

Spin current & spin pumping effect

Yu-Ting Fanchiang, M. Hong Department of Physics, National Taiwan University

J. Kwo

Department of Physics, National Tsing Hua University

Outline

- Introduction to spin current and spin transfer torques
- Measuring spin Hall angle and IEE length
 - Spin pumping
 - Spin-torque ferromagnetic resonance (ST-FMR)
 - Modulation of magnetization damping (MOD)

Spin transfer torques

Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

Spin current

 $\mathbf{Q} = \mathbf{v} \otimes \mathbf{s}$

$$=\frac{\hbar^2}{2m}\operatorname{Im}(\psi^*\boldsymbol{\sigma}\otimes\nabla\psi)$$

For a spinor plane-wave wavefunction in x direction:

$$\psi = \frac{e^{ikx}}{\sqrt{\Omega}} \operatorname{Im}(a|\uparrow\rangle + b|\downarrow\rangle)$$
$$Q_{xx} = \frac{\hbar^2 k}{2m\Omega} 2\operatorname{Re}(ab^*)$$
$$Q_{xy} = \frac{\hbar^2 k}{2m\Omega} 2\operatorname{Im}(ab^*)$$
$$Q_{xz} = \frac{\hbar^2 k}{2m\Omega} 2\operatorname{Re}(|a|^2 - |b|^2)$$

Conservation of angular momentum Spin transfer torque:

$$\mathbf{N}_{st} = -\int_{pillbox} d^2 R \hat{\mathbf{n}} \cdot \mathbf{Q}$$
$$= -\int_{pillbox} d^3 r \nabla \cdot \mathbf{Q}$$

D. C. Ralph, J. Magn. Magn. Mat. 320, 1190 (2012)

$$M$$

$$\hat{y}$$

$$\hat{x}$$

$$\hat{y}$$

$$\hat{x}$$

$$\hat{y}$$

$$\hat{x}$$

$$\hat{y}$$

$$\hat{x}$$

$$\hat{y}$$

$$\hat{x}$$

$$\mathbf{N}_{st} = A\hat{\mathbf{x}} \cdot \left(\mathbf{Q}_{in} + \mathbf{Q}_{refl} - \mathbf{Q}_{trans}\right)$$
$$= \frac{A\hbar^{2}k}{2m\Omega} \sin\left(\theta\right) \begin{bmatrix} 1 - \operatorname{Re}\left(t_{\uparrow}t_{\downarrow}^{*} + r_{\uparrow}r_{\downarrow}^{*}\right) \end{bmatrix} \hat{\mathbf{x}}$$
$$\begin{array}{c} \text{Damp-like torque} \\ - \frac{A\hbar^{2}k}{2m\Omega} \sin\left(\theta\right) \underbrace{\operatorname{Im}\left(t_{\uparrow}t_{\downarrow}^{*} + r_{\uparrow}r_{\downarrow}^{*}\right)} \hat{\mathbf{y}} \\ \text{Field-like torque} \end{aligned}$$

$$\left(\left|t_{\uparrow}\right|^{2} + \left|r_{\uparrow}\right|^{2} = 1\right)$$
$$\left|t_{\downarrow}\right|^{2} + \left|r_{\downarrow}\right|^{2} = 1$$

Spin mixing conductance

$$\begin{pmatrix} a' \\ b' \end{pmatrix} = \begin{pmatrix} G_{\uparrow\uparrow} & G_{\uparrow\downarrow} \\ G_{\downarrow\uparrow}^* & G_{\downarrow\downarrow} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \operatorname{Re}(G_{\uparrow\downarrow}) >> \operatorname{Im}(G_{\uparrow\downarrow}) \text{ for metals}$$

NTU/NTHU

Ferromagnetic resonance (FMR)

Landau–Lifshitz–Gilbert equation $\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H} + \alpha \mathbf{M} \times \frac{d\mathbf{M}}{dt}$

Application: Measurement of magnetic anisotropy Measurement of damping constant α Spin pumping

Spin pumping

NTU/NTHU

Spin current projected along H_{ext}:

$$j_s = \frac{\omega}{2\pi} \int_0^{2\pi/\omega} \frac{\hbar}{4\pi} g_r^{\uparrow\downarrow} \frac{1}{M_s^2} \left[\mathbf{M}(t) \times \frac{d\mathbf{M}(t)}{dt} \right]_z dt$$

