Spin-Torque-Induced Ferromagnetic Resonance

<u>Y. C. Liu</u>

Department of Physics, National Tsing Hua University

奈米物理與新興量子物質特論課程

2019/11/28

Outline

Introduction and motivation

- > Spintronics
- Spin transfer torque
- Spin orbit torque
- Previous works on ST-FMR
- Topological insulator
- ST-FMR with magnetic insulator

Experimental

- > Thin film growth
- Device fabrication for ST-FMR

Analysis and discussion

- STM surface characterization
- ➢ ST-FMR on Py/TI
- ST-FMR on Pt/YIG

Outline

Introduction and motivation

- > Spintronics
- Spin transfer torque
- Spin orbit torque
- > FMR
- Previous works on ST-FMR
- Topological insulator
- ST-FMR with magnetic insulator
- Experimental
 - Thin film growth
 - Device fabrication for ST-FMR
- Analysis and discussion
 - STM surface characterization
 - ST-FMR on Py/TI
 - ST-FMR on Pt/YIG

Tentative roadmap

The robots sent into Fukushima have "died" due to high amounts of leaked radioactive materials.

Radiation-resistant device

Most modern electronic circuitry relies on controlling **electronic charge** within a circuit, but this control **can easily be disrupted in the presence of radiation.**

Magnetoresistance (MR) effect

In a normal metal \vec{B} affects electrons with Lorentz force => R increase => ordinary MR

In a ferromagnetic metal MR is strongly related to the direction of the magnetization \vec{M} . => anisotropic magnetoresistance (**AMR**)

$$AMR = \frac{\rho_{\parallel} - \rho_{\perp}}{\rho_{0}} \qquad \begin{array}{c} \rho_{\parallel} : M \parallel I \\ \rho_{\perp} : M \perp I \end{array}$$

$$\rho = \rho_{\perp} + (\rho_{\parallel} - \rho_{\perp}) \cos^{2} \theta_{M}$$

=> This phenomenon is related to the effect of spin–orbit coupling (SOC).

McGuire T, Potter R L 1975 IEEE Trans. Magn. 11 1018

Magnetoresistance (MR) effect

GMR

TMR

Magnetoresistive Random Access Memory MRAM => STT-MRAM

hard disk drive (HDD)

Applications

The Scheme of the Datta-Das spin field effect transistor (SFET).

Observation of Magnetic Domain

Applications: Spin injection, Spin LED, Spin pumping

Spin transfer torque

Spin transfer torque

• 4s (itinerant)-3d (localized) s-d interaction

Spin transfer torque

Spin Polarization of Conduction Electrons Due to s-d Exchange Interaction

Kei YOSIDA and Ayao OKIJI

Institute for Solid State Physics, University of Tokyo Azabu, Tokyo

(Received June 7, 1965)

Spin polarization of the conduction electron due to the s-d exchange interaction with a localized spin

 $\sigma = (\rho J/2N) \langle S_z \rangle$

<S_z>: expectation value of localized spin in the ground state

p: density of the conduction electrons at the Fermi surface

J: Ferromagnetic interaction factor

Spin orbit torque

M. I. Dyakonov and V. I. Perel, *JETP* **13** 467 (1971) J. E. Hirsch, *Phys. Rev. Lett.* **83** 1834 (1999)

Spin orbit torque

The spin Hall effect

Spin-dependent scattering gives rise to transverse spin imbalance of charge currents

Direct observation in GaAs with optical detection (Kerr effect)

Ferromagnetic resonance

$$\frac{d\vec{M}}{dt} = -\mu_{o}\gamma\vec{M}\times\vec{H} + \frac{\alpha}{M_{s}}(\vec{M}\times\frac{d\vec{M}}{dt})$$

Ferromagnetic resonance

17

Still remember the ESR measurement?

Ferromagnetic resonance experimental setup

FMR with cavity

sample

Ferromagnetic resonance

Analysis of the resonance signal

Anisotropic magnetic resistance (AMR)

$$\rho = \rho_{\perp} + (\rho_{\parallel} - \rho_{\perp}) \cos^2 \theta_M$$

ST-FMR researches

Tulapurkar *et al.*, Nature **438**, 339 (2005) Sankey *et al.*, Nature Physics **4**, 67 (2008)

Spin-torque diode effect in MTJ structure Liu. *et al.*, PRL **106**, 036601 (2011) Pai *et al.*, APL **101**, 122404 (2012) Mellink *et al.*, Nature **511**, 449 (2014) Wang *et al.*, PRL **114**, 257202 (2015)

Topological insulators/FM

Spin-torque diode effect in MTJ structure

Source of Spin transfer torque: current polarized by the fixed FM layer

Tulapurkar et al., Nature **438**, 339 (2005)

This behavior is markedly different from that of a conventional semiconductor diode, and could form the basis of a nanometre-scale radio-frequency detector in telecommunication circuits.

