THEORETICAL SURVEY



Theories of Superconductivity

1. Phenomenological equations: the London equations and
the Landau-Ginzburg equations

In 1950, a psuedo wave function y for the SC state, n, = |y |

2. Quantum theory of superconductivity was given by Bardeen,
Cooper, and Schrieffer (BCS).

--Microscopic theory, 1957

--1959, Gorkov derives a macroscopic form of BCS theory near T,
and the order parameter is proportional to the gap function A

3. Subsequent work of Josephson and Anderson discovered the
Importance of the phase of the superconducting wave function.

Josephson effect:
- as the first case of theory leading experiment in SC !!



(1) Thermodynamics of the Superconducting Transition

1. The transition between the normal and superconducting state is thermo-
dynamically reversible.

2. The critical field H, is a quantitative measure of the free energy difference
between the superconducting and normal states at constant temperature.

3. The stabilization free energy of the superconducting state with respect

to the normal state can be determined by calorimetric, or magnetic
measurements.

a. Inthe calorimetric method: From the difference of the heat capacities we

can compute the free energy difference, which is the stabilization free energy
of the superconducting state.

b. In the magnetic method: The stabilization free energy is found from the

value of the applied magnetic field, that will destroy the superconducting
State at constant temperature.

H, . Thermodynamic critical field



Consider the work done (Fig. 11) on a superconductor, when it is brought reversibly at
constant temperature from a position at infinity (where the applied field is zero) to a
position r in the field of a permanent magnet:
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Figure 11 (a) A superconductor in which the Meissner effect is complete has B = 0, as if the
magnetization were M = —B,/4mr, in CGS units. (b) When the applied field reaches the value B,,,
the normal state can coexist in equilibrium with the superconducting state. In coexistence the free
energy densities are equal: Fy(T, B,.) = Fs(T, B,.).



The thermodynamic identity for the process is
dF =-M-dB,, (4)
For a superconductor with M related to B, by (1) M= (-1/4m)B,
1
dFg = - Ba dB, ; (5)

The increase in the free energy density of the superconductor is

Fs (By) - Fs(0) = B2/ 8n |; (6)

Now consider a normal nonmagnetic metal. Then M = 0 the energy of the
normal metal is independent of field. At the critical field we have

Fn (Bae) = Fy (0) (7)

At the critical value B, of the applied magnetic field the energies are equal in
the normal and superconducting states:

Fy (Bae) = Fs (By) = Fs (0) + B/ 8x. (8)



AF=F, (0) - Fs (0) =B, 2/ 8x, 9)

Where AF is the stabilization free energy density of the superconducting state.

At a finite temperature the normal and superconducting phases are in equilibrium,
when the magnetic field is such that their free energies F=U - TS are equal.
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Figure 12 The free energy density Fy of a nonmagnetic normal metal is approximately indepen-
dent of the intensity of the applied magnetic field B,. At a temperature T < T, the metal is a
superconductor in zero magnetic field, so that Fs(T, 0) is lower than Fy(T, 0). An applied magnetic
field increases F, by BZ/87, in CGS units, so that Fs(T, B,) = Fs(T, 0) + B2/8. If B, is larger than
the critical field B, the free energy density is lower in the normal state than in the superconducting
state, and now the normal state is the stable state. The origin of the vertical scale in the drawing is
at Fs(T, 0). The figure equally applies to Ug and Uy at T = 0.
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So that the phase transition is second order.
(There is no latent heat of transition at T ).

dF,/dT = dF¢/dT at T,



(2) London Equation

Electrical conduction in the normal state of a metal is described by
Ohm’s law. = ok

We postulate that in the superconducting state the current density is directly
proportional to the vector potential A of the local magnetic field B,

- _C A The concept of
1= "z “ Local Field”
Since B = curl A =) |_ondon Equation
curl j =- 2z B

curl B = (4n/c) j from Maxwell Equation

curl curl B=- V2B = (4rn/c) curl j

V2B = B/}, 2

B(x) =B(0)exp (-x/4)),




‘ ‘ ‘ ’ B(x) =B(0) exp (-x/4)),

B

I 1 F Figure 13 Penetration of an applied magnetic field into a semi-infinite superconductor. The pene-
tration depth A is defined as the distance in which the field decreases by the factor ™. Typically,
A=500A4ina pure superconductor.

