Chapter 3
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In this chapter we are concerned with the question: What holds a crystal
together? The attractive electrostatic interaction between the negative charges
of the electrons and the positive charges of the nuclei is entirely responsible
for the cohesion of solids. Magnetic forces have only a weak effect on cohe-

sion, and gravitational forces are negligible. Specialized terms categorize dis-
tinctive situations: exchange energy, van der Waals forces, and covalent bonds.
The observed differences between the forms of condensed matter are caused
in the final analysis by differences in the distribution of the outermost elec-

stal binding

Figure 1 The principal types of crystalline binding. In (a) neutral atoms with closed electron
shells are bound together weakly by the van der Waals forces associated with fluctuations in the
charge distributions. In (b) electrons are transferred from the alkali atoms to the halogen atoms,
and the resulting ions are held together by attractive electrostatic forces between the positive and
negative ions. In (c) the valence electrons are taken away from each alkali atom to form a commu-
nal electron sea in which the positive ions are dispersed. In (d) the neutral atoms are bound to-
gether by the overlapping parts of their electron distributions.



The cohesive energy| of a crystal is defined as the energy that must be
added to the crystal to separate its components into neutral free atoms at rest,

at infinite separation, with the same electronic configuration. The term lattice

energy|is used in the discussion of ionic crystals and is defined as the energy
that must be added to the crystal to separate its component ions into free ions
at rest at infinite separation.

See Tables 1, 2, and 3
Values of the cohesive energy of the crystalline elements are given in

Table 1. Notice the wide variation in cohesive energy between different
columns of the periodic table. The inert gas crystals are weakly bound, with
cohesive energies less than a few percent of the cohesive energies of the ele-
ments in the C, Si, Ge . . . column. The alkali metal crystals have intermediate
values of the cohesive energy. The transition element metals (in the middle
columns) are quite strongly bound. The melting temperatures (Table 2) and
bulk modulii (Table 3) vary roughly as the cohesive energies.




CRYSTALS OF INERT GASES

The inert gases form the simplest crystals. The electron distribution is
very close to that of the free atoms. Their properties at absolute zero are sum-

marized in Table 4. The crystals are transparent insulators, weakly bound, with

low melting temperatures. The atoms have very high ionization energies (see
Table 5). The outermost electron shells of the atoms are completely filled, and
the distribution of electron charge in the free atom is spherically symmetric.
In the crystal the inert gas atoms pack together as closely as possible’: the

crystal structures (Fig. 2) are all cubic close-packed (fcc), except He®
and He*.

Figure 2 Cubic close-packed (fce) crystal structure of the inert gases Ne, Ar, Kr, and Xe. The lat-
tice parameters of the cubic cells are 4.46, 5.31, 5.64, and 6.13 A, respectively, at 4 K.



"

Table 4 Properties of inert gas crystals

(Extrapolated to 0 K and zero pressure)

Parameters in

Wi Experimental Torisatia Lenne.trd-]ones
, cohesive : potential, Eq. 10
n?lghbor energy . potential
distance, Melting of free €, o,
in A k]/mol eV/atom point, K atom, eV i 10— erg in A
T O N R
He (liquid at zero pressure) 24.58 14 2.56
Ne 3.13 1.88 0.02 24.56 21.56 50 2.74
Ar 3.76 7.74 0.080 83.81 15.76 167 3.40
Kr 4.01 1.1:2 0.116 115.8 14.00 225 3.65
Xe 4.35 16.0 0.17 161.4 12.13 320 3.98

~about only 1 % of ionization potential c

R,/c ~ 1.09



What holds an inert gas crystal together? The electron distribution in the
crystal is not significantly distorted from the electron distribution around the
free atoms because not much energy is available to distort the free atom

charge distributions. The cohesive energy of an atom in the crystal is only
1 percent or less of the ionization energy of an atomic electron. Part of this

distortion gives the van der Waals interaction.