Line shape analysis

PHYSICAL REVIEW B 75, 014430 (2007)

Current-driven ferromagnetic resonance, mechanical torques, and rotary motion in magnetic nanostructures

Measurement of the spin-transfer-torque vector in magnetic tunnel junctions

JACK C. SANKEY¹, YONG-TAO CUI¹, JONATHAN Z. SUN², JOHN C. SLONCZEWSKI²*, ROBERT A. BUHRMAN¹ AND DANIEL C. RALPH^{1†}

¹Cornell University, Ithaca, New York 14853, USA ²IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA *IBM RSM Emeritus [†]e-mail: ralph@ccmr.cornell.edu

Supplementary Material for: "Measurement of the Spin-Transfer-

Torque Vector in Magnetic Tunnel Junctions"

Quantitative measurement of voltage dependence of spin-transfer torque in MgO-based magnetic tunnel junctions

HITOSHI KUBOTA¹*, AKIO FUKUSHIMA¹, KAY YAKUSHIJI¹, TARO NAGAHAMA¹, SHINJI YUASA¹, KOJI ANDO¹, HIROKI MAEHARA², YOSHINORI NAGAMINE², KOJI TSUNEKAWA², DAVID D. DJAYAPRAWIRA², NAOKI WATANABE² AND YOSHISHIGE SUZUKI^{1,3}

¹National Institute of Advanced Industrial Science and Technology (AIST), Nanoelectronics Research Institute (NeRI), Tsukuba, Ibaraki 305-8568, Japan
 ²Electron Device Division, Canon ANELVA Corporation, Fuchu, Tokyo 183-8508, Japan
 ³Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
 *e-mail: hit-kubota@aist.go.jp

Measurement of the spin-transfer-torque vector in magnetic tunnel junctions

JACK C. SANKEY¹, YONG-TAO CUI¹, JONATHAN Z. SUN², JOHN C. SLONCZEWSKI^{2*}, ROBERT A. BUHRMAN¹ AND DANIEL C. RALPH^{1†}

¹Cornell University, Ithaca, New York 14853, USA ²IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA *IBM RSM Emeritus †e-mail: ralph@ccmr.cornell.edu

$$\langle V_{\text{mix}} \rangle = \frac{1}{4} \frac{\partial^2 V}{\partial I^2} I_{\text{RF}}^2 + \frac{1}{2} \frac{\partial^2 V}{\partial \theta \partial I} \frac{\hbar \gamma \sin \theta}{4eM_{\text{s}} \operatorname{Vol} \sigma}$$

$$\times I_{\text{RF}}^2(\zeta_{\parallel} S(\omega) - \zeta_{\perp} \Omega_{\perp} A(\omega)).$$

spin-orbit torque ratio $\theta_{\parallel} = J_s/J_c = V_s/V_A(e\mu_0 M_s td/\hbar)[1+(4\pi M_{eff}/H_{ext})]^{1/2}$

ST-FMR on bi-layer structures

STT=>SOT

Liu. et al. PRL **106**, 036601 (2011) Pai et al. APL **101**, 122404 (2012)

Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum

Luqiao Liu,¹* Chi-Feng Pai,¹* Y. Li,¹ H. W. Tseng,¹ D. C. Ralph,^{1,2} R. A. Buhrman¹†

SCIENCE VOL 336

ST-FMR on FM/TI bi-layer structures

Topological insulator

Bi₂Se₃, Bi₂Te₃ BiSb_xTe_{1-x} Films grown by MBE

0.0

-0.2-

-0.4-

-0.6-

-0.8-

Binding energy(eV)

ARPES

-0.2 -0.1 0.0 0.1 0.2

 AI_2O_3

Device fabrication for ST-FMR experiment

ST-FMR experimental setup

ST-FMR device

Line curve analysis

Spin-transfer torque generated by a topological insulator

A. R. Mellnik¹, J. S. Lee², A. Richardella², J. L. Grab¹, P. J. Mintun¹, M. H. Fischer^{1,3}, A. Vaezi¹, A. Manchon⁴, E.–A. Kim¹, N. Samarth² & D. C. Ralph^{1,5}

