
THEORETICAL  SURVEY



Theories of Superconductivity

--1959, Gorkov derives a macroscopic form of BCS theory near Tc , 

and the order parameter is proportional to the gap function ∆g

Josephson effect:

- as the first case of theory leading experiment in SC !!

--Microscopic theory, 1957

1.

2.

3.

In 1950, a psuedo wave function  for the SC state,  ns = | |2

Phenomenological equations: the London equations and 

the Landau-Ginzburg equations 

Quantum theory of superconductivity was given by Bardeen, 

Cooper, and Schrieffer (BCS).

Subsequent work of Josephson and Anderson discovered the 

importance of the phase of the superconducting wave function.



(1) Thermodynamics of the Superconducting Transition

1.   The transition between the normal and superconducting state is thermo-

dynamically reversible. 

2.  The critical field Hc is a quantitative measure of the free energy difference 

between the superconducting and normal states at constant temperature.  

3.  The stabilization free energy of the superconducting state with respect 

to the normal state can be determined by calorimetric, or magnetic

measurements.    

a. In the calorimetric method:  From the difference of the heat capacities we 

can compute the free energy difference, which is the stabilization free energy 

of the superconducting state. 

b. In the magnetic method: The stabilization free energy is found from the 

value of the applied magnetic field, that will destroy the superconducting 

state at constant temperature.   

Hc : Thermodynamic critical field



Ba

B= Ba + 4M = 0,  inside SC

M = - Ba/4M

Ba = Hc

Consider the work done (Fig. 11) on a superconductor, when it is brought reversibly at 

constant temperature from a position at infinity (where the applied field is zero)  to a 

position r in the field of a permanent magnet: 



M= (-1/4)Ba

The thermodynamic identity for the process is

dF = -M‧dBa ,                                                            (4)

For a superconductor with M related to Ba by (1)  

dFS = 
𝟏

𝟒π
Ba   dBa ;                                                       (5)

The increase in the free energy density of the superconductor is

FS (Ba) - FS (0) =  Ba
2 / 8π ;              (6)

Now consider a normal nonmagnetic metal.  Then M = 0 the energy of the 

normal metal is independent of field.  At the critical field we have

FN (Bac) = FN (0) .                                                           (7)

At the critical value Bac of the applied magnetic field the energies are equal in 

the normal and superconducting states:

FN (Bac) = FS (Bac) = FS (0) + Ba
2 / 8π .        (8)



NS

At a finite temperature the normal and superconducting phases are in equilibrium, 

when the magnetic field is such that their free energies F = U - TS are equal. 

ΔF ≡ FN (0) - FS (0) = Bac
2 / 8π ,                                           (9)

Where ΔF is the stabilization free energy density of the superconducting state.



Free energy vs T for Aluminum

dFN/dT = dFS/dT at TC

 FN =  FS   at TC

Zero latent heat

So that the phase transition is second order.

(There is no latent heat of transition at T c ).



(2) London Equation

London Equation

j =  -
𝐶

4𝜋𝜆𝐿
2 A     ;

Since B = curl A

curl j = -
𝐶

4𝜋𝜆𝐿
2 B     ;

curl B = (4/c) j from Maxwell Equation

curl curl B = - 2 B = (4/c) curl j 

2B = B/L
2

B(x) = B(0) exp (- x / λL) ,

Electrical conduction in the normal state of a metal is described by 

Ohm’s law.            J =   E

We postulate that in the superconducting state the current density is directly 

proportional to the vector potential A of the local magnetic field B, 

The concept of 

“ Local Field”

London Equation



London Penetration Depth

Type I SC

Type II SC

See slide #24

An applied magnetic field Ba will penetrate into a thin film fairly uniformly, 

if the thickness is much less than  L; thus in a thin film the Meissner effect 

is not complete. In a thin film, the induced field is much less than Ba.

B(x) = B(0) exp (- x / λL) ,

λL = (mc2/4πnq2)1/2 ;



(3) Coherence Length

1. Coherence length is a measure of the distance within which the SC electron

concentration cannot change drastically in a spatially varying magnetic field.

2. The coherence length is a measure of the range over which we should

average A to obtain j.

3. It is also a measure of the minimum spatial extent of a transition layer

between normal and SC.

FIGURE 1-4    

Interface between superconducting and normal domains in the intermediate state.



k << 1

Type I

k >> 1

Type II

Ginsburg Landau 

Parameters

Tinkham, eq. (4-27)



From the BCS theory, 

for a pure SC, the exact form

∆x/vF  Eg ~ ħ

o /vF  Eg ~ ħ

o ~ ħvF/Eg

∆t  ∆E ~ ħ
Another derivation

Eg

Any spatial variation in the state of an electronic system requires extra kinetic energy.

