodynamic equations cause the
supercurrent to pile up at the edges of the film because the external magnetic flux
density 1s greatest there as the flux lines circle the film strip. This effect makes the

current density nonuniform, and also emphasizes the properties of the edges of the

film, which generally are thinner and less perfect. This problem can be minimized
in three ways: (1) One can simply make the strip narrow enough so that
the product of the thickness d and the width w is less than A2; in this case, J, will be
nearly uniform even if w > A. (2) One can use a ground-plane geometry, in which
" the film under study is deposited on a larger thick superconductor with only a thin
- insulating layer in between; in this geometry, the superconducting substrate forces
the field lines to be parallel to the film, which in turn requires a uniform current
density in the film. (3)_One can use a cylindrical film, so that there are no edges,
and symmetry guarantees a uniform current density provided a concentric current

return is used. It is possible to reach critical currents within about 10 percent of
the theoretical values by any of these techniques if enough care is taken.






while if T = oo, we have the Lindhard® result that

3n ne? w?
= | — 4-10b

for w < qug,and g, = 0 for w > quv. Naturally, both of these expressions satisfy
the sum rule (4-10). Speaking qualitatively, the normal-state oscillator strength
lying at frequencies below the gap frequency w, = 2A/h will be converted to n, in
the transition to the superconducting state, while that above the gap will be
relatively unaffected. If we consider a superconductor with local electrodynamics,
so that the approximation g = 0 can be used, we see from (4-10a) that almost all
of the oscillator strength will appear as n, in a pure metal, where w,T > 1;in this
case, ng & n, and 4 & A, . On the other hand, n/n will be reduced to something of
the order of w,t ~ £/, if the metal is dirty enough to have w,t < 1. As a result,
in dirty superconductors we have A/A; = (n/n,)'? ~ (£,/£)"'?, a result obtained
more rigorously in (2-123). If we consider instead a pure, nonlocal superconduc-
tor, (4-10b) implies that n,(q)/n ~ w,/qvy =~ 1/9¢,. This q-dependent superfluid
fraction is a reflection of the fall of K(q) as 1/q in Fig. 3-2. Taking a typical value
q = 1/ for the currents in the penetration layer, this implies that 12/A%? = n/
n= A€y, or A~ (Af &y)"?, as found more rigorously in (3-13). For use in the GL
theory, which is local, one must take n, to be such an average value appropriate to
the actual penetration depth. not to 4, . The survey in this paragraph reminds us
of the power of the sum rule-energy gap argument in making simple physical
estimates of the effective superfluid density in diverse situations.