Van der Waals-London Interaction

Consider two identical inert gas atoms at a separation R large in compari-
son with the radii of the atoms. What interactions exist between the two neu-
tral atoms? If the charge distributions on the atoms were rigid, the interaction
between atoms would be zero, because the electrostatic potential of a spheri-
cal distribution of electronic charge is canceled outside a neutral atom by the
electrostatic potential of the charge on the nucleus. Then the inert gas atoms
could show no cohesion and could not condense. But the atoms induce dipole

moments in each other, and the induced moments cause an attractive interac-
tion between the atoms.
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As a model, we consider two identical linear harmonic oscillators 1 and 2
separated by R. Each oscillator bears charges e with separations x; and x,, as in
Fig. 3. The particles oscillate along the x axis. Let p, and p, denote the momenta.
The force constant is C. Then the hamiltonian of the unperturbed system is

Same m, C, and W, 9y = élr—n-p% + %Cx% + é—}—ﬁpg + %Cx% ; (1)

Each uncoupled oscillator is assumed to have the frequency w, of the
strongest optical absorption line of the atom. Thus C = mw.
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Figure 3 Coordinates of the two oscillators.
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i Let #, be the coulomb interaction energy of the two oscillators. The

geometry is shown in the figure. The internuclear coordinate is R. Then

_ 82 82 . 62 _ 62 ‘
(CGS) %1_R+R+xl—x2 R+xl R_xz’ (2)

in the approximation ooz ], 12

<R we expand (2) to obtain in lowest order:

_ 2e’x1%o
%l o R3 ¥ (3>

The total hamiltonian with the approximate form (3) for ¥, can be diago-
nalized by the normal mode transformation

1 1
e =—— o + %) 3, == %) (4)
T i Vo
or, on solving for x; and x,,
# el Pl =g —g) (5)
V2 V2

The subscripty s and a denote symmetric and antisymmetric modes of motion

Further, we have the momenta p,, p, associated with the two mo

P1

les:

el S el
\/Q (ps + pa) > Pz \/§ (Ps Pa) . (6)




The total hamiltonian #, + ¥, after the transformations (5) and (6) is
|udiga il 0 Y gL [ 1 g, T 2¢) o
%—[Qmps+2(C R3>x{|+[2mp”+2(c+ 33)1[,] . (7)

The two frequencies of the coupled oscillators are found by inspection of (7) to be

2 172 2 22 2
w=|:(Ci%)/m] =w0[li%<%)—%<ge§§>+“'], (8)

with w, given by (C/m)"?. In (8) we have expanded the square root.
E. = (n+%) ha,
The zero point energy of the system is 5%(w, + w,); because of the interac-
tion the sum is lowered from the uncoupled value 2 - 55w, by

_ - 1 W oA
AU = éﬁ(Aws a5 Awa) = —ﬁwo 2 g (@) — _E . (9)

This attractive interaction varies as the minus sixth power of the separation of

the two oscillators.




This is called the van der Waals interaction, known also as the London in-
teraction or the induced dipole-dipole interaction. It is the principal attractive
interaction in crystals of inert gases and also in crystals of many organic mole-
cules. The interaction is a quantum effect, in the sense that AU — 0 as & — 0.
Thus the zero point energy of the system is lowered by the dipole-dipole cou-
pling of Eq. (3). The van der Waals interaction does not depend for its exis-
tence on any overlap of the charge densities of the two atoms.

An approximate value of the constant A in (9) for identical atoms is given
by Aiwya®, where fw, is the energy of the strongest optical absorption line and
a is the electronic polarizability (Chapter 15).



|
Repulsive Interaction ‘

As the two atoms are brought together, their charge distributions gradually
overlap (Fig. 4), thereby changing the electrostatic energy of the system. At
sufficiently close separations the overlap energy is repulsive, in large part be-
cause of the|Pauli exclusion principle.|The elementary statement of the
principle is that two electrons cannot have all their quantum numbers equal.
When the charge distributions of two atoms overlap, there is a tendency for
electrons from atom B to occupy in part states of atom A already occupied by
electrons of atom A, and vice versa.

Figure 4 Electronic charge distribu-
tions overlap as atoms approach. The
solid circles denote the nuclei.



The Pauli principle prevents multiple occupancy, and electron distribu-
tions of atoms with closed shells can overlap only if accompanied by the partial
promotion of electrons to unoccupied high energy states of the atoms. Thus
the electron overlap increases the total energy of the system and gives a repul-
sive contribution to the interaction. An extreme example in which the overlap
is complete is shown in Fig. 5.

Q + Q
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Figure 5 The effect of Pauli principle on the repulsive energy: in an extreme example, two hydro-
gen atoms are pushed together until the protons are almost in contact. The energy of the electron
system alone can be taken from observations on atomic He, which has two electrons. In (a) the elec-
trons have antiparallel spms and the Pauli principle has no effect: the electrons are bound by
—78.98 eV. l: th i principle f the promotion of an electron from
a 1s 1 orbital of H to a 2s 7 orbital of He. The electrons now are bound by -59.38 eV, less than (a)

by 19.60 eV. This is the amount by which the Pauli principle has increased the repulsion. We have
omitted the repulsive coulomb energy of the two protons, which is the same in both (a) and (b).