It is reasonable to restrict the spatial variation of j (r) in such a way that the extra energy 

is less than the stabilization energy of the SC state.

Whereas  * is modulated with the wavevector q

We define an intrinsic coherence length o related to the critical modulation 

by o = 1/qo at k = kF . 

The increase of the energy required to modulate is ħ2kq/2m.  

If this increase exceeds the energy gap Eg , superconductivity will destroy.



at very small mean free path l
in impure SC

dirty                         clean

Type II Type I

In impure materials and in alloys the coherence length  is shorted than o.

The coherence length and the actual penetration depth  depends on the mean

free path l of the electrons measured in the normal state; the relationships

are indicted in Fig. 14. When the superconductor is very impure, with a very small l.

then   ≈ (o ℓ)1/2

𝜆 ≈ 𝜆𝐿 (o / ℓ)1/2

so that 𝜆/ ≈ 𝜆𝐿 /ℓ . 

The ratio 𝜆/ is denoted by κ .

This is the “dirty superconductor” limit.



(4)  BCS Theory of Superconductivity

1.  The Cooper Pair :

Postulated by Cooper in 1956 

 A weak attraction can bind pairs of electrons into a bound state 

 The Fermi sea of electrons is unstable against the formation at least one 

bound pair, regardless how weak the interaction is, so long it is attractive. 

 The lowest energy state to have the total zero momentum, so that two electrons 

must have equal and opposite momenta. 

 Introduce  V kk =  -V for all k out to a cut-off energy ħc away from Ef , 

and Vkk = 0 for  k beyond  ħc.

E ~  2EF – 2 ħc e -2/N(0)V                ∆ =  2EF  - E = 2 ħc e -2/N(0)V > 0

 The contribution to the energy of the attractive potential outweights the excess

kinetic energy, leading to a binding energy regardless how small  V is. 

The “BCS wave function” is composed of particle pairs k and –k, when treated by 

the BCS theory, gives the familiar electronic superconductivity observed in metals, and 

exhibits the energy gaps of Table 3. This pairing is known as s-wave pairing ( l = 0 ) .



e.g.   the mattress theorye- e-Phonon

Origin of the Attractive Interaction:

 In 1950 Frohlich first suggested the electron phonon interaction:

The physical idea is that the first electron polarizes the medium by attractive 

positive ions; these excessive positive ions, in turn, attract the second 

electron, giving an effective attractive interaction between the electrons.  

 If this attractive interaction is strong enough to override the repulsive 

screened Coulomb interaction, it gives rise to a net attractive interaction, and 

the superconductivity results. 

 The cut-off frequency ħc of the Cooper pair’s attraction is expected to be of 

the order of the Debye frequency, ħD , as a measure of the stiffness of the 

lattice.

2. The electron-lattice-electron interaction leads to an energy gap of the

observed magnitude. The indirect interaction proceeds when one electron

interacts with the lattice and deforms it; a second electron sees the deformed

lattice and adjust itself to take advantage of the deformation to lower its energy.

Thus the second electron interacts with the first electron via the lattice

deformation.



Superconducting Ground State

Superconducting
ground state

Cooper Pairs

Exchange boson: 
Lattice Vibration Mode

• Spin singlet
• L=0; S=0
• Binding energy: Δ
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Superconducting Ground States

SC Ground State

BCS, Phys Rev 108, 1175 (1957)
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uk and vk :  coherence factor



Superconducting Energy Gap in 1960

Nobel Prize in 1973
© Schenectady Museum

I. Giaever, Phys. Rev. Lett. 5, 147 (1960)

I. Giaever, Phys. Rev. 126, 941 (1962)
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(5)  BCS  Ground  State

Non interacting Fermi gas BCS ground state

Some what like the 

Fermi Dirac Distribution 

at T = Tc

(a)                                                                      (b)

S wave pairing

1. The BCS theory shows that, with an appropriate attractive interaction between 

electrons, the new ground state is superconducting, and is separated by a finite 

energy Eg from its lowest excited state.

2. With the attractive potential energy of the BCS state, the total energy of the BCS 

state will be lower with respect to the Fermi state.

3. The central feature of the BCS state is that one–particle orbitals are occupied in 

pairs: if an orbital with the wavevector k and spin up is occupied, then the 

orbital with the wavevector –k and spin down is also occupied.