 $V_{\rm ISHE} \propto \boldsymbol{J}_{\rm c} \propto \theta_{\rm SH} \boldsymbol{J}_{\rm s} \times \boldsymbol{\sigma} \propto \theta_{\rm SH} \boldsymbol{J}_{\rm s} \times \boldsymbol{M}$ $\propto \theta_{\rm SH} \boldsymbol{J}_{\rm s} \times \boldsymbol{H} \propto \theta_{\rm SH} \sin \theta_{\rm H},$

E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2016)
K. Ando, et al., J. Appl. Phys. 109, 103913 (2011)
H. Nakayama, et al., Phys. Rev. B 85, 144408 (2012)

NTU/NTHU

E. Saitoh et al., Appl. Phys. Lett. 88, 182509 (2016)
K. Ando, et al., J. Appl. Phys. 109, 103913 (2011)
H. Nakayama, et al., Phys. Rev. B 85, 144408 (2012)

Antisymmetric lineshape from AHE or AMR

NTU/NTHU magnetization determine the polarity V. T. Fanchiang

Small cone angle (linear) regime

NTU/NTHU

The P factor

$$P = \frac{2\omega \left[4\pi M_s \gamma + \sqrt{\left(4\pi M_s\right)^2 \gamma^2 + 4\omega^2}\right]}{\left(4\pi M_s\right)^2 \gamma^2 + 4\omega^2}$$

can be viewed as a correction factor.

The pumped spin current is proportional to the trajectory area. Spin pumping is an adiabatic process. (think about the Carnot engine.)

Spin distribution in normal metals

Spin Hall effect acts as a charge current source. Solving the spin diffusion equation...

$$j_{s}(z) = \frac{\sinh\left[\left(d_{N}-z\right)/\lambda_{N}\right]}{\sinh\left(d_{N}/\lambda_{N}\right)} j_{s}^{0}$$

Thickness dependence

$$\left\langle j_{c}\right\rangle = \frac{1}{d_{N}}\int_{0}^{d_{N}}j_{c}\left(y\right)dy$$

$$= \theta_{SH} \left(\frac{2e}{\hbar}\right) \frac{\lambda_N}{d_N} \tanh\left(\frac{d_N}{2\lambda_N}\right) j_s^0$$

Spin backflow depends on the spin diffusion length.

> Need to get the thickness dependence data to calculate the spin Hall angle

Scaling of Spin Hall Angle in 3d, 4d, and 5d Metals from Y₃Fe₅O₁₂/Metal Spin Pumping

H. L. Wang,¹ C. H. Du,¹ Y. Pu,¹ R. Adur,¹ P. C. Hammel,^{1,*} and F. Y. Yang^{1,†}

¹Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA

(Received 23 September 2013; revised manuscript received 24 December 2013; published 15 May 2014)

Bilayer	$V_{\rm ISHE}$	ΔH change	$\alpha_{ m sp}$	$\rho(\Omega m)$	$g_{\uparrow\downarrow}({\rm m}^{-2})$	$\lambda_{\rm SD}({\rm nm})$	θ_{SH}	$J_s(A/m^2)$
YIG/Pt	2.10 mV	24.3 Oe	$(3.6 \pm 0.3) \times 10^{-3}$	4.8×10^{-7}	$(6.9 \pm 0.6) \times 10^{18}$	7.3	0.10 ± 0.01	$(2.0 \pm 0.2) \times 10^7$
YIG/Ta	-5.10 mV	16.5 Oe	$(2.8 \pm 0.2) \times 10^{-3}$	2.9×10^{-6}	$(5.4 \pm 0.5) \times 10^{18}$	1.9	-0.071 ± 0.006	$(1.6 \pm 0.2) \times 10^7$
YIG/W	-5.26 mV	12.3 Oe	$(2.4 \pm 0.2) \times 10^{-3}$	1.8×10^{-6}	$(4.5 \pm 0.4) \times 10^{18}$	2.1	-0.14 ± 0.01	$(1.4 \pm 0.1) \times 10^{7}$
YIG/Au	72.6 µV	5.50 Oe	$(1.4 \pm 0.1) \times 10^{-3}$	4.9×10^{-8}	$(2.7 \pm 0.2) \times 10^{18}$	60	0.084 ± 0.007	$(7.6 \pm 0.7) \times 10^{6}$
YIG/Ag	1.49 μV	1.30 Oe	$(2.7 \pm 0.2) \times 10^{-4}$	6.6×10^{-8}	$(5.2 \pm 0.5) \times 10^{17}$	700	0.0068 ± 0.0007	$(1.5 \pm 0.1) \times 10^{6}$
YIG/Cu	0.99 µV	3.70 Oe	$(8.1 \pm 0.6) \times 10^{-4}$	6.3×10^{-8}	$(1.6 \pm 0.1) \times 10^{18}$	500	0.0032 ± 0.0003	$(4.6\pm0.4) imes10^6$

