Chapter 4: Phonons I
Crystal Vibrations
OUTLINES

- Vibrations of crystals with monatomic basis
- Two atoms per primitive basis
- Quantization of elastic waves
- Phonon momentum
- Elastic scattering of phonons
Major Elementary Excitation in Solids

<table>
<thead>
<tr>
<th>Name</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electron</td>
<td></td>
</tr>
<tr>
<td>Photon</td>
<td>Electromagnetic wave</td>
</tr>
<tr>
<td>Phonon</td>
<td>Elastic wave</td>
</tr>
<tr>
<td>Plasmon</td>
<td>Collective electron wave</td>
</tr>
<tr>
<td>Magnon</td>
<td>Magnetization wave</td>
</tr>
<tr>
<td>Polaron</td>
<td>Electron + elastic deformation</td>
</tr>
<tr>
<td>Exciton</td>
<td>Polarization wave</td>
</tr>
</tbody>
</table>

Figure 1 Important elementary excitations in solids.
Displacement of Planes of Atoms in a Longitudinal Wave

U_s is defined as the displacement for the plane s from its equilibrium position.

$U_s \parallel \vec{K}$

Longitudinal wave

Figure 2 (Dashed lines) Planes of atoms when in equilibrium. (Solid lines) Planes of atoms when displaced as for a longitudinal wave. The coordinate u measures the displacement of the planes.
Displacement of Planes of Atoms in a *Transverse* Wave

Figure 3 Planes of atoms as displaced during passage of a transverse wave.
The equation of motion of the plane s is

$$M \frac{d^2 u_s}{dt^2} = C(u_{s+1} + u_{s-1} - 2u_s) ,$$

With time dependence, $u = u \exp(-i\omega t)$

$$-M\omega^2 u_s = C(u_{s+1} + u_{s-1} - 2u_s)$$

By the traveling wave solution for a periodic set of atomic planes with a spacing of "a", $u_s = u \exp(isKa)$

$$u_{s\pm 1} = u \exp(isKa) \exp(\pm iKa) ,$$

Hooke’s Law

- We assume the elastic response of the crystal is a linear function of the forces.
- The elastic energy is a quadratic function of the relative displacement of any two points in the crystal.
- **Hooke’s Law**: The force exerted on the plane s as caused by the displacement of the plane $s+p$ is directly proportional to the difference of the displacement $u_{s+p} - u_s$. For nearest neighbor interaction, $p = \pm 1$
- Hence, the total force on plane s from planes $s+1$, and $s-1$ is

$$F_s = C(u_{s+1} - u_s) + C(u_{s-1} - u_s)$$

C: force constant between nearest neighbor planes for one atom in the plane.
At the first Brillouin zone boundary, $K = \frac{\pi}{a}$, and $-\frac{\pi}{a}$,

$$-\omega^2 Mu \exp(isKa)$$

$$= Cu \{\exp[i(s + 1)Ka] + \exp[i(s - 1)Ka] - 2 \exp(isKa)\} \ . \ (5)$$

$$\omega^2 M = -C[\exp(iKa) + \exp(-iKa) - 2] \ . \ (6)$$

$$\omega^2 = (2C/M)(1 - \cos Ka) \ . \ (7)$$

At the first Brillouin zone boundary, $K = \frac{\pi}{a}$, and $-\frac{\pi}{a}$,

$$d\omega^2/dK = (2Ca/M) \sin Ka = 0 \ \ \ (8)$$

$$\omega^2 = (4C/M) \sin^2 \frac{1}{2} Ka \ ; \quad \omega = (4C/M)^{1/2} |\sin \frac{1}{2} Ka| \ . \ (9)$$
Figure 4 Plot of ω versus K. The region of $K \ll 1/a$ or $\lambda \gg a$ corresponds to the continuum approximation; here ω is directly proportional to K.

$$\frac{\omega}{(4C/M)^{1/2}} = \sin \frac{1}{2} Ka$$
The meaningful range of K is only inside the first Brillouin Zone of the linear lattice.

\[
\frac{u_{s+1}}{u_s} = \frac{u \exp[i(s + 1)Ka]}{u \exp(isKa)} = \exp(iKa) \quad \text{for} \quad -\pi < Ka < \pi
\]

\[-\pi/a < K < \pi/a\] (10)

\[
K' = K - 2n \pi/a = K - nG
\]

We can always subtract a reciprocal lattice vector G from K to become K', to be inside the first Brillouin zone. “Reduced zone scheme!”