4. Cooper pairs: they have a spin zero, and have many attributes of bosons. 

T = 0



the BCS Ground state wave function

The BCS  Ground  State 

Singlet wave function, a vacuum state with no particles present

where  uk
2 + vk

2 = 1, and  uk = e iϕ vk

where |F = Fermi sea filled up to kF

Using a Hartree self consistent field, or a mean field theory

Creation operator  Ck*

Annihilation operator  Ck

The pairing Hamiltonian

The gap equation 

Tinkham,  Chapter 2

Ek = (∆k
2 + k

2)1/2 Quasi-particle excitation energy



in weak coupling limit

The BCS 

Pairing 

occupation 

number



Thermal broadened by kTc

vk
2

~ħWD

C ~ D >>  = 1.76 kTc



Superconducting Excited States

SC Ground State
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SC Excited States

Bogoliubov, Nuovo Cimento 7, 794 (1958)
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uk and vk : coherence factor



Superconducting Excited States

kx

ky

Δ

Bogoliubov, Nuovo Cimento 7, 794 (1958)
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Superconducting Excited States
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Bogoliubov, Nuovo Cimento 7, 794 (1958)
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Superconducting Gap

Pair wave function : Ψ𝑘𝑠𝑠′ = Ψ𝐵𝐶𝑆 𝑐−𝑘𝑠′𝑐𝑘𝑠 Ψ𝐵𝐶𝑆 = 𝑔(𝑘) 𝜒𝑠𝑠′

Spin part  : 𝜒𝑠𝑠′

Orbital part : 𝑔(𝑘)

Spin Orbital

anti-symmetric (S = 0) symmetric (s, d, …)

symmetric (S = 1) anti-symmetric (p, f, …)

l = 0 : s wave (conventional SC)

l = 1 : p wave (superfluid 3He)

l = 2 : d wave (cuprate SC)

If l > 0, (0) = 0

repulsive interaction

Δ(k) must change its sign 

S = 1

S = 0 

http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{(/uparrow/uparrow,/uparrow/downarrow+/downarrow/uparrow,/downarrow/downarrow)}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{(/uparrow/uparrow,/uparrow/downarrow+/downarrow/uparrow,/downarrow/downarrow)}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{(/uparrow/downarrow-/downarrow/uparrow)}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{(/uparrow/downarrow-/downarrow/uparrow)}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{/psi({/bf r})/propto/sum_{/bf k}/frac{/Delta({/bf k})}{/sqrt{/epsilon({/bf k})^2+/Delta({/bf k})^2}}/exp (-i{/bf kr})}

/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}

/textcolor[rgb]{1,1,0}{/psi({/bf r})/propto/sum_{/bf k}/frac{/Delta({/bf k})}{/sqrt{/epsilon({/bf k})^2+/Delta({/bf k})^2}}/exp (-i{/bf kr})}

/end{align*}


Gap Equation

In conventional BCS, V(q)  = -|V| < 0 : Δ is always positive.

If V(q = Q) > 0 plays a role, Δ(k) and  Δ(k+Q) have a different sign.

Pairing interaction
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∆   =  2 ħc e -2/N(0)V

kTc = 1.14 ħc e -2/N(0)V

∆(0)/kTc = 2/1.14 = 1.76,  weak el-ph coupling

∆(T) /∆(0)  ~ 1.74 (1 - T/Tc)
1/2

at  T ~ Tc

tanh (bEk/2)

EkV

1 1
=

2

k

Determines the temperature dependence of  ∆(T)

In the mean field theory,  

∆k is the order parameter !

If  ∆(0)/kTc > 2, strong el-ph coupling

(2-50)

b = 1/kT

BCS theory:











Low temperature Superconductors
-- Mediated by electron phonon coupling

-- In strong electron phonon coupling, modified 

by Elishberg et al 

 :  electron phonon coupling constant

* :  Coulomb repulsion of electrons

  N(0)< I2 > / 2

W. McMillian’s formula for Tc

Are electrons or phonons more important 

to give rise to high Tc ?



, and from eq. (19)

(1)

London penetration depth   L = (mC2/4nq2)1/2

Important E&M properties from the BCS theory



(23)’

from the Meissner effect

(2)

From Eq. 20, 21



S is an integer

S is an integer



(27)

(28)

S is an integerΦ = Φo s

Φ = Φext + Φsc The total flux Φ is quantized. 

Flux Quantization:  The evidence of pairing of electrons !



Flux Quantization Theory in 1950

Superconducting ring

𝚽

JS

Fritz London

© Duke Univ.

Superfluids, Macroscopic Theory of Superconductivity, Structure of Matter Vol. 1 (Wiley, New York, 1950)

~ 2 larger



Flux Quantization Experiments in 1961

Φ = 𝑛  ℎ𝑐
2𝑒 = 𝑛Φ 0, 

where Φ 0 = 2.0 × 10−15𝑇𝑒𝑠𝑙𝑎 − 𝑚2

Each vortex carries one flux quanta

SC carriers are 2e !

Confirmation of Cooper pairs !