Spin Hall angles strongly depend on the d-electron count.

NTU/NTHU

	T (K)	λ_{sd} (nm)	σ _{NM} (10 ⁶ S/m)	a _{sh} (%)		T (K)	$\lambda_{\rm sd}~(\rm nm)$	$\sigma_{\rm NM}~(10^6~{\rm S/m})$	a _{SH} (%)
Al	4.2 4.2	$455 \pm 15 \\ 705 \pm 30$	10.5 17	$\begin{array}{c} 0.032 \pm 0.006 \\ 0.016 \pm 0.004 \end{array}$	Mo	10 10	10 10	3.03 0.667	-0.20 -0.075
Au	295 295	86±10 83	37 37	11.3 3		10 295	8.6 ± 1.3 $35 \pm 3^*$	2.8 4.66	$-(0.8 \pm 0.18)$ $-(0.05 \pm 0.01)$
	4.5	65*	48.3	<2.3	Nb	10	5.9 ± 0.3	1.1	$-(0.87 \pm 0.20)$
	295 295 295 295 295 295	36^* 35 ± 4 27 ± 3 25 ± 3 50 ± 8	25.7 28 14 14.5 16.7	<2.7 7.0 ± 0.1 7.0 ± 0.3 12 ± 4 0.8 ± 0.2	Pd	10 295 295 295 295 295	13 ± 2 9^* $15 \pm 4^*$ 5.5 ± 0.5 2.0 ± 0.1	2.2 1.97 4.0 5 3.7	$1.2 \pm 0.4 \\ 1.0 \\ 0.64 \pm 0.10 \\ 1.2 \pm 0.3 \\ 0.8 \pm 0.20$
	<10 295 295 295 295 295 295 295	$\begin{array}{c} 40\pm16\\ 35\pm3^*\\ 35\\ 35\pm3^*\\ 35\pm3^*\\ 35\pm3^*\\ 60\\ 10\end{array}$	25 25.2 20 5.25 7 20.4	$\begin{array}{c} 1.4 \pm 0.4 \\ 0.35 \pm 0.03 \\ 0.25 \pm 0.1 \\ 1.6 \pm 0.1 \\ 0.335 \pm 0.006 \\ 1.1 \pm 0.3 \\ 8.4 \pm 0.7 \end{array}$	Pt	295 5 295 10 10 295 295		6.41 8.0 5.56 8.1 8.1 6.4 2.4	$0.37 0.44 0.9 2.1 \pm 0.5 2.4 8.0 1.3 \pm 0.2$
Auw	295	1.9	1.75	>10		295	3.7 ± 0.2	2.42	4.0 8±1
Ag Bi	295 3 295	0.3 ± 0.1	15 2.4 ± 0.3(I) 50 ± 12(V)	0.7 ± 0.1 >0.3 $-(7.1 \pm 0.8)(I)$ $1.9 \pm 0.2(V)$		295 295 295 295 295	8.3 ± 0.9 7.7 ± 0.7 1.5 - 10* 4	4.3 ± 0.2 1.3 ± 0.1 2.45 ± 0.1 4	$1.2 \pm 0.2 \\ 1.3 \pm 0.1 \\ 3^{+4}_{-1.5} \\ 2.7 \pm 0.5$
Cu	295	500	16	0.32 ± 0.03		295	8 ± 1*	1.02	2.012 ± 0.003
CuIr CuMn_T_	10	5-30		2.1 ± 0.6 0.7(Ta): 2.6(Ir)		295 295 295	1.3* 1.2 1.4*	2.4	2.1 ± 1.5 8.6 ± 0.5 12 ± 4

- 1. The larger spin Hall angles, the shorter spin diffusion lengths.
- 2. Depending on techniques, materials preparation and geometry, the calculated spin Hall angle can vary by 1 order of magnitude.
- 3. Rashba effect (broken inversion symmetry) at the interface

295

295

2.1

adds complexity to analyses.

