"

ELASTIC WAVES IN CUBIC CRYSTALS

By considering as in Figs. 18 and 19 the forces acting on an element of
volume in the crystal we obtain the equation of motion in the x direction
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here p is the density and u is the displacement in the x direction. There are
similar equations for the y and z directions. From (38) and (50) it follows that
for a cubic crystal ~ The X, X,, and X, are substituted from egs. (38) and (50) as:
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here the v, y, z directions are parallel to the cube edges. Using the definitions
(31) and (32) of the strain components we have
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where u, v, w are the components of the displacement R as defined by (29).
Eqg. of motion in X direction

Xx = Cllexx+ Clzeyy + C12ezz

Yy = C44exy
= Zx

XZ

= C44ezx
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Figure 18 Cube of volume Ax Ay Az acted
on by a stress —X,(x) on the face at x, and

5]
X (x + Ax) = X, (x) + —a%- Ax on the parallel
face at x+ Ax. The net force is

o)
(a—f Ax)Ay Az. Other forces in the x direction

arise from the variation across the cube of
the stresses X, and X, which are not shown. The
net x component of the force on the cube is

X

_ aXx+aXy+aXz.
T\or oy oz

)AxAyAz.

The force equals the mass of the cube times
the component of the acceleration in the x
direction. The mass is p Ax Ay Az, and the
acceleration is 8*u/at>.

Figure 19 If springs A and B are stretched equally, the block between them experiences no net
force. This illustrates the fact that a uniform stress X, in a solid does not give a net force on a vol-
ume element. If the spring at B is stretched more than the spring at A, the block between them

will be accelerated by the force X(B) — X,(A).
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Similarly,

The corresponding equations of motion for 0%v/0t> and 0*w/9t> are found

directly from (57a) by symmetry:

) > (57b)
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We now look for simple special solutions of these equations.
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Waves in the [100] Direction

One solution of (57a) is given by a longitudinal wave

u =ugexp [i(Kx — wt)] , (58)
where u is the x component of the particle displacement. Both the wavevector
and the particle motion are along the x cube edge. Here K=2m/A is the

wavevector and w = 27y is the angular frequency. If we substitute (58) into

(57a) we find

Wlp =GR Longitudinal &t)f7 (s9)

thus the velocity w/K of a longitudinal wave in the [100] direction is

g = VA = a)/K e (Cll/p)l/2 ; (60)



" N

Consider a transverse or shear wave with the wavevector along the x cube
edge and with the particle displacement v in the y direction:

v =0y exp [i(Kx — wt)] . (61)
On substitution in (57b) this gives the dispersion relation
w’p = CyukK® ; (62)
thus the velocity w/K of a transverse wave in the [100] direction is

s=@P)m . | Transverse f&)f7 (63)

The identical velocity is obtained if the particle displacement is in the z direc-
tion. Thus for K parallel to [100] the two independent shear waves have equal
velocities. This is not true for K in a general direction in the crystal.




Waves in the [110] Direction

There is a special interest in waves that propagate in aface diagonal direc-
tion of a cubic crystal, because the three elastic constants can be found simply

from the three propagation velocities in this direction.

Consider a shear wave that propagates in the xy plane with particle dis-
(i) placement w in the z direction

w = w, exp [{(Kx + Ky~ wt)] , (64)

whence (57¢) gives

w’p = Cy (K +K)) :@(2 | Transverse (65)

independent of propagation direction in the plane.