At the zone boundary, $K_{\text{max}} = \pi/a$, and $-\pi/a$

\[
u_s = u \exp(\pm is\pi) = u (-1)^s \quad .
\] (12)

This is not a traveling wave, but a **standing wave**; alternating atoms oscillate in opposite phases. U_s equals to u or $-u$, depending on s is an even, or odd integer.
Reciprocal Lattice Vector

To proceed further with the Fourier analysis of the electron concentration we must find the vectors \mathbf{G} of the Fourier sum $\Sigma n_{\mathbf{G}} \exp(i\mathbf{G} \cdot \mathbf{r})$ as in (9).

We construct the axis vectors \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 of the reciprocal lattice:

$$
\mathbf{b}_1 = 2\pi \frac{\mathbf{a}_2 \times \mathbf{a}_3}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}; \quad \mathbf{b}_2 = 2\pi \frac{\mathbf{a}_3 \times \mathbf{a}_1}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}; \quad \mathbf{b}_3 = 2\pi \frac{\mathbf{a}_1 \times \mathbf{a}_2}{\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3}.
$$

(13)

If \mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3 are primitive vectors of the crystal lattice, then \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 are primitive vectors of the reciprocal lattice. Each vector defined by (13) is orthogonal to two axis vectors of the crystal lattice. Thus \mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3 have the property

$$
\mathbf{b}_i \cdot \mathbf{a}_j = 2\pi \delta_{ij},
$$

(14)

where $\delta_{ij} = 1$ if $i = j$ and $\delta_{ij} = 0$ if $i \neq j$.

Points in the reciprocal lattice are mapped by the set of vectors

$$
\mathbf{G} = v_1 \mathbf{b}_1 + v_2 \mathbf{b}_2 + v_3 \mathbf{b}_3,
$$

(15)

where v_1, v_2, v_3 are integers. A vector \mathbf{G} of this form is a reciprocal lattice vector.
Reciprocal Lattice to sc Lattice

The primitive translation vectors of a simple cubic lattice may be taken as the set

\[
\mathbf{a}_1 = a\hat{\mathbf{x}}; \quad \mathbf{a}_2 = a\hat{\mathbf{y}}; \quad \mathbf{a}_3 = a\hat{\mathbf{z}}. \tag{27a}
\]

Here \(\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}\) are orthogonal vectors of unit length. The volume of the cell is \(\mathbf{a}_1 \cdot \mathbf{a}_2 \times \mathbf{a}_3 = a^3\). The primitive translation vectors of the reciprocal lattice are found from the standard prescription (13):

\[
\mathbf{b}_1 = (2\pi/a)\hat{\mathbf{x}}; \quad \mathbf{b}_2 = (2\pi/a)\hat{\mathbf{y}}; \quad \mathbf{b}_3 = (2\pi/a)\hat{\mathbf{z}}. \tag{27b}
\]

Here the reciprocal lattice is itself a simple cubic lattice, now of lattice constant \(2\pi/a\).

The boundaries of the first Brillouin zones are the planes normal to the six reciprocal lattice vectors \(\pm \mathbf{b}_1, \pm \mathbf{b}_2, \pm \mathbf{b}_3\) at their midpoints:

\[
\pm \frac{1}{2} \mathbf{b}_1 = \pm (\pi/a)\hat{\mathbf{x}}; \quad \pm \frac{1}{2} \mathbf{b}_2 = \pm (\pi/a)\hat{\mathbf{y}}; \quad \pm \frac{1}{2} \mathbf{b}_3 = \pm (\pi/a)\hat{\mathbf{z}}. \tag{28}
\]

The six planes bound a cube of edge \(2\pi/a\) and of volume \((2\pi/a)^3\); this cube is the first Brillouin zone of the sc crystal lattice.
Group Velocity

The transmission velocity of a wave packet is the group velocity

\[v_g = \frac{d\omega}{dK} , \]

or

\[v_g = \text{grad}_K \omega(K) , \]

(13)

From Eq. 9,

\[v_g = (Ca^2/M)^{1/2} \cos \left(\frac{1}{2} Ka \right) . \]

(14)

At zone boundary, \(K = \pi/a \), \(V_g = 0 \) for standing wave

At the zone center, \(Ka \ll 1 \), the continuum approximation

\[\omega^2 = (C/M)K^2a^2 . \]

(15)

\[v_g = (C/M)^{1/2} a \quad V_g \sim \text{is nearly a constant} \]

See Figure 6
Figure 6 Group velocity v_g versus K, for model of Fig. 4. At the zone boundary $K = \pi/a$ the group velocity is zero.
The Traveling Wave Description of the Atomic Displacement in a linear lattice

\[\lambda / 2 > a \]

\[\lambda > 2a \]

\[K < \pi / a \]

Figure 5 The wave represented by the solid curve conveys no information not given by the dashed curve. Only wavelengths longer than \(2a\) are needed to represent the motion.

