
Chapter 7 
 

Energy Bands 



Free Electron Model (Sommerfeld): 

Success:  

• Heat capacity  

• Thermal conductivity  

• Magnetic susceptibility  

• Electrodynamics of metals 

Failure:  

• Distinction between metals,  

  semimetals, and insulators. 

• Positive Hall coefficient 

• Magneto-transport 





Free Electron Model 

Brief Review: 



    To understand the difference between insulators and conductors, 

we must extend the free electron model to take account of the 

periodic lattice of the solid. The possibility of a band gap is the 

most important new property that emerges. 

    The electrons respond to applied electric or magnetic fields as if 

the electrons were endowed with an effective mass m*, which may 

be larger or smaller than the free electron mass, or may even be 

negative. Electrons in crystals respond to applied fields, as if 

endowed with negative or positive charges, -e or +e, and herein 

lies the explanation of the negative and positive values of the Hall 

coefficient. 



Nearly Free Electron Model 

for a 1-D linear lattice. 

    The band structure of a crystal can often be explained by the nearly free 

electron model for which the band electrons are treated as perturbed only 

weakly by the periodic potential of the ion cores. This model answers almost 

all the qualitative questions about the behavior of electrons in metals. 

     We know that Bragg reflection is a characteristic feature of wave 

propagation in crystals. Bragg reflection of electron waves in crystals is 

the cause of energy gaps.  (At Bragg reflection, wavelike solutions of the 

Schrodinger equation do not exist, as in Fig. 2.)  These energy gaps are of 

decisive significance in determining whether a solid is an insulator or a 

conductor. 

     We explain physically the origin of energy gaps in the simple problem 

of a linear solid of lattice constant a 



Free Electron Model Nearly Free Electron Model 

Solutions in 1-D 

        The Bragg condition (k + G)2 = k2 for diffraction of a wave of wavevector 

k becomes in one dimension 

                   k = ± 
1

2
 G = ± n𝜋/a,                                                    (4) 

Where G = 2𝜋n/a is a reciprocal lattice vector and n is an integer.  The first 

reflections and the first energy gap occur at k = ± 𝜋/a.  The region in k 

space between - 𝜋/a  and 𝜋/a is the first Brillouin zone of this lattice.  

Other energy gaps occur for other values of the integer n.  



Standing wave solutions 





Standing waves 

 cos2x/a  sin2x/a 
charge density 

a constant 





roughly as U(x) = - U cos2x/a   (negative, with a period of a) 

See Fig. 3 
-U 

a 

- 



Felix Bloch  

(1905-1983, Swiss) 
Awarded the 1952 Nobel Prize for  

"their development of new ways  

and methods for nuclear magnetic  

precision measurements 

http://en.wikipedia.org/wiki/Nobel_Prize




Demonstration of the Energy Gap ! 

Total period = a + b 



* 

Note  ϵ < Uo 



       (0) = *(0) 

d(0)/dx = d*(0)/dx 

       (a) = *(-b) exp[ik(a+b)] 

d(a)/dx = d*(-b)/dx exp[ik(a+b)] 

by translation of r = a+b 





Certain allowed values of Ka, thus yielding the allowed values of ϵ =  1  

3/2 at Ka =0 

3/2 at  Ka =  /2 

P = 3/2 

+1 

-1 



Forming energy gaps in  ϵ  at  ka near n  ! 

ϵ = ħ2K2/2m 

Note ka = n, 

Ka ~ ka,  but with small discontinuities 

in Ka,  

Since ϵ ~ ħ2K2/2m, thus gaps opened 

up in ϵ. 



Exact Proof of the Bloch Theorem 





L = 20 a 

2/a =20(2/L) 



The Central equation to solve the C(K), and ϵ 



Restatement of the Bloch Theorem 



U= 0, then from eq. (27) 

Crystal momentum of an Electron 

from eq. 25 


