Introduction to Solid state physics

Chapter 1

Crystal Structures
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Crystal Structures

a Periodic arrays of atoms

d Fundamental types of lattices
 Index system for crystal plans
d Simple crystal structures

1 Direct image of atomic structure

J Non-ideal crystal structures



Introduction
Solid state physics is largely concerned with crystals and electrons in crys-
tals. The study of solid state physics began in the early years of this century
following the discovery of x-ray diffraction by crystals.

When a crystal grows in a constant environment, the form develops as if

identical building blocks were added continuously (Fig. 1). The building blocks
are atoms or groups of atoms, so that a crystal is a three-dimensional periodic

array of atoms.
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In 1895, a German physicist, W. C. Roentgen discovered x-ray.
In 1912 Laue developed an elementary theory of the diffraction of x-rays by a
periodic array. In the second part, Friedrich and Knipping reported the first
experimental observations of x-ray diffraction by crystals. 2

The work proved decisively that crystals are composed of a periodic array of
atoms. The studies have been extended to include amorphous or noncrystalline
solids, glasses, and liquids. The wider field is known as|condensed matter physics.

Periodic Arrays of Atoms

An ideal crystal is constructed by the infinite repetition of identical structural
units in space. The structural unit is a single atom, comprise many atoms or
molecules.

Au
The structure of all crystals can be described in terms of a_lattice, with a group
of atoms attached to every lattice point. The group of atoms is called the_basis.

The concepts of Lattice & Basis R



DIFFRACTION OF WAVES BY CRYSTALS

Bragg Law

We study crystal structure through the diffraction of photons, ncutrons,
and electrons (Fig. 1). The diffraction depends on the crystal structure and on
the wavelength.
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Lattice Translation Vectors

The lattice is defined by three fundamental translation vectors a;, a,, as
such that the atomic arrangement looks the same in every respect when viewed
from the point r as when viewed from the point

r =r+ uia; + usas + uszas , (1)

where u,, uy, us are arbitrary integers. The set of points r’ defined by (1) for all
uy, us, us defines a lattice.

A lattice is a regular periodic array of points in space. (The analog in two
dimensions is called a net, as in Chapter 18.) A lattice is a mathematical abstrac-
tion; the crystal structure is formed when a basis of atoms is attached identically
to every lattice point. The logical relation is

LR+ HJE = lattice + basis = crystal structure . i iasiRE (2

With this definition of the primitive translation vectors, there is no cell of
smaller volume that can serve as a building block for the crystal structure.

The crystal axes a,, a,, a; form three adjacent edges of a parallelepiped. If there
are lattice points only at the corners, then it is a primitive parallelepiped.




A lattice translation operation is defined as the displacement of a crystal by
a crystal translation vector

T = uja; + usas + usas . (3)

The symmetry operations of a crystal carry the crystal structure into itself.
These include the lattice translation operations. Further, there are rotation and

reflection operations, called point operations.

Finally, there may exist compound operations made up of combined trans-
lation and point operations.



Figure 2 Portion of a crystal of an imaginary protein molecule, in a two-dimensional world. (We
picked a protein molecule because it is not likely to have a special symmetry of its own.) The atomic
arrangement in the crystal looks exactly the same to an observer at r’ as to an observer at r,
provided that the vector T which connects r’ and r may be expressed as an integral multiple of the
vectors a; and a,. In this illustration, T = —a, + 3a,. The vectors a, and a, are primitive transla-
tion vectors of the two-dimensional lattice.
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Figure 3 Similar to Fig. 2, but with protein molecules associated in pairs. The crystal translation
vectors are a; and a,. A rotation of 7r radians about any point marked X will carry the crystal into
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itself. This occurs also for equivalent points in other cells, but we have marked the points X only
within one cell.



Basis and the Crystal Structure

A basis of atoms is attached to every lattice point, with every basis identical
in composition, arrangement, and orientation.

The number of atoms in the basis may be one, or it may be more than one.

The position of the center of an atom j of the basis relative to the associated
lattice point is

r; = xa; + ya + zaz . (4)

We may arrange the origin, which we have called the associated lattice point, so
that 0 = x;, y;, z; = 1.

Primitive Lattice Cell

The parallelepiped defined by primitive axes a,, a,, a, is called a primitive cell
(Fig. 5b). A primitive cell is a type of cell or unit cell.

A primitive cell is a minimum-volume cell.

There are_many ways of choosing the primitive axes and primitive cell for a
given lattice. The number of atoms in a primitive cell or primitive basis is always
the same for a given crystal structure.



Figure 5a Lattice points of a space lattice in two dimensions|| All pairs of vectors a;, a, are
translation vectors of the lattice. But a,""’, a,""" are not primitive translation vectors because we
cannot form the lattice translation T from integral combinations of a,"’’ and a,'’"’. All other pairs
shown of a, and a; may be taken as the primitive translation vectors of the lattice. The parallelo-

grams 1, 2, 3 are equal in area and any of them could be taken as the primitive cell. The parallelo-
gram 4 has twice the area of a primitive cell.




Figure 5b Primitive cell ot a space lattice in three dimensions.



There is always one lattice point per primitive cell. If the primitive cell is
a parallelepiped with lattice points at each of the eight corners,
point is shared among eight cells, so that the total number of lattice points in
the cell is one: 8 X 3 = 1.

The volume of a parallelepiped with axes a;, a,, as is
V.= |a;*ag x ag| , (5)

The basis associated with a primitive cell is called a primitive basis.
No basis contains fewer atoms than a primitive basis contains.

Figure 6 A primitive cell may also be chosen follow-
ing this procedure: (1) draw lines to connect a given
lattice point to all nearby lattice points; (2) at the
midpoint and normal to these lines, draw new lines
or planes. The smallest volume enclosed in this way
is Ithe Wigner-Seitz primitive cell. |All space may be
filled by these cells, just as by the cells of Fig. 5.