\text{a: lattice spacing}
Derivation of Force Constant from Experiment

For longer range force, we include \(p \) nearest planes of contributions to \(\omega \)

\[
\omega^2 = \frac{2}{M} \sum_{p>0} C_p \left(1 - \cos pKa\right).
\]
(16a)

We times \(M \cos rKa \) term on both sides, and integrate over \(K \)

\[
M \int_{-\pi/a}^{\pi/a} dK \omega_k^2 \cos rKa = 2 \sum_{p>0} C_p \int_{-\pi/a}^{\pi/a} dK \left(1 - \cos pKa\right) \cos rKa
\]

\[
= -2\pi C_r/a.
\]
(16b)

Note the integral vanishes, except for \(p = r \), and that equals to \(-\pi/a\)

\[
C_p = -\frac{Ma}{2\pi} \int_{-\pi/a}^{\pi/a} dK \omega_k^2 \cos pKa
\]
(17)

From experimentally measured \(\omega_K \), we will derive \(C_p \)
Displacement of a Diatomic Linear Crystal Structure

Here \(M_1 > M_2 \)

Figure 9 A diatomic crystal structure with masses \(M_1, M_2 \) connected by force constant \(C \) between adjacent planes. The displacements of atoms \(M_1 \) are denoted by \(u_{s-1}, u_s, u_{s+1}, \ldots \), and of atoms \(M_2 \) by \(v_{s-1}, v_s, v_{s+1} \). The repeat distance is \(a \) in the direction of the wavevector \(K \). The atoms are shown in their undisplaced positions.

Considering only nearest neighbor interaction, force constant \(C \) are identical between all pairs of near-neighbor planes.
Equation of Motion for a Diatomic Linear Crystal

\[M_1 \frac{d^2 u_s}{dt^2} = C(u_s + u_{s-1} - 2u_s) ; \]
\[M_2 \frac{d^2 v_s}{dt^2} = C(u_{s+1} + u_s - 2v_s) . \]

Traveling wave solution

\[
\begin{align*}
 u_s &= u \exp(isKa) \exp(-i\omega t) ; \\
 v_s &= v \exp(isKa) \exp(-i\omega t) .
\end{align*}
\]

\(a\) as the distance between nearest identical planes, but not nearest neighbor planes.

\[-\omega^2 M_1 u = Cv[1 + \exp(-iKa)] - 2Cu ; \]
\[-\omega^2 M_2 v = Cu[\exp(iKa) + 1] - 2Cv . \]
\(\omega \text{ vs } K \text{ for a Diatomic Linear Crystal} \)

Solution exists only if the determinant of the coefficients vanishes

\[
\begin{vmatrix}
2C - M_1 \omega^2 & -C[1 + \exp(-iK\alpha)] \\
-C[1 + \exp(iK\alpha)] & 2C - M_2 \omega^2
\end{vmatrix} = 0 ,
\]

(21)

\[M_1 M_2 \omega^4 - 2C(M_1 + M_2) \omega^2 + 2C^2(1 - \cos K\alpha) = 0 .\]

(22)

At \(K\alpha \ll 1 \), at the zone center

\[\omega^2 \approx 2C \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \quad \text{(optical branch)} ;\]

(23)

Nearly a constant with \(K \)

\[\omega^2 \approx \frac{1}{2C} \frac{K^2 a^2}{M_1 + M_2} \quad \text{(acoustical branch)} .\]

(24)

Nearly linear with \(K \)

At \(K\alpha = \rho, -\rho \) at the zone boundary

\[\omega^2 = \frac{2C}{M_1} ; \quad \omega^2 = \frac{2C}{M_2} .\]

(25)
Optical and Acoustic Branches of the Dispersion for a Diatomic Linear Lattice

\[\left[2C \left(\frac{1}{M_1} + \frac{1}{M_2} \right) \right]^{1/2} \]