IrO₂

0.38±0.06 -(33±6)

0.55

 -14 ± 1

Spurious effects

Microwave induced Seebeck effect in semiconductor.

- the boundary conditions, phase shift between E and B field can strongly affect voltage signals.

 Self-induced ISHE and spin backflow. (can be prevented by YIG)

 $\mu^{2} h^{2} (mT^{2})$

Universal Method for Separating Spin Pumping from Spin Rectification Voltage

Spin-torque ferromagnetic resonance (ST-FMR)

PRL 106, 036601 (2011)

PHYSICAL REVIEW LETTERS

week ending 21 JANUARY 2011

Spin-Torque Ferromagnetic Resonance Induced by the Spin Hall Effect

Luqiao Liu, Takahiro Moriyama, D. C. Ralph, and R. A. Buhrman Cornell University, Ithaca, New York, 14853 (Received 12 October 2010; published 20 January 2011)

Rely on AMR to generate voltage signals. Not suitable for magnetic insulator. Special Pt/YIG, case: Ta/YIG... $\frac{1}{4} \frac{dR}{d\theta} \frac{\gamma I_{rf} \cos \theta}{\Delta 2\pi \left(\frac{df}{dH} \right)|_{H_{ext}=H_0}} \left[S \frac{\Delta^2}{\Delta^2 + \left(H_{ext} - H_0 \right)^2} + A \frac{\left(H_{ext} - H_0 \right) \Delta}{\Delta^2 + \left(H_{ext} - H_0 \right)^2} \right]$ The spin Hall angle be can determined from the relative magnitude of the two components.

Modulation of magnetization damping (MOD)

PRL 101, 036601 (2008)

PHYSICAL REVIEW LETTERS

week ending 18 JULY 2008

Electric Manipulation of Spin Relaxation Using the Spin Hall Effect

 K. Ando,^{1,*} S. Takahashi,^{2,3} K. Harii,¹ K. Sasage,¹ J. Ieda,^{2,3} S. Maekawa,^{2,3} and E. Saitoh^{1,4}
 ¹Department of Applied Physics and Physico-Informatics, Keio University, Yokohama 223-8522, Japan ²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
 ³CREST, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan ⁴PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan (Received 17 March 2008; published 18 July 2008)

Modulation of magnetization damping (MOD)

Thermal effects on FMR spectra can be serious.

Need to change the in-plane field angle to separate the spin-transfer effect from the thermal effect.

Modulation of magnetization damping (MOD)

Controlled sample Py/Cu: Cu has small spin Hall angle.

NTU/NTHU

. Fanchiang Epitaxy Lab

NTU/NTHU

Investigation of interfacial and spin transport properties of topological insulator/magnetic insulator heterostructures by spin pumping

 Yu-Ting Fanchiang, Y. H. Lin, K. Y. Lin, C. K. Cheng, M. Hong Department of Physics, National Taiwan University
 H. Y. Hung, C. N. Wu, Y. C. Liu, H. Y. Lin, K. H. Chen, C. C.
 Tseng, C. C. Chen, S. R. Yang, S. W. Huang, M. X. Guo, J. Kwo Department of Physics, National Tsing-Hua University
 S. F. Lee Institute of Physics, Academia Sinica

J. G. Lin

Center for Condensed Matter Sciences, National Taiwan University

Outline

Introduction

- Spin pumping in topological insulators (TIs)
- Magnetic proximity effect (MPE) in TI/magnetic insulator heterostructures

Experimental results

- Spin pumping and spin-to-charge conversion (SCC) in TI/ferromagnetic metals and Py/Al₂O₃/Bi₂Se₃
- Surface-state-modulated magnetization dynamics in Bi₂Se₃/YIG
- Signatures of MPE in Bi₂Se₃/YIG and zero-field FMR
- Negative magnetoresistance (MR) and exchange gap opening in ${\rm Bi}_2{\rm Se}_3/{\rm ReIG}$
- Spin pumping and SCC in transferred Bi₂Se₃/Au/YIG

Conclusions

Topological insulators (TI)

Electronic band structure along K-Γ-K of undoped **Bi₂Se₃** by ARPES, Y. L. Chen et al, Science, (2010).

