

Angle-resolved photoemission spectroscopy of quantum materials

Cheng-Maw Cheng

National Synchrotron Radiation Research Center Department of Physics, NSYSU Graduate Institute of Applied Science and Technology, NTUST

Outline

- Introduction to angle-resolved photoemission spectroscopy (ARPES)
 - The concept of energy band.
 - The principle of ARPES.
 - Scientific case : cuprates, graphene, TMDs and topological insulators.
- Probe the electronic structure of emergent materials
 - Scientific opportunities in nanoARPES.
 - The challenge and design concept of nanoARPES.
 - Beamline and end station design.
- Summary

What we are interested in

Wijeratne, Kosala, Conducting Polymer Electrodes for Thermogalvanic Cells (2018)

4

Silicon technology

https://theweek.com/articles/634470/next-great-race-between-china-over-computer-chips

High quality single crystal

https://www.doitpoms.ac.uk/tlplib/atomic-scale-structure/intro.php

Crystal structures

7

The energy level of hydrogen atom

https://en.wikipedia.org/wiki/Quantum_mechanics

- Deeply bound "core" electrons remain basically unchanged
- Outermost "valence" electrons hybridize forming continuous "energy bands"

Two approximations

Nearly free electrons. Electrons are non-interacting in a periodic crystal potential which is relatively weak and can be treated as a perturbation. As in the free-electron-gas model, they are still subject to the Pauli exclusion principle.

Free electron gas :

The interactions between electrons and between electrons and nuclei are turned off, subject only to the Pauli exclusion principle.

Tightly-bonding approximation

Electrons are tightly bound to particular atoms, overlapping only weakly with neighbors.

The main features of the E-k relation of GaAs

Direct and Indirect Band Gap

https://slideplayer.com/slide/5239400/

Fermi-Dirac Distribution

Thermal Properties of Free Electron Gas:

National Synchrotron Radiation Research

Almost every electronic transport property of solids is proportional to $D(\mathcal{E}_F)$.

Measurement of the Fermi level

Fig. 2.3. Ultra-high resolution photoemission spectrum on a polycrystalline gold sample (evaporated Au film) for the determination of the energy resolution. The Fermi edge was measured at T = 2.9 K using a frequency tripled (KBe₂BO₃F₂ crystal, KBBF) YVO₃ laser for the photoexcitation ($h\nu = 6.994$ eV) [15]

Hufner, Very high resolution photoelectron spectroscopy

Energy Band Diagram

What is photoemission?

Photon in -> electron out (emission)

What is photoemission spectroscopy? (photoelectron spectroscopy) (PES)

Initial state: ground (neutral) state

Conservation of energy

 E_k : photoelectron kinetic energy $E_i(N)$: total initial state system energy $E_f(N-1)$: total final state system energy Electron energy analyzer

Final state: hole (excited) state

Energy Distribution Curve (EDC) (Spectrum)

Energetics in PES

Hufner, Damascelli

$$E_k = hv - E_B - \phi$$

Conservation of energy

 $E_{v} : \text{vacuum (energy) level}$ $E_{F} : \text{Fermi (energy) level}$ $\phi = E_{v} - E_{F} : \text{work function}$ $\Rightarrow N(E_{kin}) \quad E_{0} : \text{bottom of valence band}$ $V_{0} = E_{v} - E_{0} : \text{inner potential}$

 E_k^{max} marks E_F in spectra E_B measured relative to E_F = 0

Usually fixed photon energy scanning not needed

Energy Distribution Curve (EDC)

19

Energy distribution curve (EDC)

20

The Principle of Photoemission Spectroscopy

What are the Samples and Probed States

- Atoms
- Molecules
- Nanoparticles
- Solids

atomic orbitals (states) molecular orbitals core level states (atomic like) valence bands/states core level states (atomic like) valence bands core level states (atomic like)

What are the samples and probed states

- Atoms
- Molecules
- Nanoparticles
- Solids

atomic orbitals (states) molecular orbitals core level states (atomic like) valence bands/states core level states (atomic like) valence bands

Angle-lesolved Photoemission Spectroscopy

$$E_{ph} = E_b + \Phi + E_k$$

Energy Distribution Curve (EDC)

25

Angle-Resolved Photoemission Spectroscopy

Electron emission angle: Θ Photon incident angle: ψ , *s*- and *p*-polarization

 $k_{\prime\prime\prime} = \sqrt{\frac{2m}{\hbar^2}} E_k \cdot \sin\theta$ $k_{\prime\prime\prime}(\text{Å}^{-1}) = 0.5123\sqrt{E_k(eV)} \cdot \sin\theta$ $k_{\parallel}(\text{inside}) = k_{\parallel}(\text{outside})$ Conservation of liner momentum Important for 3D and 2D band mapping