Another way of choosing a primitive cell is shown in Fig. 6. This is known
to physicists as a|Wigner-Seitz cell.




Two-Dimensional Lattice Types

There is an unlimited number of possible lattices because there is no natural
restriction on the lengths of the lattice translation vectors or on the angle ¢ between
them. The lattice in Fig. 5a.

General lattice such as this is known as an obligue latticq and is invariant only
under rotation of = and 2 about any lattice point.

There are four distinct types of restriction, and each leads to what we may call a

special lattice type) Thus there are five distinct lattice types in two dimensions, the

oblique lattice and the four special lattices shown in Fig. 9. Bravais lattice is the
common phrase for a distinct lattice type; we say that there are five Bravais lattices

or nets in two dimensions. .
LRSS



Two - Dimensional lattices (1 oblique + 4 special )

Figure 9 Four special lattices in two dimension



Three-Dimensional Lattice Types

The point symmetry groups in three dimensions require the 14 different

lattice types listed in Table 1. The general lattice is triclinic, and there are 13
special lattices. These are grouped for convenience into systems classified ac-
cording to seven types of cells.

Table 1 The 14 lattice types in three dimensions

Number Restrictions on
of conventional eell
Svstem lattices axes and angles
EA%#EIEI/%/)‘\ Monoclinic 2 ay 7 da F g
o a=y=90°"#8
%ll’jiEIEl/éf’l Orthorhombic 4 ay ¥ da 7 dy
e E x=p=y=9
HE f—f{ Tetragonal 2 ] = da 7 da
a = ﬁ =y = 90°
£, .
ILEIEE?EI/% Cubic 3 a) = dz = a3
a=f8= ¥ = a()°
Z5 T 5 % (rhombohedral) Trigonal 1 @y = ag = a3
a= 8= y< 120° # NW°
7_\-7‘35{3% Hexagonal 1 ay, = da # ay
a= 8 =90°

y = 120°



Cubic L attices
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Figure 10 The cubic space lattices. The cells shown are the conventional cells.

Table 2 Characteristics of cubic lattices®

RIEENL )T Reail )i IRV
Simple Body-centered Face-centered
Volume, conventional cell a a a’
Lattice points per cell 1 2 4
Volume, primitive cell a’ ia® 1ad®
Lattice points per unit volume 1/a® 2/a® 4/a®
Number of nearest neighbors* 6 8 12
Nearest-neighbor distance a 3"2a/2 = 0.866a a/2'? = 0.707a
Number of second neighbors 12 6 6
Second neighbor distance 212, a a
Packing fraction” s }mV3 taV2
=0.524 =0.680 =(.740

There are three lattices in the cubic system: the simple cubic (sc) lattice, the
body-centered cubic (bcc) lattice, and the face-centered cubic (fcc) lattice.



A primitive cell of the bcc lattice is shown in Fig. 11, and the primitive
translation vectors are shown in Fig. 12.

Figure 11 Body-centered cubic lattice, showing a
primitive cell. The primitive cell shown is a rhombo-

hedron of edge 3 V3 a, and the angle between adja-
cent edges is 109°28’.

Use the Wigner Seitz cell method

Figure 12 Primitive translation vectors of the body-cen-
tered cubic lattice; these vectors connect the lattice point
at the origin to lattice points at the body centers. The
primitive cell is obtained on completing the rhombohe-

dron. In terms of the cube edge a the primitive translation
vectors are

31=fa(ﬁ+§"‘i); 32=%a(‘i+$’+i);
a3=£a(§i—$’+i) .



The primitive translation vectors of the fcc lattice are shown in Fig. 13. Primitive
cells by definition contain only one lattice point, but the conventional bcc cell
contains 2 lattice points, and the conventional fcc cell contains 4 lattice points.

In the hexagonal system the primitive cell is a right prism based on a rhombus

with an included angle of 120" i Zi
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Figure 13 The rhombohedral primitive cell of the face-cen- Figure 14 Relation of the primitive cell
tered cubic crystal. The primitive translation vectors a,, a,, a3 in the hexagonal system (heavy lines) to
connect the lattice point at the origin with lattice points at the a prism of hexagonal symmetry. Here
face centers. As drawn, the primitive vectors are: a, = as # as.
a, =%a&+9) ; a, =%ay + 2 ; a; = 3a(2 + X) . ) .
The angles between the axes are 60°. Here &, ¥, Z are the Carte- Use the ngner Seltz Ce” methOd

sian unit vectors.



Index system for crystal planes

To specify the orientation of a plane by the indices determined by the following

rules--
* Find the intercepts on the axes in terms of the lattice constants a;, as, as. The

axes may be those of a primitive or nonprimitive cell.

e Take the reciprocals of these numbers and then reduce to three integers
having the same ratio, usually the smallest three integers. The result, en-
closed in parentheses (hkl), is called the index of the plane.

33, 23,, 23,
1/3, 1/2, 1/2
2,3,3
(2,3,3)




The indices of some important planes in a cubic crystal are illustrated by Fig. 16.

(100) (110) (111)

Figure 16 Indices of important planes in a cubic crystal. The plane (200) is parallel to (100) and to (100).

(100)

The set of cube faces is {100}.

The indices (hkl) may denote a single plane or a set of parallel planes.

The |indices [uvw] of a direction in a crystal jJare the set of the smallest
integers that have the ratio of the components of a vector in the desired direc-

tion, referred to the axes.

[010] direction. In cubic crystals the direction [hkl] is perpendicular to a plane

(hkl) having the same indices, but this is not generally true in other crystal

systems.