- Extraordinary physical properties
 - Quantum spin Hall state
 - Strong spin orbit coupling + time-reversal symmetry
 - ⇒ Spin-momentum locking
- **Applications**
 - Low dissipation spintronics and spin-caloritronics
 - High spin-charge conversion device, such as a "spin battery".
 - Interface of TI and superconductor Majorana fermion, quantum computation

NTU/NTHU

28

01

Ferromagnetic resonance (FMR)

Landau–Lifshitz–Gilbert equation $\frac{d\mathbf{M}}{dt} = -\gamma \mathbf{M} \times \mathbf{H} + \alpha \mathbf{M} \times \frac{d\mathbf{M}}{dt}$

Application: Measurement of magnetic anisotropy Measurement of damping constant α Spin pumping

NTU/NTHU

Spin pumping: a solution to impedance mismatch problem

Ando et al., Nat. Mater. 10, 655 (2013).

NTU/NTHU

Concept of "Spin pumping to TI" experiment

(i) Spin injection to the TI layer by exchange interaction

(ii) SCC by spin-momentum locking of TSS

(iii) Spin diffusion to the TI bulk

(iv) SCC by SHE of the TI bulk

Spin-charge conversion in 2D systems

Edelstein effe	ct Inverse Edelstein effect	
	$ \begin{array}{c} k_{y} \\ \hline \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$ \begin{array}{c} \begin{array}{c} 0.0 \\ -0.1 \\ 0.4 \\ -0.2 \\ 0.4 \\ -0.10 \\ 0.4 \\ -0.10 \\ 0.4 \\ -0.10 \\ 0.00 \\ 0.10 \\ k_{\parallel} (\dot{A}^{-1}) \end{array} \end{array} $
	Inverse spin Hall effect (ISHE)	Inverse Edelstein effect (IEE)
location	bulk	surface
condition	Spin current normal to the interface	"non-equilibrium" spin density at interface
material	Normal metals and semiconductors including 3D TIs	TIs and Rasba materials possessing k-dependent spin-polarized states

Spin pumping as an effective way to probe the spin-momentum locking

- Spin pumping: a widely used spin injection method FMR in the magnetic layer
- →Exchange interaction at the interface: transfer of spin angular momentum
- \rightarrow Spin accumulation at the interface
- →Charge current generated via spin-momentum locking

50

Various material systems and experimental configurations have been reported.

E. Saitoh group

A. Fert group

N. Samarth group

Bi₂Se₃/YIG

n

(H - H_R) (Oe)

PRL 117, 076601 (2016).

50

6

-50

PRL 116, 096602 (2016).

PRB 94, 204404 (2016).

Challenges of spin pumping into TIs

- Bulk conduction of TIs obscures the effect of topological surface states
- Large variation in reported effective spin Hall angle θ_{SH}
 - 0.022 in Bi₂Se₃/Py at 15 K (Deorani et al. (2014))
 - ~10⁻⁴ in bulk insulating Bi_{1.5}Sb_{0.5}Te_{1.7}Se_{1.3} at 15 K (Shiomi et al. (2014))
 - 0.021-0.43 in Bi₂Se₃/CoFeB at RT (Jamali et al. (2015))
 - 0.27-0.62 in Fe/Ag/α-Sn at RT (Rojas-Sánchez et al. (2016))
 - ~0.02 in Bi₂Se₃/YIG at RT (Wang et al. (2016))
- Current shunting effect by ferromagnetic metals in ST-FMR measurement

Ferrimagnetic insulator YIG with high thermal stability is an ideal spin source.

Breaking the time-reversal-symmetry of TI surface state

Experimental observations

- 1. Gap opening of TI surface states
- 2. Quantum anomalous Hall effect (QAHE)
- 3. Topological magnetoelectric effe

Chen et al., Science **329**, 659 (2010). Chang et al., Science **340**, 167 (2013).