Conservation of linear momentum parallel to surface

$$k_{out} = \sqrt{\frac{2m}{\hbar^2}} E_{kin}$$
$$k_{in} = \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$
$$k_{out,\parallel} = k_{in,\parallel} \equiv k_{\parallel}$$

"Snell's Law"

$$k_{\parallel} = \sin\theta_{out} \sqrt{\frac{2m}{\hbar^2}} E_{kin} = \sin\theta_{in} \sqrt{\frac{2m}{\hbar^2}} (E_{kin} + V_0)$$

Critical angle for emission

$$(\sin\theta_{out})_{\max} = \sqrt{\frac{E_{kin}}{E_{kin} + V_0}}$$

Angle-Resolved Photoemission Spectroscopy

Electron emission angle: Θ Photon incident angle: ψ , *s*- and *p*-polarization

 $k_{\prime\prime\prime} = \sqrt{\frac{2m}{\hbar^2}} E_k \cdot \sin\theta$ $k_{\prime\prime\prime}(\text{Å}^{-1}) = 0.5123\sqrt{E_k(eV)} \cdot \sin\theta$ $k_{\parallel}(\text{inside}) = k_{\parallel}(\text{outside})$ Conservation of liner momentum Important for 3D and 2D band mapping

What is ARPES?

• We expect to study the electronic structure of solids at VUV region (10 eV~ 100 eV).

$$= 0.5123\sqrt{(E_{kin}\cos^{2}\theta + V_{0})}$$
$$= 0.5123\sqrt{E_{kin}}\sin\theta$$

- Ultraviolet Photoemission Spectroscopy (UPS)
 - UV He lamp (21.2 eV, 40.8 eV)
 - Laser : 6 eV (BBO), 8 eV (KBBF), 11 eV (gas cell) or HHG (High harmonic generation)
 - Valence band PES, direct electronic state info.
- X-ray Photoemission Spectroscopy (XPS)
 - (Electron Spectroscopy for Chemical Analysis) (ESCA)
 - X-ray gun (Al: 1486.6 eV, Mg: 1253.6 eV)
 - core level PE, indirect electronic state info
 - chemical analysis
- Synchrotron radiation
 - continuous tunable wavelength
 - valance band and core level

UV lamp (He I_{α} 21.2 eV, He II_{α} 40.8 eV)

What is ARPES?

• We expect to study the electronic structure of solids at VUV region (10 eV~ 100 eV).

$$k_{\perp} = 0.5123\sqrt{(E_{kin}\cos^2\theta + V_0)}$$
$$k_{\prime\prime} = 0.5123\sqrt{E_{kin}}\sin\theta$$

Photon energy

defines the detectable area of Energy

 $E_{kin} = \hbar \nu - \phi$

defines the accessible area of BZ

$$k_{\prime\prime\prime} = \frac{1}{\hbar} \sqrt{2mE_{kin}} \sin\theta$$

Phys. Rev. B 84, 014509 (2011)

The powerful spectroscopic tools such as XPS and UPS might be limited in in-situ chemical analysis because of the short penetration depth of electrons.

Why are electrons so useful as probes of surfaces?

Or

Not so useful for studying bulk properties !!

Minimum due to electron-electron scattering, mainly plasmons

PES is a surface sensitive technique! (requires UHV) High energy photoemission: several keV to increase bulk sensitivity

Light sources and terminology

- UHV environment : better than 1x10⁻¹⁰ Torr
- Single crystals or *in-situ* growth thin films
- Conductors or semiconductors
- Tunable photon energies

Figure 5.2: (color) The oxygen 1s peaks from Bi2212 at different times after the cleave. A constant background was subtracted from each spectrum to allow direct comparison. The peak derived from bulk oxygen is stable over time, while the surface oxygen peak grows as more oxygen sticks to the cold surface.

HC Hsu, Ph.D. Thesis NTNU(2010) Koralek, U. Colorado Ph.D. Thesis (2007)

Light sources and terminology

Superconducting gap

40

Overdoped Bi-2212 sample at two different momenta in the Brillouin zone.

These results strongly suggest that the superconducting gap is anisotropic and, in particular, consistent with a d-wave order parameter (*Scalapino*, 1995). Together with the microwave penetration depth results (*Hardy et al., 1993*), this direct evidence for gap anisotropy played a major role in the early debate on the pairing symmetry (*Levi, 1993*).