Table 5 Calculated intrinsic coherence length and
London penetration depth, at absolute zero

R N R N A I B A R TN bl e

Intrinsic Pippard London

coherence penetration
length &, depth Az,
Metal in 107 cm in 107¢ cm Al
Sn 23. 3.4 0.16
Al 160. 1.6 0.010
Type | SC 5 8.3 | 3.7 0.45
Cd 76. 11.0 0.14
Nb 3.8 3.9 1.02
Type Il SC

After R. Meservey and B. B. Schwartz.

See slide #24 A, = (mc2/4rng?)¥2 ; London Penetration Depth

An applied magnetic field B, will penetrate into a thin film fairly uniformly,
If the thickness is much less than A ; thus in a thin film the Meissner effect
Is not complete. In a thin film, the induced field is much less than B,.



(3) Coherence Length

1. Coherence length is a measure of the distance within which the SC electron
concentration cannot change drastically in a spatially varying magnetic field.

2. The coherence length is a measure of the range over which we should
average A to obtain j.

3. It is also a measure of the minimum spatial extent of a transition layer
between normal and SC.

M)
W12 = n, h(x)

Superconducting

—_— x
E(T)
FIGURE 1-4

Interface between superconducting and normal domains in the intermediate state.
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FIGURE 1-4
Interface between superconducting and normal domains in the intermediate state.
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FIGURE 4-2

Schematic diagram of variation of h and / in a domain wall. The case k < 1 refers to
a type I superconductor (positive wall energy); the case x > 1 refers to a type 1I
superconductor (negative wall energy).



Any spatial variation in the state of an electronic system requires extra kKinetic energy.
It is reasonable to restrict the spatial variation of j (r) in such a way that the extra energy
IS less than the stabilization energy of the SC state.

go(x) - 2—1/2 (ei(k+q)x e eikx)
Whereas y*y is modulated with the wavevector (

(15b)

. E

g
h2 d2) l(h2) P i .5
| — = —(—) [(k+q?2+ K] =—
fdx ¥ ( o2m  dx® ¢ 2 \2m &+ g+ K] om i

The increase of the energy required to modulate is #2kqg/2m.
If this increase exceeds the energy gap E, superconductivity will destroy.
We define an intrinsic coherence length & related to the critical modulation

by &, = 1/q, atk =kg. Another derivation
= #2kx/2mE, = hvgp/2E, |
S0 e — 0P e AXIVg + E;~h
From the BCS theory, . Ne «E.~h
for a pure SC, the exact form Lgo = 2hvp/TE, . SolVE + B
& ~ hve/E,




In impure materials and in alloys the coherence length & is shorted than &,.
The coherence length and the actual penetration depth A depends on the mean

free path | of the electrons measured In

the normal state; the relationships

are indicted in Fig. 14. When the superconductor is very impure, with a very small .

then &~ (&, £)12
A= 2y (&1 £)Y
sothat A/ = A, I€ .

The ratio A/§ is denoted by « .

This is the “dirty superconductor” limit.

at very small mean free path ¢
In impure SC

Figure 14 Penetration depth A

and the coherence length & as 0.5[ 1 —= &
functions of the mean free path ¢ &

of the conduction electrons in the 04|

normal state. All lengths are in

units of &,, the intrinsic coher- 0.3

ence length. The curves are

sketched for & = 10A,. For short 021

mean free paths the coherence 01k ]

length becomes shorter and the : d|rty clean
penetration  depth  becomes 0 . | ; |
longer. The increase in the ratio 0 1 2
kA/& favors type II superconduc- Type I I £ Type I

tivity.

&0



(4) BCS Theory of Superconductivity
1. The Cooper Pair :

The “BCS wave function” is composed of particle pairs kT and —k<{, when treated by
the BCS theory, gives the familiar electronic superconductivity observed in metals, and
exhibits the energy gaps of Table 3. This pairing is known as s-wave pairing (1=0) .

Postulated by Cooper in 1956

O A weak attraction can bind pairs of electrons into a bound state

O The Fermi sea of electrons is unstable against the formation at least one

bound pair, regardless how weak the interaction is, so long it is attractive.