Magnetic proximity effect (MPE) in TI/magnetic layer heterostructures

Spin Pumping in Bi₂Se₃/Fe₃Si and Fe/Bi₂Te₃ Structures

Converted Charge Current Density Comparison

NTU/NTHU

38 Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

Comparison of θ_{ISHE}

NM (FM)	Spin mixing conductance (m ⁻²)	Spin current density (Jm ⁻²)	Spin Hall Angle θ іѕне	J _c (A/cm²)	
Bi ₂ Se ₃ (Fe ₃ Si)	6.66×10^{18}	1.98 × 10 ⁻⁹	0.0053 ± 0.002	1.32	
Bi ₂ Te ₃ (Fe)	2.36×10^{18}	1.15× 10 ⁻⁹	0.0068 ± 0.003	1.00	
<i>p</i> -GaAs(Fe ₃ Si)	5.89×10^{18}	8.91× 10 ⁻¹⁰	0.00019	0.0087	
<i>n</i> -GaAs(Fe ₃ Si)	1.46×10^{19}	$1.53 imes 10^{-9}$	0.000028	0.061	
Au (Fe ₃ Si)	4.24×10^{18}	6.48×10^{-10}	0.00505	0.49	
Pt (Fe ₃ Si)	1.29×10^{19}	$1.96 imes 10^{-9}$	0.023	6.34	
 Much larger spin current density and θ_{ISHE} than conventional semiconductor GaAs. Comparable to θ_{ISHE} ~0.009 from S. Oh et al Comparable ISHE to Au, but smaller than Pt 					
H. Y. Hung <i>et al.</i> , J. Appl. Phys. 113 , 17C507 (2013) 15					
NTU/NTHU			H. Y. Hung <i>et al.</i> , Appl. Phys. Lett. 105 , 152413 (2014) P. Deorani <i>et al.,</i> Phys. Rev. B 90 , 094403 (2014)		

Using Al₂O₃ as a barrier layer to prevent interdiffusion

Benefits of the ferrimagnetic insulator YIG and TmIG

High T_c: high-temperature MPE in TI/FI

High thermal stability with TIs: Formation of sharp TI/FI interface >Insulating properties: prevention of current shunting effect

C. O. Avci et al., Nat. Mater. **16**, 309 (2016). **3**, e1700307 (2017). 5459 (2014). C. Tang et al., Sci. Auv. **3**, e1700307 (2017). IVI. Lany et al., Nano Lett. 14, 3433 (2014).

High quality off-axis sputtered YIG and TmIG films

Low damping YIG films of excellent crystallinity

Growth and structural characterization of Bi₂Se₃/YIG

Magnetic anisotropy in Bi₂Se₃/YIG

Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

Interfacial magnetic anisotropy favoring in-plane direaction

NTU/NTHU

Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

Bi₂Se₃ thickness dependence of K_i and damping enhancement

- A. TSS can strongly enhance the magnetic anisotropy of the magnetic layer. (Kim *et al.*, Phys. Rev. Lett. **119**, 027201 (2017))
- B. Such unconventional thickness dependence might be related to the topological surface states of Bi₂Se₃.
- C. The normalized damping enhancement peaks near the 2D limit (6 nm) of Bi₂Se₃, which is **3 times larger than that of Pt/YIG.**

20

Comparison with BiSbTe/YIG of Prof. Jing Shi (UC riverside)

H (Oe)

Epitaxy Lab

Tang et al., Sci. Adv. 4, eaas8660 (2018)

Comparison with BiSbTe/YIG of Prof. Jing Shi (UC riverside)

NTU/NTHU

Tang *et al.*, Sci. Adv. **4**, eaas8660 (2018)

Comparison with BiSbTe/YIG of Prof. Jing Shi

Surface-state-mediated exchange coupling: theoretical aspect

PRL 119, 027201 (2017) PHYSICAL REVIEW LETTERS Understanding the Giant Enhancement of Exchange Interaction in Bi₂Se₃-EuS Heterostructures

Jeongwoo Kim,¹ Kyoung-Whan Kim,² Hui Wang,¹ Jairo Sinova,^{2,3} and Ruqian Wu^{1,*}

¹Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

²Institut für Physik, Johannes Gutenberg Universität Mainz, Mainz, 55128, Germany

³Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnická 10, 162 53 Praha 6, Czech Republic (Received 21 December 2016; revised manuscript received 22 March 2017; published 13 July 2017)

- A. The strong SOC of TI can enhance the magnetic anisotropy of the magnetic insulator.
- B. The sign of anisotropy may depend on atomic structure at the interface.
- C. The TI surface state mediates the exchange coupling of the magnetic ion of the magnetic layer.