(a)

oo Total electron
energy: —78.98 eV
He
1sT1sd

Total spin zero

(b)
Total electron
energy: —59.38 eV

IsT2sT
Total spin one




We make no attempt here to evaluate the repulsive interaction” from first
principles. Experimental data on the inert gases can be fitted well by an empirical

repulsive potential of the form B/R'*, where B is a positive constant, when used

together with a long-range attractive potential of the form of (9). The constants A
and B are empirical parameters determined from independent measurements
made in the gas phase; the data used include the virial coefficients and the viscos-
ity. It is usual to write the total potential energy of two atoms at separation R as

12 6
-l (]

where € and o are the new parameters, with 4e0® = A and 4ec'> = B. The
potential (10) is known as the Lennard-Jones potential, Fig. 6. The force
between the two atoms is given by —dU/dR. Values of € and o given in Table 4
can be obtained from gas-phase data, so that calculations on properties of the
solid do not involve disposable parameters.

Other empirical forms for the repulsive interaction are widely used, in par-
ticular the exponential form A exp(—R/p), where p is a measure of the range of
the interaction. This is generally as easy to handle analytically as the inverse
power law form.
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Figure 6 Form of the Lennard-Jones potential
atoms. The minimum occurs at R/ = 26 = 1.12. Notice how steep the curve is i
and how flat it is outside the minimum. —€: = =




Equilibrium Lattice Constants

If we neglect the kinetic energy of the inert gas atoms, the cohesive en-

ergy of an inert gas crystal is given by summing the Lennard-Jones potential
(10) over all pairs of atoms in the crystal. If there are N atoms in the crystal,
the total potential energy is

12 6
Uy = sN(4€)| > ")— (")]
: )[; (PUR ; pyR s

where pyR is the distance between reference atom i and any other atom j, ex-
pressed in terms of the nearest-neighbor distance R. The factor ; occurs with
the N to compensate for counting twice each pair of atoms.

The summations in (11) have been evaluated, and for the fcc structure

>/'p; 2 =12.13188 ; E'p*ﬁ = 14.45392 . (12)
J
There are 12 nearest-neighbor sites in the fcc structure; we see that the series
are rapidly converging and have values not far from 12. The nearest neighbors

contribute most of the interaction energy of inert gas crystals. The corre-
sponding sums for the hep structure are 12.13229 and 14.45489.



If we take U, in (11) as the total energy of the crystal, the equilibrium
value R, is given by requiring that U, be a minimum with respect to variations
in the nearest-neighbor distance R:

12 6

i —2N€|:(12)(12.13)-10-{-E — (6)(14.45) g—] , (13)

dR

whence

Ry/o=1.09 , (14)

the same for all elements with an fcc structure. The observed values of Ry/o,
using the independently determined values of o given in Table 4, are:

Ne Ar Kr Xe
Ry/o 1.14 1] 1.10 1.09 .

The agreement with (14) is remarkable. The slight departure of Ry/o for the
lighter atoms from the universal value 1.09 predicted for inert gases can be ex-
plained by zero-point quantum effects. From measurements on the gas phase
we have predicted the lattice constant of the crystal.




Cohesive Energy

The cohesive energy of inert gas crystals at absolute zero and at zero pres-
sure is obtained by substituting (12) and (14) in (11):

U,(R) = 2Ne [(12.13)(%)12 ~ (14.45)(%)6] ; (15)

and, at R = R,,
Uiot(Ro) = —(2.15)(4NEe) , (16)

the same for all inert gases. This is the calculated cohesive energy when the
atoms aré at rest. Quantum-mechanical corrections act to reduce the binding
by 28, 10, 6, and 4 percent of Eq. (16) for Ne, Ar, Kr, and Xe, respectively.




"

The heavier the atom, the smaller the quantum correction. We can under-
stand the origin of the quantum correction by consideration of a simple model
in which an atom is confined by fixed boundaries. If the particle has the quan-
tum wavelength A, where A is determined by the boundaries, then the particle
has kinetic energy p*/2M = (h/A)*/2M with the de Broglie relation p = h/A for
the connection between the momentum and the wavelength of a particle. On
this model the quantum zero-point correction to the energy is inversely pro-
portional to the mass. The final calculated cohesive energies agree with the ex-
perimental values of Table 4 within 1 to 7 percent.

L=n (1/2)
Aol