43 ZX Shen, PRL (1993)

Bilayer band splitting in overdoped Bi-2212 (Tc = 65 K)

45 DL Feng, PRL (2001)

Kim et al., Nat. Phys. (2015)

Eli Rotenberg, ALS summer school

The carriers have a finite lifetime due to absorption and emission of phonons and other excitations

The quantity determined in ARPES experiments is the single-particle spectral function

$$G(k,\omega) = \frac{1}{\omega - \varepsilon_k - \Sigma(k,\omega)}$$
$$A(k,\omega) = \frac{\operatorname{Im}\Sigma(k,\omega)}{[\omega - \varepsilon_k - \operatorname{Re}\Sigma(k,\omega)]^2 + [\operatorname{Im}\Sigma(k,\omega)]^2}$$

$$\Sigma = \operatorname{Re}\Sigma + i\operatorname{Im}\Sigma$$

Dispersion: E-k Relation (Velocity; Effective mass etc.)

國家同步輻射研究中心 National Synchrotron Radiation Research Center Scattering rate (Lifetime)

Optimally doped Bi-2212 cuprate

$$\hbar v_k \Delta k = \frac{\hbar v_k}{l} = \left| 2 \operatorname{Im} \Sigma(k, \omega) \right|$$

49 T. Valla et al., Science (2000)

Line shape analysis

50

53 Medjanil et al., Nat. Mater. (2017)

$$k_{\perp} = 0.5123\sqrt{(E_{kin}\cos^{2}\theta + V_{0})}$$

$$k_{//} = 0.5123\sqrt{E_{kin}}\sin\theta$$

$$k_{//} = 0.5123\sqrt{E_{kin}}\sin\theta$$

$$k_{//} = 0.5123\sqrt{E_{kin}}\sin\theta$$

56

Scientific Case : Graphene

Scientific Case : Graphene

What we expect to observe in ARPES

Coletti et al., PRB (2013)

Scientific Case : Twisted Bilayer Graphene

The simulated band structure of twisted bilayer graphene

Scientific Case : Twisted Bilayer Graphene

The simulated band structure of twisted bilayer graphene

Cao et al., Nature (2018)

ARPES – Characterization of emergent quantum materials

Figure 1. Schematic illustrating advantages of 2D materials: surfaces of (a) 3D and (b) 2D materials. The pristine interfaces (without out-of-plane dangling bonds) of 2D materials help reduce the interface traps. Mobile charge distribution in (c) 3D and (d) 2D crystals used as channel materials. The carrier confinement effect in 2D materials leads to excellent gate electrostatics. (e) Various types of 2D materials from insulator to superconductor. E_g denotes the band gap.

Transition Metal Dichalcogenides : MoS₂

Kuc et. al., PRB (2011)

Transition Metal Dichalcogenides : MoSe₂

Zhang et al., Nat. Nano. (2013)

65

*Transition Metal Dichalcogenides :MoSe*₂

Shou-Cheng Zhang (1963-2018)

Strong spin-orbital interaction Heavy elements

10	11	12	13	14	15	16	17	18
			5 B Boron	6 C Carbon	7 N Nitrogen	8 O Oxygen	9 F Fluorine	10 Ne Neon
			13 Al Aluminium	14 Si Silicon	15 P Phosphorus	16 S Sulfur	17 Cl Chlorine	18 Ar Argon
28	29	30	31	32	33	34	35	36
Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
46	47	48	49	50	51	52	53	54
Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
78	79	80	81	82	83	84	85	86
Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
110	111	112	113	114	115	116	117	118
Ds	Rg	Cn	Nh	Fl	Mc	Lv	Ts	Og
Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson

Xiao-Liang Qi and Shou-Cheng Zhang, RMP (2011)

Topological Insulators probed by ARPES

Scientific Cases: Dirac semimetal and Weyl semimetal

а Top view of lower cone **3D Dirac semimetal** (Cd₃As₂, Na₃Bi) κ_z $E = E_{\rm F}$ ••••> kz ----------> k₁₁ ^{(....}.ع _{kا} $E = E_{\rm F} - \Delta E$ b Fermi surface $E = E_{\rm D} + \Delta E$ $E = E_D - \Delta E$ $E = E_D$ X BDP X BDP

>Y

- The Dirac point can split into two Weyl points either by breaking the crystal inversion symmetry or time-reversal symmetry.
- In condensed matter physics, each Weyl point act like a singularity of the Berry curvature in the Brillion Zone – magnetic monopole in k-space

Scientific Cases: Dirac semimetal Na₃Bi

ARPES - key technique for the electronic structure mapping

- Angle-resolved photoemission spectroscopy (ARPES) is the most general tool to probe band structure, electronic interactions or spectral function mapping.
- Broad applications: surfaces, thin films, bulk materials, superconductors, magnetic/spin systems, complex materials, topological insulators, graphene based materials, charge density wave materials, low-dimensional systems, artificial stacks, device configurations, etc.