PRL 114, 257202 (2015) PHYSICAL REVIEW LETTERS

Topological Surface States Originated Spin-Orbit Torques in Bi₂Se₃

Yi Wang,¹ Praveen Deorani,¹ Karan Banerjee,¹ Nikesh Koirala,² Matthew Brahlek,² Seongshik Oh,² and Hyunsoo Yang^{1,*} ¹Department of Electrical and Computer Engineering, National University of Singapore, 117576 Singapore, Singapore ²Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA (Received 4 February 2015; revised manuscript received 27 April 2015; published 24 June 2015)

week ending

26 JUNE 2015

ST-FMR on FM/TMD bi-layer structures

ARTICLES PUBLISHED ONLINE: 7 NOVEMBER 2016 | DOI: 10.1038/NPHYS3933

Control of spin-orbit torques through crystal symmetry in WTe₂/ferromagnet bilayers

D. MacNeill^{1†}, G. M. Stiehl^{1†}, M. H. D. Guimaraes^{1,2}, R. A. Buhrman³, J. Park^{2,4} and D. C. Ralph^{1,2*}

The surface possesses mirror symmetry with respect to the *bc* plane (dashed line), but not with respect to the *ac* plane, and therefore it is also not symmetric relative to a 180° rotation about the *c*-axis.

$$V_{\rm S} = -\frac{I_{\rm RF}}{2} \left(\frac{\mathrm{d}R}{\mathrm{d}\phi}\right) \frac{1}{\alpha_{\rm G}\gamma \left(2B_0 + \mu_0 M_{\rm eff}\right)} \tau_{\parallel}$$
$$V_{\rm A} = -\frac{I_{\rm RF}}{2} \left(\frac{\mathrm{d}R}{\mathrm{d}\phi}\right) \frac{\sqrt{1 + \mu_0 M_{\rm eff}/B_0}}{\alpha_{\rm G}\gamma \left(2B_0 + \mu_0 M_{\rm eff}\right)} \tau_{\perp}$$

 $dR/d\phi \propto \sin(2\phi)$.

 $V_{\rm A}(\phi) = A\cos(\phi)\sin(2\phi) + B\sin(2\phi)$

 $\tau_{\parallel}(\phi) = \tau_{\rm S} \cos(\phi)$ $\tau_{\perp}(\phi) = \tau_{\rm A} \cos(\phi) + \tau_{\rm B}$

It is consistent with predictions³⁵ that broken lateral mirror symmetry can allow an out-of-plane torque of the form $\tau_{AD} \propto \hat{\mathbf{m}} \times (\hat{\mathbf{m}} \times \hat{\mathbf{c}})$. That an out-of-plane antidamping-like torque with the form of τ_{B} could exist has also been discussed in an analysis of the allowed symmetries for S–O torques in GaMnAs /Fe samples²⁴, but this torque has not previously been identified in experiment.

Research Update: Spin transfer torques in permalloy on monolayer MoS₂

Wei Zhang,^{1,a} Joseph Sklenar,^{1,2,a} Bo Hsu,³ Wanjun Jiang,¹ Matthias B. Jungfleisch,¹ Jiao Xiao,³ Frank Y. Fradin,¹ Yaohua Liu,⁴ John E. Pearson,¹ John B. Ketterson,² Zheng Yang,^{3,b} and Axel Hoffmann^{1,c} ¹Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA ²Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA ³Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA ⁴Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 1 December 2015; accepted 17 February 2016; published online 3 March 2016)

ST-FMR on HM/FI

Ferrimagnetic insulator YIG

Sputtering YIG on GGG

AFM surface morphology

Sample preparation

$Y_3Fe_5O_{12}/GGG$ grown in sputtering chamber

TEM

ST-FMR on Pt/YIG

RF current no longer pass through the FM layer.

New theoretical model based on SMR should be applied.

ST-FMR on Pt/YIG

Theoretical calculation

$$V_{SMR} = \frac{h\Delta\rho_1 J_c^0}{4} \frac{F_S(\widetilde{H}_{ex})}{\widetilde{\Delta H}} (\widetilde{Y}_i^c + \widetilde{Y}_r^c \frac{\widetilde{H}_{ex} - \widetilde{H}_{FMR}}{\widetilde{\Delta H}}) \cos\varphi \sin 2\varphi$$
$$V_{SP} = \frac{h\rho J_r^P}{4} \frac{F_S(\widetilde{H}_{ex})}{\widetilde{\Delta H}^2} (\widetilde{Z}_i^c \widetilde{Y}_r^c - \widetilde{Z}_r^c \widetilde{Y}_i^c) \cos\varphi \sin 2\varphi$$