Figure 7 Optical and acoustical branches of the dispersion relation for a diatomic linear lattice, showing the limiting frequencies at \(K = 0 \) and \(K = K_{\text{max}} = \pi/a \). The lattice constant is \(a \).
Figure 8a Phonon dispersion relations in the [111] direction in germanium at 80 K. The two TA + LA phonon branches are horizontal at the zone boundary position, $K_{\text{max}} = (2\pi/a)(\frac{1}{2} \frac{1}{2} \frac{1}{2})$. The LO and TO branches coincide at $K = 0$; this also is a consequence of the crystal symmetry of Ge. The results were obtained with neutron inelastic scattering by G. Nilsson and G. Nelin.
[111] Phonon Dispersion in KBr

Figure 8b Dispersion curves in the [111] direction in KBr at 90 K, after A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W. Cochran. The extrapolation to $K = 0$ of the TO, LO branches are called ω_T, ω_L.
Transverse Optical and Transverse Acoustic Waves of a Diatomic Linear Lattice

For $K = 0$, optical branch

$$
\frac{u}{v} = -\frac{M_2}{M_1}.
$$

For $K = 0$, acoustic branch, $u = v$

Center of mass is fixed like a dipole as easily excited by E field in the optical wave.

For $K = 0$, acoustic branch, $u = v$

The atoms move in phase like acoustic wave in long wavelength.

Figure 10 Transverse optical and transverse acoustical waves in a diatomic linear lattice, illustrated by the particle displacements for the two modes at the same wavelength.
Quantization of Elastic Waves

The quantum of lattice vibration energy is called phonon, and the quantum number is denoted as n. The elastic waves in crystals are made of phonons.

$$\epsilon = (n + \frac{1}{2})\hbar \omega$$ \hspace{1cm} (27)

$$u = u_o \cos Kx \cos \omega t$$ for a standing wave

The time average kinetic energy is

$$\frac{1}{8} \rho V \omega^2 u_0^2 = \frac{1}{2}(n + \frac{1}{2})\hbar \omega$$ \hspace{1cm} (28)

$$u_0^2 = 4(n + \frac{1}{2})\hbar / \rho V \omega$$ \hspace{1cm} (29)

The sign of ω is usually positive; for imaginary ω, the crystal is unstable. An optical mode with ω close to zero is called a soft mode.
Physical momentum of a crystal is
\[
p = M \left(\frac{d}{dt} \right) \sum u_s
\]
(30)

\[
p = M \left(\frac{du}{dt} \right) \sum_s \exp(isKa) =
M \left(\frac{du}{dt} \right) \left[1 - \exp(iN\!Ka) \right] / \left[1 - \exp(i\!Ka) \right]
\]
(31)

\[
\sum_{s=0}^{N-1} x^s = (1 - x^N) / (1 - x)
\]
(32)

For \(K = \pm 2\pi r/Na \), \(\exp(i\!N\!Ka) = \exp(\pm i 2\pi r) = 1 \)

\[
p = M \left(\frac{du}{dt} \right) \sum_s \exp(is\!Ka) = 0
\]
(33)

The physical momentum of a crystal is zero.
Phonon Momentum

Elastic scattering of photons by a crystal

\[k' = k + G \quad , \quad (34) \]

For inelastic photon scattering, it creates a phonon momentum \(K \)

\[k' + K = k + G \quad . \quad (35) \]

For absorption of a phonon \(K \)

\[k' = k + K + G \quad . \quad (36) \]

Inelastic neutron scattering by phonons to obtain \(\omega(K) \)

\[k + G = k' \pm K \quad , \quad (37) \]

\[\frac{\hbar^2 k^2}{2M_n} = \frac{\hbar^2 k'^2}{2M_n} \pm \hbar \omega \quad , \quad (38) \]
Figure 11 The dispersion curves of sodium for phonons propagating in the [001], [110], and [111] directions at 90 K, as determined by inelastic scattering of neutrons, by Woods, Brockhouse, March and Bowers.
SUMMARY

- The quantum unit of a crystal vibration is a phonon. If the angular frequency is ω, the energy of the phonon is $\hbar \omega$.

- When a phonon of wavevector \mathbf{K} is created by the inelastic scattering of a photon or neutron from wavevector \mathbf{k} to \mathbf{k}', the wavevector selection rule that governs the process is

$$\mathbf{k} = \mathbf{k}' + \mathbf{K} + \mathbf{G},$$

where \mathbf{G} is a reciprocal lattice vector.

- All elastic waves can be described by wavevectors that lie within the first Brillouin zone in reciprocal space.

- If there are p atoms in the primitive cell, the phonon dispersion relation will have 3 acoustical phonon branches and $3p - 3$ optical phonon branches.
Chapter 4

- Problem set
 - No. 1, 3, and 4.

- Due 11/2, Wed. class