(ii) Consider other waves that propagate in the xy plane with particle motion
in the xy plane: let

u = ug exp [i(Kx + Ky — wt)] ; = vy exp [i(Kx + Ky~ wt)] . (66)
From (57a) and (57b),

w’pu = (Cy; K3 + CMKZ)U' Gt C44>K.\-Ky0 ;

67)
w’pv = (C11K§ +C Ko + (Cpp + C44)KxKyu - (



This pair of equations has a particularly simple solution for a wave in the [110]
direction, for which K, =K, = K/V2 . The condition for a solution is that the
determinant of the coefficients of u and v in (67) should equal zero:

’ —w’p+ -;—(CH + C K> 5(Cis+ Gk 5 (6)
%(Clz 5 C44)K2 _w2P 5 '512<C11 £ C4:4)K2
This equation has the roots
w’p = 3(Cn+Cit2C)K* ; w’p= 3(C1i —Cr)K* . (69)

The first root describes a longitudinal wave; the second root describes a
shear wave. How do we determine the direction of particle displacement? The
first root when substituted into the upper equation of (67) gives

%(Cn +Cppt+ 2C44)K2u o %(Cu g C44)K2U T %(Clsz +: C44)K20 ; (70)

Longitudinal
whence the displacement components satisfy_u = v. Thus the particle dis-

placement is along [110] and parallel to the K vector (Fig. 20). The second
root of (44) when substituted into the upper equation of (67) gives

é(cu - C12)K2u = %(Cn T C44)K2u T é(clz + C44)K20 ) (71)
Transverse “
whence u = —v. The particle displacement is along [110] and perpendicular to

the K vector.
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Figure 20 Effective elastic constants for the three modes of elastic waves in the principal propa-
gation directions in cubic crystals. The two transverse modes are degenerate for propagation in
the [100] and [111] directions.

There are three normal modes of wave motion in a crystal for a given
magnitude and direction of the wavevector K. In general, the polarizations
(directions of particle displacement) of these modes are not exactly parallel or

perpendicular to K. In the special propagation directions [100], [111], and
[110] of a cubic crystal two of the three modes for a given K are such that the
particle motion is exactly transverse to K and in the third mode the motion
is exactly longitudinal (parallel to K). The analysis is much simpler in these

special directions than in general directions.



N .- Selected values of the adiabatic elastic stiffness constants of cubic crystals

at low temperatures and at room temperature are given in Table 11. Notice the
general tendency for the elastic constants to decrease as the temperature is in-
creased. Further values at room temperature alone are given in Table 12.

Table 11 Adiabatic elastic stiffness constants of cubic crystals
at low temperature and at room temperature

The values given at 0 K were obtained by extrapolation of measurements carried out
down to 4 K. The table was compiled with the assistance of Professor Charles S. Smith.

Stiffness constants, in 10'* dyne/cm?® (10"'N/m?)
Cn Cis Cu Temperature, K

Density, g/cm3

W 5.326 2.049 1.631 0 19.317
5.233 2.045 1.607 300 —
Ta 2.663 1.582 0.874 0 16.696
2.609 1.574 0.818 300 —
Cu 1.762 1.249 0.818 0 9.018
1.684 1.214 0.754 300 -
Ag 1.315 0.973 0.511 0 10.635
1.240 0.937 0.461 300 —
Au 2.016 1.697 0.454 0 19.488
1.923 1.631 0.420 300 —
Al 1.143 0.619 0.316 0 2.733
1.068 0.607 0.282 300 -
K 0.0416 0.0341 0.0286 4
0.0370 0.0314 0.0188 295
Pb 0.555 0.454 0.194 0 11.599
0.495 0.423 0.149 300 -
Ni 2.612 1.508 1.317 0 8.968
2.508 1.500 1.235 300 -
Pd 2.341 1.761 0.712 0 12.132
2.271 1,761 0717 300 —
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Table 12 Adiabatic elastic stiffness constants of several
cubic crystals at room temperature or 300 K

Stiffness constants, in 10'* dyne/cm? or 10" N/m®

Cll Cl2 C44
R S R S T
Diamond 10.76 125 5.76
Na 0.073 0.062 0.042
L 0.135 0.114 0.088
Ge 1.285 0.483 0.680
Si 1.66 0.639 0.796
GaShb 0.885 0.404 0.433
InSb 0.672 0.367 0.302
MgO 286 0.87 1.48
NaCl 0.487 0.124 0.126
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