O The lowest energy state to have the total zero momentum, so that two electrons
must have equal and opposite momenta.

O Introduce V . = -V forall k out to a cut-off energy Aa, away from E;,
and V,,, =0 for k beyond ha,

E~ 2E.—2 ha, e 2NOV A= 2Ep - E=2ha, e ZNOV >

O The contribution to the energy of the attractive potential outweights the excess
Kinetic energy, leading to a binding energy regardless how small V is.




Origin of the Attractive Interaction:

2. The electron-lattice-electron interaction leads to an energy gap of the
observed magnitude. The indirect interaction proceeds when one electron
Interacts with the lattice and deforms it; a second electron sees the deformed
lattice and adjust itself to take advantage of the deformation to lower its energy.
Thus the second electron interacts with the first electron via the lattice
deformation.

& A 110N e e.g. the mattress theory

O In 1950 Frohlich first suggested the electron phonon interaction:
The physical idea is that the first electron polarizes the medium by attractive
positive ions; these excessive positive ions, In turn, attract the second
electron, giving an effective attractive interaction between the electrons.

O If this attractive interaction is strong enough to override the repulsive
screened Coulomb interaction, It gives rise to a net attractive interaction, and
the superconductivity results.

O The cut-off frequency 7/ @, of the Cooper pair’s attraction is expected to be of
the order of the Debye frequency, iy , as a measure of the stiffness of the
lattice.




Superconducting Ground State

Normal state Superconducting

ground state

Cooper Pairs

/ \
Exchange boson:
|—k) Lattice Vibration Mode

* Spin singlet

*v‘  L=0;S=0

* Binding energy: A



Superconducting Ground States

SC Ground State ky

Fecs = H(Uk TV Gl )| 0>
k
u, and v, : coherence factor

BCS, Phys Rev 108, 1175 (1957)



Superconducting Energy Gap in 1960

Ivar Giaever
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Pb /MgD/Mg
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I. Giaever, Phys. Rev. Lett. 5, 147 (1960)
I. Giaever, Phys. Rev. 126, 941 (1962)



(5) BCS Ground State

1. The BCS theory shows that, with an appropriate attractive interaction between
electrons, the new ground state is superconducting, and is separated by a finite
energy E, from its lowest excited state.

2. With the attractive potential energy of the BCS state, the total energy of the BCS
state will be lower with respect to the Fermi state.

3. The central feature of the BCS state is that one—particle orbitals are occupied in
pairs: if an orbital with the wavevector k and spin up is occupied, then the
orbital with the wavevector —k and spin down is also occupied.

4. Cooper pairs: they have a spin zero, and have/rfam\attributes of bosons.

Some what like the
Fermi Dirac Distribution
at T =T,

€

G-——>

Non interacting Fermi gas BCS ground state

Figure 15 (a) Probability P that an orbital of kinetic energy € is occupied in the ground state of the
noninteracting Fermi gas; (b) the BCS ground state differs from the Fermi state in a region of width
of the order of the energy gap E,. Both curves are for absolute zero.




Singlet wave function, a vacuum state with no particles present
'l/’0> = Z gkaT Ctkl |F> (2‘11)

k>kr

Creation operator C” where |F) = Fermi sea filled up to kg
Annihilation operator C,

Using a Hartree self consistent field, or a mean field theory

the BCS Ground state wave function
(Vo> =[] (w4 veckc®y)) | @0 (2-14)

where u 2 +v2=1, and u, = ey,

The pairing Hamiltonian
% — Z Eknko. ‘l" Z I/klcl?r kalc_u CIT (2'20)
o} k
) l The gap equatior

Ly S . T

Ay =—= )Y —=Vyg=—=
S DY A R
E . =(A2+E>2)Y? Quasi-particle excitation energy




= if |&]| and |&| < ho,

— 2-31
M { 0 otherwise (2-31)
A for |&| <ho,
= 2-32
A {O for |&| > hw, )
. In weak coupling limit
w
A= — t ~ ) — 1/N(0)V 1
sinh [/NQ)V] hw,e (2-34) |