B. D. Deaver and W. M. Fairbank, PRL 7, 43 (1961)

R. Doll and M. Näbauer, PRL 7, 51 (1961)

Bascom Deaver

© APS

William Fairbank

© Duke Univ.

Robert Doll Martin Näbauer

© Walther-Meißner-Institute



(29’)

(3)



Type II Superconductors

1.  A good type I superconductor excludes a magnetic field until superconductivity

is destroyed suddenly, and then the field penetrates completely.

2. (a) A good type II superconductor excludes the field completely up to a field 𝐻𝑐1 .

(b) Above 𝐻𝑐1 the field is partially excluded, but the specimen remains electrically

super conducting.

(c) At a much higher field, 𝐻𝑐2 , the flux penetrates completely and

superconductivity vanishes.

(d) An outer surface layer of the specimen may remain superconducting up to 

a still higher field 𝐻𝑐3 .

3. An important difference in a type I and a type II superconductor is in

the mean free path of the conduction electrons in the normal state.

type I, with 𝒌 = 𝛌/𝛏 < 𝟏

𝐭𝐲𝐩𝐞 𝐈𝐈,𝐰𝐢𝐭𝐡 𝒌 = 𝛌/𝛏 > 𝟏

(4)



for  Hc1 < H < Hc2

for H < Hc

1.  A superconductor is type I if the surface energy is always

positive as the magnetic field is increased,

2.  It is type II SC, if the surface energy becomes negative,

as the magnetic field is increased.

The free energy of a bulk superconductor is increased when the magnetic field is 

expelled. However, a parallel field can penetrate a very thin film nearly uniformly

(Fig.17), only a part of the flux is expelled, and the energy of the superconducting

film will increase only slowly as the external magnetic field is increased.



In such a mixed state, called the vortex state, the external magnetic field will 

penetrate the thin normal regions uniformly, and the field will also penetrate

somewhat into the surrounding superconducting material

Vortex State



Flux lattice of 

NbSe2 at 0.2K

Abrikosov triangular 

lattice, as imaged by 

LT-STM, H. Hess et al

The term vortex state describes the circulation of superconducting

currents in vortices throughout the bulk specimen.

The vortex is stable when the penetration of the applied field into the superconducting

material causes the surface energy become negative. A type II superconductor is

characterized by a vortex state stable over a certain range of magnetic field strength;

namely, between 𝐻𝑐1 and 𝐻𝑐2 .









Normal Core

of Vortex



This is the field for nucleation of a single fluxoid.

(31)

(30)

The external field penetrates the specimen almost uniformly,

with small ripples on the scale of the fluxoid lattice.

Each (last) core is responsible for carrying a flux of the order of 𝜋𝜉2𝐻𝑐2 ,

The larger the ratio 𝜆/𝜉 , the larger is the ratio of 𝐻𝑐2 to 𝐻𝑐1.

The field will extend out from the normal core a distance 𝝀 into the 

superconducting environment. The flux thus associated with a single (first) 

core is 𝜋𝜆2𝐻𝑐1 , and this must be equal to the flux quantum Φ0.

The estimate 𝐻𝑐1 in terms of  𝐻𝑐 , we consider the stability of the vortex state at 

absolute zero in the impure limit 𝜉 < 𝜆 ; here 𝜅 > 1 are the coherence length is 

short in comparison with the penetration depth.

We estimate in the vortex state the stabilization energy of a fluxoid core viewed 

as a normal metal cylinder which carries an average magnetic field 𝐵𝑎.  The radius 

is of the order of the coherence length, as the thickness of the boundary between N

and S phases.

𝑯𝒄𝟐 ≈ 𝜱𝟎/𝝅𝝃𝟐

𝑯𝒄𝟏 ≈ 𝜱𝟎/𝝅𝝀𝟐

Estimation of 𝑯𝒄𝟏 and 𝑯𝒄𝟐



for H < Hc1 ,  f > 0 ;   for  H > Hc1 ,  f < 0 

The threshold field divides the region of positive surface energy from the 

region of negative surface energy.

~ 1/ k

(30) + (35)

(30) + (31)

(31) + (37a) 

But there is also a decrease in magnetic energy because of the penetration

of  the applied field 𝐵𝑎 into the superconducting material around

The threshold field for a stable fluxoid is at 𝑓 = 0, or, with 𝐻𝑐1 written for 𝐵𝑎,

𝜋𝜉𝜆𝐻𝑐 ≈ Φ0

(𝐻𝑐1𝐻𝑐2)
1/2 ≈ 𝐻𝑐

𝐻𝑐2 ≈ (𝜆/𝜉)𝐻𝑐 = 𝜅𝐻𝑐

(36)

(37a)

(37b)