Chiba et al., J. Appl. Phys. 117, 17C715 (2015)

$$V_{mix} = VSM_{R} + V_{SP}$$

= $S\frac{\Delta H^{2}}{(H_{ex} - H_{res})^{2} + \Delta H^{2}} + A\frac{\Delta H(H_{ex} - H_{res})}{(H_{ex} - H_{res})^{2} + \Delta H^{2}}$

h: sample length, ω_a : resonant frequency, d_N : Pt thickness, λ : spin diffusion length, γ : gyromagnetic ratio α_0 : intrinsic damping constant of YIG. ρ : resistivity of Pt, d_F : thickness of YIG, M_s : magnetization of YIG. $G_{r(i)}$: Real (Imaginary) part of spin mixing conductance, η : spin diffusion efficiency described in the SMR theory, a complex function of Gi Gr. δ : phase shift between rf current and Oersted field inside YIG $F_{S}(\widetilde{H}_{ex}) = \frac{\widetilde{\Delta H}^{2}}{\left(\widetilde{H}_{ex} - \widetilde{H}_{FMR}\right)^{2} + \widetilde{\Delta H}^{2}}$ $Y_{i}^{c} = C[H_{r} + \alpha(H_{ac}\cos\delta + H_{i})] + C_{+}H_{ac}\sin\delta,$ $Y_r^c = C_+ (H_{ac} \cos \delta + H_i) - C \alpha H_{ac} \sin \delta$ $Z_i^c = C[\alpha H_r - (H_{ac} \cos \delta + H_i)],$ $Z_r^c = C_H_r + C_{ac} \sin \delta_r$ $J_r^P = \frac{\hbar\omega_a}{2ed_{NO}} \theta_{SH} Re(\eta),$ $\eta = \left(1 - \frac{1}{\cosh(dw/\lambda)}\right) \frac{\tilde{g}_r(1 + \tilde{g}_r) + \tilde{g}_i^2 + i\tilde{g}_i}{(1 + \tilde{g}_r)^2 + \tilde{g}_i},$ $\tilde{g}_{r(i)} = 2\lambda\rho G_{r(i)} \operatorname{coth}(d_N/\lambda),$ $\alpha = \frac{\alpha_0 + \beta \coth(r/2) \operatorname{Re}(\eta)}{1 - \beta \coth(r/2) \operatorname{Im}(\eta)},$ $r = d_{N}/\lambda$ $\beta = \gamma \hbar^2 / 4 \lambda \rho e^2 M_s d_F$ $\tilde{\gamma} = \gamma/(1 - \beta \operatorname{coth}(r/2) \operatorname{Im}(\eta)),$ $\Delta \rho_1 = \rho \theta_{\rm SH}^2 (2\lambda/d_{\rm N}) {\rm Re}(\eta/2),$ $H_{r(i)} = \frac{\hbar}{2eM_{c}d_{F}}\theta_{SH}J_{c}^{0}Re(Im)\eta,$ $H_{ac} = 2\pi J_{c}^{0} d_{N}/c$ $\Delta \mathbf{H} = \mathbf{\alpha} \boldsymbol{\omega}_{\alpha} / \widetilde{\boldsymbol{\nu}}.$ $\Delta \widetilde{H} = \Delta H / 2\pi M_s$ $C = \widetilde{\omega}_a / \sqrt{1 + \widetilde{\omega}_a^2},$ $C_{\pm} = 1 \pm 1/\sqrt{1 + \widetilde{\omega}_a^2},$ $\widetilde{\omega}_a = \omega_a/2\pi M_s \gamma$

Line width analysis

An inhomogeneous broadening factor was observed!

Thermal effect in the Pt/YIG film during ST-FMR measurement

Heating-induced $\Delta H_{0,\alpha_{SSE}}$

1. Overestimation of damping coefficient α or spin mixing conductance (Real part) G_r .

Schreier et al. Phys. Rev. B 92, 144411 (2015)

Fitting results yield $\alpha_0 = 0.01, 0.015, 0.04$

2. Inconsistent fitting results of frequencyindependent parameters.

 $\Delta \mathbf{H} = \alpha \omega_a / \widetilde{\gamma}$

$$\frac{\alpha}{\tilde{\gamma}} = \frac{\alpha_0 + \beta \coth(r/2) \operatorname{Re}(\eta)}{\gamma}$$

$$\frac{\eta \text{ should be frequency independent}}{\rho \operatorname{MR theory}}$$