The BCS 2 1 ( fk) 1 51‘
Ec?cllzlgagtion ) E, 2 (A" T 52)1/2 ( )
number




Thermal broadened by KT,

A
\:——- v2atT=0
— — Fermi function at T

— ——n e e

FIGURE 2-1 \~hWD/

Plot of BCS occupation fraction v7 vs..electron energy measured from the chemical
potential (Fermi energy). To make the cutoffs at +Aw, visible, the plot has been
made for a strong-coupling superconductor with N(0)V = 0.43. For comparison, the

Fermi function for the normal state at T, is also shown on the same scale, using the
BCS relation A(0) = 1.76kT..

W ~ W >> A =1.76 KT,




Superconducting Excited States

SC Ground State k, SC Excited States K,

Bogoliubov quasiparticle

Voo = (u +V,C ,C )O> * *
BeS 1:[ “ KT ke l Vv = ukaT +VkC—k¢
u, and v, : coherence factor

Bogoliubov, Nuovo Cimento 7, 794 (1958)
BCS, Phys Rev 108, 1175 (1957)



Superconducting Excited States

SC Excited States K,

Bogoliubov quasiparticle

*

Vir =W Cp +V,C

Bogoliubov, Nuovo Cimento 7, 794 (1958)




Superconducting Excited States

Superconducting energy gap=2A SC Excited States K,
(T=0)

DOS

Bogoliubov quasiparticle

*

Vit =Wl TVLC

Bogoliubov, Nuovo Cimento 7, 794 (1958)



Superconducting Gap

Pair wave function : W, .os = (Wpeslc_is' Crs|Wres) = g(k) X!

Spin part : y (TL =11 S=0
T+ s=1

A(k
Orbital part : g(k) Y(r) o Z &) exp(—ikr)

i Vek)? + Ack)?

Spin Orbital
anti-symmetric (S = 0) symmetric (s, d, ...)
symmetric (S=1) anti-symmetric (p, f, ...)
[=0: swave (conventional SC) IfI>0, y(0)=0
[=1: pwave (superfluid 3He) repulsive interaction

[=2: dwave (cuprate SC) A(k) must change its sign
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Gap Equation

A(K) - Vek + q)? + A(k + q)?

1
AK)=—= >V
() 2; @ Vek + q)? + Ak + q)? 2kpT

Pairing interaction

In conventional BCS, V(q) =-|V] <0: A is always positive.

If V(q =Q) >0 plays arole, A(K) and A(k+Q) have a different sign.

S wave d wave

k y

y

v
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energy energy



BCS theory:

A(0)/K™
If AQ)K

B = 1/KT

A = 2ha, e 2NOV
KT, = 1.14 hc, e ZNOV

.=2/1.14=1.76, weak el-ph coupling
. > 2, strong el-ph coupling

1

_ 1 ¥y tanh (BE/2)

V

2 E,

(2-50)

Determines the temperature dependence of A(T)

~o

g
N A

R

_ o5

A(T) IAQ0) ~1.74 (1 - TIT,)M2
at T~T,

In the mean field theory,
A, 1s the order parameter !



2-6.1 Determination of T,

The critical temperature T, is the temperature at which A(T) — 0. In this case,
E, — | & |, and the excitation spectrum becomes the same as in the normal state.
Thus, T is found by replacing E, with | &, | in (2-50) and solving. After changing
the sum to an integral, taking advantage of the symmetry of | &, | about the Fermi
level, and changing to a dimensionless variable of integration, this condition

becomes

dx

I ' bidadZ4anh x
NO)YV X

This integral can be evaluated and yields In (48, hw,), where A = 2y/n ~ 1.13, ¢

here being Euler’s constant. Consequently,

kT, = B! = 1.13hw e~ 1NOW. (2-51)




Comparing this with (2-34), we see that

A(0) 2
=T 164 |(2-52)

C

so that the gap at T = 0 is indeed comparable in energy to k7T,.. The numerical
factor 1.76 has been tested in many experiments and found to be reasonable. That
i1s, experimental values of 2A for different materials and different directions in k
space generally fall in the range 3.0 to 4.5kT,, with most clustered near the BCS
value of 3.5kT..