21

week ending

14 JULY 2017

Temperature-dependent FMR of YIG and Bi₂Se₃/YIG

- Larger linewidth and damping → smaller microwave absorption
- Increasing H_{res} shift at low temperature
- Less damping in Bi₂Se₃/YIG below 50 K

22

Temperature-dependent FMR of YIG and Bi₂Se₃/YIG

An effective field $H_{\rm eff}$ is necessary to fit the data.

$$f = \frac{\gamma}{2\pi} \sqrt{\left(H + H_{eff}\right) \left(H + H_{eff} + 4\pi M_{eff}\right)}$$

NTU/NTHU

23

Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

A possible indicator of MPE provided by spin pumping

Emerging low TPMA and negative magnetoresistance

- Time-reversal-symmetry breaking
- ➡ Weak localization & Negative MR

Kim et al., PRL **119**, 027201 (2017). Lu et al., PRL **107**, 076801 (2011).

NTU/NTHU

25

Spin-pumping-induced exchange effective field H_{eff}

Increasing field-like torque at low T

$$\mathbf{\Gamma}_{\mathrm{FL}} = \Delta_{ex} \mathbf{M} \times \langle \mathbf{S} \rangle_{\mathrm{neq}}$$

The $T_{\rm FL}$ in ST-FMR corresponds to a $H_{\rm eff}$ in spin pumping.

Wang *et al.*, PRL **114**, 257202 (2015). Fischer *et al.*, PRB **93**, 125303 (2016).

Internal effective field induced FMR without an applied field

• Internal effective field = $4\pi M_s + H_{an} + H_{eff}$

NTU/NTHU

- The exchange effective field H_{eff} becomes larger as T decreases.
- The strong H_{eff} has good potential for spintronic application.

56

Summary-1

- Ferrimagnetic insulator YIG provides thermally stable TI/YIG interface and avoides current shunting.
- Interfacial in-plane magnetic anisotropy in Bi₂Se₃/YIG is observed, and builds up as T decreases.
- A unprecedentedly large spin mixing conductance (2.2 x 10¹⁹ m⁻²) for YIG systems was observed in Bi₂Se₃/YIG, implying an interface with very efficient spin injection.
- Temperature dependence of spin pumping in Bi₂Se₃/YIG resembles that of antiferromagnetic CoO/YIG, suggesting MPE with a T_c as high as 180 K.

27

Observation of spin-to-charge conversion in Bi₂Se₃/YIG

Negative magnetoresistance (MR) and exchange gap opening in Bi₂Se₃/ReIG

Challenges of studying the interfacial band structure and transport properties of TI/FI

□ Independent check of (a) MPE and (b) Dirac surface gap

Signatures of surface bandgap, but no ferromagnetism

A coherent picture that shows transport signatures of the coexisting MPE and exchange Dirac gap is needed.

WL effect originated from TRS-breaking at the TI/FI interface: thickness dependent study

- In thinner Bi_2Se_3 > stronger WL (α_0) and weaker WAL (α_1)
- The WL is most likely due to the TRS broken by interfacial exchange interaction