An introduction to Angle-Resolved Photo-Emission Spectroscopy (ARPES)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Table 1. Some typical laser right sources used in ARTES.										
Laser catagory	Generation	Applica- tion	Pho. energy (eV)	Pulse width (ps, fs)	Rep. rate (kHz, MHz)	Max.Pho. flux) (photons s ⁻¹	Energy res.) (meV)	Tem. Res. (fs)	References	Remarks
Quasi-CW	NLO crystal SFG+SHG	High-res ARPES	7	${\sim}10~{\rm ps}$	80 MHz	$1.5 imes 10^{15}$	0.26 meV	1	Liu et al [21]	(a)
			6	~70 fs (seed)	100 MHz	${\sim}10^{15}$	4.7 meV	/	Koralek et al [20]	(b)
			7	~10 ps	120 MHz	Unknown	0.025 meV	1	Okazaki et al [186]	(c)
			5.3-7	5 ps	76 MHz	$\sim 10^{14}$	Unsecified	1	Jiang et al [87]	(d)
CW	NLO crystal SFG+SHG	High-res ARPES	6.05	Infinite	Infinite	1×10^{15}	0.01	1	Tamai et al [37]	(e)
			6.49	Infinite	Infinite	1.25×10^{15}	${\sim}10^{-7}meV$	1	Scholz et al [54]	(f)
Pulsed laser	NLO crystal SFG+SHG	Tr- ARPES	1.5,6	50 fs, 160 fs	80 MHz	Unspecified	<22 meV	163 fs	Sobota et al [41]	(g)
			1.5,6.04	35 fs, 55 fs	250 kHz	$\sim 10^{13}$	40 meV	65 fs	Faure et al [40]	
			1.48, 5.92	170 fs,-	250 kHz	Unspecified	≥10.5 meV	≥240 fs	Ishida et al [149]	
HHG	Noble gas HHG	Tr- ARPES	1.58, 15–40	40 fs, 100 fs	10 kHz	3.6×10 ¹⁷	90 meV@35.6 eV	125 fs	Frietsch et al [43]	(h)
			1.6, 22.1	30 fs, 11 fs	10 kHz	Unspecified	170 meV	13 fs	Rohde et al [42]	(i)
			1.57, 20.4	30 fs	1 kHz	Unspecified	Unspecified	30 fs	Petersen et al [31]	
Mod./ Reson. type HHG	Mixed rare gas	High-res ARPES	10.5	10ps,	0.2–8 MHz	9×10^{12}	<1 meV	1	Berntsen et al [75]	(j)
21			10.9	100 ps,	1-20 MHz	×10 ¹³	<2 meV	1	Yu He et al [76]	(k)
FEL	Long undu- lator	Tr- ARPES	26-300	30–150 ps	<10 Hz	Very high	300 meV	700 fs	Hellmann et al [59]	

Table 1. Some typical laser light sources used in ARPES.

Probing unoccupied states of Bi₂Se₃ with 2PPE

Hierarchy of time scales: from as to ps

Separation of electronic and nuclear dynamics

High repetition rate/ lower photon flux in single pulse

National Synchrotron Radiation Research Center

Time-resolved ARPES : THz exciting source

Time-resolved ARPES :THz exciting source

Reimann et al., Nature (2018)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Future and outlook : Circular Dichroism (CD)-ARPES

Future and outlook : Spin-resolved ARPES

Rashba Splitting in Au(111)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Nano Everywhere

Materials of interest often contain intrinsic, extrinsic, and designed nanoscale features. Need rapid electronic structure mapping at the nanoscale

Multi-thickness domains existed in an exfoliated graphene flake

Van der Waals Heterostructures

C LHS with smooth interface

е

a LHS with rough interface

Ref : Shi et al., Nat. Comm. (2017) Hsu et al., Nat Comm. (2017)

Magic Angle in Twisted Graphene

'Magic' Twist in Stacked Graphene Reveals Potentially Powerful Superconducting Behavior

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Single crystals with broken surface

Anomalously large gap anisotropy in the a-b plane of BSCCO

Layer structure for BSCCO, easier to cleave crystal in UHV

	l		متشيما				
-0.4	· -0.	.3 -0).2 -	0.1	0	0.1	0.2
	Energy	Relat	ive to	the Fer	mi Lev	el (eV)	