2-6.2 Temperature Dependence of the Gap
Given (2-50), or its integral equivalent

I f"“" tanh 38(&* + A%)'/2

N(O)V o . (62 3 AZ)I/Z

e (2-53)

A(T) can be computed numerically. For weak-coupling superconductors, in which
hw,/kT. > 1, A(T)/A(0) is a universal function of T/T, which decreases monoton-
ically from one at T = 0 to zero at T;, as shown in Fig. 2-2. Near T = 0, the
temperature variation is exponentially slow, since e~ **T x 0, so that the hyperbo-
lic tangent is very nearly unity and insensitive to T. Physically speaking, A is
nearly constant until a significant number of quasi-particles are thermally excited.
On the other hand, near T., A(T) drops to zero with a vertical tangent, approxi-
mately as

1/2
% ~ 1.74(1 - %) T~T | (2-54)

c

The variation of the order parameter A with the square root of (7, — T) is charac-
teristic of all mean-field theories. For example, M(T) has the same dependence in
the molecular-field theory of ferromagnetism.



AT) A0)=1.76 kT,

FIGURE 2-2
Temperature dependence of the energy gap in the BCS theory. Strictly speaking, this
universal curve holds only in the weak-coupling limit, but it is a good approximation
in most cases.




Low temperature Superconductors

-- Mediated by electron phonon coupling
-- In strong electron phonon coupling, modified
by Elishberg et al
W. McMillian’s formula for T,

=90 (1+ Aep)
1.45 Aep — f1*(1 4+ 0.62)p)

A . electron phonon coupling constant
u* . Coulomb repulsion of electrons
A oc N(0O)< 12>/ »?

Are electrons or phonons more important
to give rise to high T, ?



Important E&M properties from the BCS theory

(1) We first show that a charged boson gas obeys the London equation. Let
Y(r) be the particle probability amplitude. We suppose that the pair concentra-

tion n = Y* = constant.

b= nl/2 g0 Y* = nl2 g0 @) (19)

>

The phase 6(r) is important
1 1
vo (o 2a) =L (v
m c m c

The particle flux is given by, and fromeq. (19)

v = (ﬁVO - iA) (20)

that the electric current density is i = qurvy = (ﬁV() _4q A) (21)
m\ __——c
| ng? / _ =

London equation: curl j = — — B i=—gmz A (22)

- London penetration depth A, = (mC?/4rng?)*?




2)

Quantization of the magnetic flux through a ring

Figure 16 Path of integration C through the interior of a
superconducting ring. The flux through the ring is the sum
of the flux ®,,, from external sources and the flux ®,_ from
the superconducting currents which flow in the surface of
the ring; ® = &, + ®,.. The flux ® is quantized. There is
normally no quantization condition on the flux from external

sources, so that @ . must adjust itself appropriately in order

that @ assume a quantized value.

is a dramatic consequence
of Eq. (21). Let.us take a closed path C through the interior of the supercon-
ducting material, well away from the surface (Fig. 16). "

Flux lines

B and j are zero in the interior. from the Meissner effect

hcVO = gA .

We form

% V0°d1=02_01
C

From Eq. 20, 21

for the change of phase on going once around the ring.

(23)

(23)°



1] bahilit lride it ble in the classical o
so that ¢ must be single-valued and

O, — 6, = 2ms S is an integer (24)
where s is an integer. By the Stokes theorem,
§ A~dl=J(curlA)-da=fB-da=®, (25)
G C G

do is an element of area on a surface bounded by the curve C, and ® is
the magnetic flux through C.

® = 2mticlg)s . (26) S is an integer

Thus the flux through the ring is quantized in integral multiples of 27#ic/q.



Flux Quantization: The evidence of pairing of electrons !

By experiment g = —2e O=0,S S is an integer

D = 27fic/2e = 2.0678 X 10”7 gauss cm® = Trhele

This unit of flux is called a fluxoid or fluxon. (27)

O=0q,,+0,. The total flux @ is quantized. (28)

ext

| There is normally no quantization condition on the flux from external sources,
so that ®,. must adjust itself appropriately in order that ® assume a quantized
value.