3. Fitting results of the slope will vary with applied power, suggesting another damping term induced by thermal effect.

Thermal effect in the Pt/YIG film during ST-FMR measurement

Power(mW)

In-plane angular dependency

Heating induced V_{offset} during M switching process

Curve fitting with theoretical model

Curve fitting with theoretical model

Sample A	3GHz	4GHz	5GHz
J_{C} (A/m ²)	2.52(±0.11)×10 ¹¹	2.24(±0.08)×10 ¹¹	2.20(±0.06)×10 ¹¹
θ_{SH}	0.058 ± 0.004	0.064±0.003	0.063±0.003
Sample B	3GHz	4GHz	5GHz
Sample B J _C	3GHz 1.40±(0.03)×10 ¹¹	4GHz 1.30(±0.04)×10 ¹¹	5GHz 1.09(±0.04)×10 ¹¹

Summary

- We examined the theoretical model of SMR-based ST-FMR measurement.
- We provide some modifications on the model
 - 1. Adding an inhomogeneous factor.
 - 2. Frequency dependent measurement.
 - 3. Subtracting an extra $\sin \varphi$ symmetric component.

Spin-Orbit torque ferromagnetic resonance in transferred-topological insulator/normal metal/ferromagnetic metal heterostructure

Y. C. Liu, C. C. Chen, M. X. Guo, S. W. Huang, J. Kwo Department of Physics, National Tsing-Hua University Y. T. Fanchiang, C. K. Cheng, M. Hong Department of Physics, National Taiwan University L. J. Chang, S. F. Lee Institute of Physics, Academia Sinica

Outline

Introduction

- To decouple/reduce the interfacial coupling between TI and FM
- Results for transferred (TR) Bi₂Se₃ films
 - Sample transferring and characterization
 - Spin-orbit torque FMR
- Summary and future work

Application of spin momentum locked surface state

Does the strong interfacial exchange coupling modify the spin texture of the topological surface state, further influencing spin-to-charge conversion (SCC)?

Electronic property and chemistry of metals in contact with Bi₂Se₃

- Preservation of Dirac cone and the spin texture of TI
- Chemically inert to TI
- => Au may serve as a promising interlayer

However, it is difficult to directly grow Bi₂Se₃ on Au/YIG. =>Thin film transferring

Transfer procedure

Peel-off

Floating the Bi₂Se₃/Al₂O₃ film on BOE solution (a few mins to several hrs)

This is the most uncertain step. The difficulty of peel-off depends on samples.

Ideally, the film can be peeled off by itself without our poking or peeling.

Film transfer

Floating the Bi₂Se₃ film on water to rinse off BOE (1 hr)

Transferring the film to target substrate

Drying the transferred film in the chemical hood (1 hr)

Heating the sample at 40 – 50 °C on a hot plate (~ 5 min)

PMMA removal

Bathing the TR- Bi_2Se_3 in acetone (1 hr)

Ultrasonically cleaning the sample: 1. Acetone x 3 (10 min x3) 2. IPA x 1 (10 min x 1) 3. Water rinse multiple times

Improved transfer technique

This part was not successfully peeled off, and remained on Al_2O_3 .

Pinholes spreading throughout the film.

improvement

large cracks & wrinkles

 Bi_2Se_3 can be completed peeled off from Al_2O_3 . Much less pinholes. Very few wrinkles, ripples, and cracks.

Surface morphology preserved (1 x 1 μ m)

TI782: 9 nm Bi₂Se₃/sapphire

TR-Bi₂Se₃/sapphire

1000

The particles might be the residual PMMA, which is hard to completely remove.

XPS characterization

- There is **no substantial change in line shape** and **peak position** between Au 4f core-levels of Au/YIG and TR-Bi₂Se₃/Au/YIG.
- The **peak position of Au 4f is nearly consistent**, which indicates that there was **no severe interfacial interaction** between Bi₂Se₃ and Au after heated at 150°C for 2min.

Device fabrication for ST-FMR experiment

ST-FMR on TR-Bi₂Se₃/Au/Py before annealing

After annealing

After annealing

Au thickness dependent Js/Jc

Js/Jc shows larger enhancement after annealing at Au thickness 3-5 nm.

Summary

- After annealing at high vacuum, large enhancement of Js/Jc was observed. => could be due to better adhesion between TR-TI/Au
- However, the obtained value of spin torque ratio is not much higher than previous work on TI/FM

Future work

- So far we have only used transferred- Bi_2Se_3 thin film which is quite bulk conducting.
 - => Using bulk insulating BST for the transferring could increase the ratio.
- Switching measurement of Tr-TI/Au/FM