Y. T. Fanchiang Ad Gifed Nano Thin Film Epitaxy Lab

Strong interfacial exchange coupling **Interfacial magnetic Transport signatures of exchange Dirac gap** anisotropy opening in Bi₂Se₃/TmIG **Two-step growth** 1.012 Bi₂Se₃ dl/dH(a.u. (0)⁸/(*B*)/⁸(0) 1.008 137 Oe TmIG normalized $\theta_{\rm vz} = 90^{\circ}$ $\theta_{\rm vz} = 60^{\circ}$ 1.000 $\theta_{yz} = 30^{\circ}$ - TmIG(15) 9 -9 Bi₂Se₃(7)/TmIG(15) в⁰(Т) -3 -6 -3 -9 -6 3 6 0 3 $B_{\rm z}$ (T) 4800 4000 4400 H (Oe) Ζ Ζ Μ Μ x,y x,y **SBLT growth** normalized dl/dH(a.u.) TSS 365 Oe $\propto M_z$ TmIG(15) Bi₂Se₃(7)/TmIG(15) NTU/NTHU 4400 3600 4000 662(Oe)

Observation of AHE and AMR

Summary-2

- Observation of negative magnetoresistance (MR) of the weak localization (WL) effect in Bi₂Se₃/YIG and Bi₂Se₃/TmIG
- Correlation between the negative MR and exchange gap size
- Proximity-induced long-range ferromagnetic order in TI/FI evidenced by anomalous Hall effect (AHE) and anisotropic magnetoresistance (AMR)

Comparison

UMN, PSU, CSU

H (Oe) Strong MPE, little spin-charge conversion

NTHU, NTU

Fanchiang et al., Nat. Commun. 9, 223 (2018) Wang et al., Phys. Rev. Lett. 117, 076601 (2016) arXiv:1806.09066 (2018) Critical role of a normal metal spacer layer: Very efficient SCC in α-Sn at room temperature (A. Fert)

Y. T. Fanchiang Advanced Nano Thin Film Epitaxy Lab

Electronic property and chemistry of metals in contact with Bi₂Se₃

C. D. Spataru et al., Phys. Rev. B 90, 085115 (2014) L. A. Walsh et al., J. Phys. Chem. 121, 23551-23563 (2017)

- Preservation of Dirac cone and the spin texture in Bi₂Se₃ in contact with Au
 No chemical reaction detected
- No discernible change of the peak shape

Au can serve as a promising interlayer, not only reducing the direct exchange coupling between YIG and Bi₂Se₃ film, but also preserving TI properties.

It is difficult to directly grow Bi₂Se₃ on Au/YIG because of the severe interdiffusion. 29

NTU/NTHU

Vewgraph by courtesy of Mark Tseng

Decreased interfacial coupling by Au layer

Smaller H_{res} shift in Au/YIG compared to H_{res} shift of Bi₂Se₃/YIG

H_{res} shift of ~22 Oe in TR-Bi₂Se₃/Au/YIG compared to H_{res} of Au/YIG

Slight enhancement of anisotropy in TR-Bi₂Se₃/Au/YIG implies that there is less direct exchange coupling between TR-Bi₂Se₃ and YIG.

31

Spin-to-charge conversion of Bi₂Se₃/Au

Small spin-pumping-induced current density in Bi₂Se₃/YIG
 Sizable enhancement of charge current in TR-Bi₂Se₃/Au/YIG

- Enhanced charge current of TR-Bi₂Se₃/Au/YIG is significantly larger than the value of Bi₂Se₃/YIG, possibly resulted from the decoupling of TSS and YIG.
- First principle calculations show that there can exist large Rashba splitting at the interface.
 C. H. Chang et al., NPG Asia Mater. 8, e332 (2016)
 32

Au thickness dependence of SCC in TR-Bi₂Se₃/Au

- SCC shows overall enhancement in TR-Bi₂Se₃/Au/YIG
- TR-Bi₂Se₃/Au interface may play an important role in the SCC.
- Improving TR-Bi₂Se₃/Au interface could further enchance SCC.

33

Summary-3

- Au served as an interlayer has effectively reduced the direct exchange coupling between TR-Bi₂Se₃ and YIG, so that little enhancement of IMA is observed.
- The SCC of TR-Bi₂Se₃/Au is larger than the value in Bi₂Se₃ on YIG, which may be caused by the decoupling of TSS and YIG, or Rashba splitting of the interface state.

34

Conclusions

- Discovery of large interfacial magnetic anisotropy of TI/FI heterostructures
- First demonstration of spin pumping probe of magnetic proximity effect
- Realization of zero-field FMR in Bi₂Se₃/YIG
- Possible incompatibility of interfacial exchange coupling and spin-to-charge conversion (SCC) in TI/FMI