Flux Quantization Theory in 1950

* We note that in order for ¥ to be a single-valued function, as required by quantum
mechanics, it is necessary that the moduli of x fulfill a kind of quantum condition:

<x> = § P.-ds = Kh

where K must be an integer. This means that there exists a universal unit for the
fluxoid:

Fritz London

© Duke Univ.

Superfluids, Macroscopic Theory of Superconductivity, Structure of Matter Vol. 1 (Wiley, New York, 1950)



Flux Quantization Experiments in 1961

Bascom Deaver William Fairbank

D] =n"¢/e =n®,
where ® ; = 2.0 X 10~ '°Tesla — m?
Each vortex carries one flux quanta

SC carriers are 2e!

Confirmation of Cooper pairs !

© APS © Duke Univ.

Robert Doll Martin Nabauer

ﬂi@ t a- Y. 2
Gl

Bet

‘iﬂm" J "‘

O R

© Walther-Meifner-Institute B. D. Deaver and W. M. Fairbank, PRL 7, 43 (1961)
R. Doll and M. Nabauer, PRL 7, 51 (1961)



(3) |Duration of Persistent Currents
A fluxoid cannot leak out of the ring and thereby reduce the persistent
current unless by a thermal fluctuation a minimum volume of the
superconducting ring is momentarily in the normal state.

The probability per unit time that a fluxoid will leak out is the product

P = (attempt frequency)(activation barrier factor) . (28)

The activation barrier factor is exp(—AF/kgT), where the free energy of the

barrier is

AF = (minimum volume)(excess free energy density of normal state) .
AF = R¢ 2H%/87T . (29)
exp(—AF/kgT) =~ exp(—108) =~ 10~“34x10)  (29’)

The characteristic frequency with which the minimum volume can attempt
to change its state must be of order of E /fi. If E; = 107'° erg, the attempt
frequency is = 107!%/10727 = 10'2 s7!. The leakage probability (28) becomes

— T _ 7
P = 101210 4.34%10 S ) 10 4.34%10 S 1 '

The reciprocal of this is a measure of the time required for a fluxoid to leak
out, T = 1/P = 10%34<10" 5,
The age of the universe is only 10'® s, so that a fluxoid will never leak out
in the age of the universe, under our assumed conditions. Accordingly, the

current is maintained.



(4) | Type Il Superconductors

1. A good type | superconductor excludes a magnetic field until superconductivity
Is destroyed suddenly, and then the field penetrates completely.
2. (a) A good type Il superconductor excludes the field completely up to a field H, .

(b) Above H,., the field is partially excluded, but the specimen remains electrically
super conducting.

(c) At a much higher field, H., , the flux penetrates completely and
superconductivity vanishes.

(d) An outer surface layer of the specimen may remain superconducting up to
a still higher field H_5 .

3. An important difference in a type | and a type Il superconductor is in
the mean free path of the conduction electrons in the normal state.

typel,withk =24/ <1
typell,withk =21/ > 1



1. Asuperconductor is type | if the surface energy is always
positive as the magnetic field is increased,

2. Itistype Il SC, if the surface energy becomes negative,
as the magnetic field is increased. for H,<H<H,

The free energy of a bulk superconductor is increased when the magnetic field is
expelled. However, a parallel field can penetrate a very thin film nearly uniformly
(Fig.17), only a part of the flux is expelled, and the energy of the superconducting
film will increase only slowly as the external magnetic field is increased.

forH < H,

Normal

(a) (b)
Figure 17 (a) Magnetic field penetration into a thin film of thickness equal to the penetration
depth A. The arrows indicate the intensity of the magnetic field. (b) Magnetic field penetration in
a homogeneous bulk structure in the mixed or vortex state, with alternate layers in normal and
superconducting states. The superconducting layers are thin in comparison with A. The laminar
structure is shown for convenience; the actual structure consists of rods of the normal state sur-
rounded by the superconducting state. (The N regions in the vortex state are not exactly normal,
but are described by low values of the stabilization energy density.)




Vortex State

In such a mixed state, called the vortex state, the external magnetic field will
penetrate the thin normal regions uniformly, and the field will also penetrate
somewhat into the surrounding superconducting material

Type II superconductor
Type I superconductor E<A

E> A

B, + By,

X

0

Figure 18 Variation of the magnetic field'and energy
gap parameter A(x) at the interface of superconduct-
ing and normal regions, for type I and type II super-
conductors. The energy gap parameter is a measure
of the stabilization energy density of the supercon-
ducting state.



The term vortex state describes the circulation of superconducting
currents in vortices throughout the bulk specimen.

Abrikosov triangular
lattice, as imaged by
LT-STM, H. Hess et al

Flux lattice of
NbSe, at 0.2K

Figure 19 Flux lattice in NbSe, at 1,000 gauss at 0.2K, as viewed with a scanning tunneling
microscope. The photo shows the density of states at the Fermi level, as in Figure 23. The vortex
cores have a high density of states and are shaded white; the superconducting regions are dark, with
no states at the Fermi level. The amplitude and spatial extent of these states is determined by a
potential well formed by A(x) as in Figure 18 for a Type II superconductor. The potential well
confines the core state wavefunctions in the image here. The star shape is a finer feature, a result
special to NbSe, of the sixfold disturbance of the charge density at the Fermi surface. Photo
courtesy of H. F. Hess, AT&T Bell Laboratories.

The vortex is stable when the penetration of the applied field into the superconducting
material causes the surface energy become negative. A type Il superconductor is
characterized by a vortex state stable over a certain range of magnetic field strength;
namely, between H.; and H, .
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Observation of Hexagonally Correlated Flux Quanta In YBa;Cu;0-

P. L. Gammel, D. J. Bishop, G. J. Dolan,
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AT &T Bell Laboratories, Murray Hill, New Jersey 07974
(Received 26 August 1987)

. A. Murray,

The high-resolution Bitter pattern technique has been used to reveal the magnetic structure of single-
crystal samples of high-T. superconductor YBa,Cu3O7 at 4.2 K. Typical patterns consist of hexagonally
correlated, singly quantized vortices of flux hc/2e. That is, the structures are comparable to those that
would be observed in conventional type-II superconductors under similar conditions.
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FIG. 1. Sketch of the decoration apparatus.




FIG. 2. Flux spots in a YBa;Cu30O7 sample decorated after
cooling in a field of 13 G.
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FIG. 3. (a) Typical area of a sample cooled in a 52-G field. (b) Central portion of the autocorrelation function of the pattern in

(a).
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FIGURE 5-1

Structure of an irsolated Abrikosov vortex in a material with k ~ 8. The maximum
value of h(r) is approximately 2 H,_,.




Estimation of H.; and H,

The field will extend out from the normal core a distance A into the
superconducting environment. The flux thus associated with a single (first)
core is A% H,, , and this must be equal to the flux quantum @,,.

H ~ ®y/TA? (30)
This is the field for nucleation of a single fluxoid.

The external field penetrates the specimen almost uniformly,
with small ripples on the scale of the fluxoid lattice.
Each (last) core is responsible for carrying a flux of the order of mé?H,, ,

H, ~ @y/mé? (31)
The larger the ratio A/¢ , the larger is the ratio of H., to H_,.

The estimate H., interms of H,, we consider the stability of the vortex state at
absolute zero in the impure limit £ < A ; here k > 1 are the coherence length is
short in comparison with the penetration depth.

We estimate in the vortex state the stabilization energy of a fluxoid core viewed
as a normal metal cylinder which carries an average magnetic field B,. The radius

Is of the order of the coherence length, as the thickness of the boundary between N
and S phases.



1
Tosia = 8_7ng X €2, (32)

But there is also a decrease in magnetic energy because of the penetration
of the applied field B, into the superconducting material around

1
Fonig ™ = —E;BQ X wA? . (33)
f fcore + fmag % 262 o BE/\Z) - (34)

The threshold field for a stable fluxoid is at f = 0, or, with H.; written for B,,
H./H.=¢&Ar . ~1x (35)

The threshold field divides the region of positive surface energy from the
region of negative surface energy.

forH<H_,, f>0; for H>H_,, <0
(30)+(35) | MSAH, = @y (36)
(30) +(31) (Hcchz)l/Z ~ H_ (37a)
@) +@7) | H., =~ (1/)H, = kH, (37b)