FIG. 1. High resolution photoemission spectra from sample 1 recorded at **k**-space locations A and B, as illustrated in the inset. The spectra at B were measured before those at A. The spectral changes above and below T_c are caused by the opening of the superconducting gap. The change at A is quite visible, yielding a larger gap. The change at B is hardly visible, suggesting a very small or null gap.

ing of the superconducting energy gap. At the same

FIG. 2. Spectra from sample 2 recorded at \overline{M} at different times after the sample was cleaved and kept at low temperature. As the sample ages, the superconducting gap becomes smaller. The numbers marked are the gap size and its aging time after the cleave. A decrease of the intensity of the -80 meV dip is clearly visible. The clean sample surface can be regenerated by warming up the sample to room temperature, and then cooling down again.

Single crystals with broken surface

 $YBa_2Cu_4O_8$ studied with nano-ARPES at I05 beamline, DLS Beam size ~ 500 nm

Sample horizontal, $X - X_c (\mu m)$

182 H.Iwasawa, PRB 99, 140510 (2019)

Single crystals with broken surface

$YBa_2Cu_4O_8$ studied with nano-ARPES at I05 beamline, DLS Beam size ~ 500 nm

183 H. Iwasawa, PRB 99, 140510 (2019)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, micro-mechanic exfoliation... usually have smaller domain size in the early stage of material discovery. (van der Waals heterostructure, twisted bilayer graphene, 2D materials)
 - Single crystals with broken surface after in-situ cleaving.
 - Gating Effects in 2D Materials

Gating Effects in 2D Materials

Paul V. Nguyen et al., Nature (2019)

Gating Effects in 2D Materials

Paul V. Nguyen et al., Nature (2019)

Future and outlook

- Spin and dynamic behavior
 - Topological insulator, 2D materials, superconductors, complex oxides, graphene-based materials....
 - Time-resolved ARPES.
 - Spin-resolved ARPES
- Discovery and characterization of advanced materials
 - Novel materials fabricated with the CVD method, mic mechanic single contact and a size ~ 100 nm — Gat. nanoARPES with beam size ~ 100 nm stage of material bilayer graphene, 2D

With spatial and momentum k information

Electronic and Chemical imaging of Nanowires and patterned Samples

Band structure of transition metal dichalcogenides and their correlation effects

Conduct ARPES experiment for much smaller sample size

nanoARPES : X-ray focusing optics

X-ray focusing optics: zone plates, mirrors, capillaries

Zone Plate optics – circular grating with decreasing width: from ~ 200 to ~ 10000 eV <u>Monochromatic:</u> <u>Resolution achieved 15 nm in</u> <u>transmission</u>

KP-B mirrors each focusing in one direction: soft & hard Xrays: ~ 100 nm <u>Soft & hard x-rays!</u> <u>achromatic</u> focal point, easy <u>energy</u> tunability, comfortable working distance <u>Resolution ≤ 100 nm</u>

Normal incidence: spherical mirrors with multilayer interference coating (Schwarzschild Objective) Monochromatic, good for <u>E < 100eV</u> <u>Resolution: best ~ 100 nm</u>

國家同步輻射研究中心 National Synchrotron Radiation Research Center Capillary: multiple reflection concentrator

Hard x-rays ~ 8-18 keV Resolution: > 3000 nm

Refractive lenses

Hard x-rays ~ 4-70 keV Resolution: > 1000 nm

nanoARPES : Curved Mirror Optics

Kirkpatrick-Baez-optics

nanoARPES : Curved Mirror Optics

Nest of Grazing-Incidence Mirrors

Mirror Design of Chandra X-Ray Telescope

Capillary focusing method

Evaluation of Capillary focusing method

The secondary focal size is $\sigma = F * \theta$, where F is the focal length of secondary optics and θ is the incident beam divergence

Evaluation of Capillary focusing method

Figure 1

Top: far-field image without beam stop; the ruler shows the actual size of the image (approximately 25 mm outer diameter). Bottom: the same rings with external lights turned off for better contrast, and its ray-tracing simulation.

Barrea et al., J. Synchrotron Radiation (2010)

nanoARPES : Fresnel Zone Plate

For f >> $n\lambda/2$, which corresponds to a small NA lens

$$NA = \sin \theta = \frac{\lambda}{2\Delta r} << 1$$

the radius of the nth zone is given by:

A real first focus is achieved when successive zones increase in radius by \sqrt{n}

FZP are highly chromatic

nanoARPES : Fresnel zone plate

nanoARPES : Beamline design

Beamlines in light sources worldwide for micro- or nano-ARPES

valence band nanoARPES

operating: Elettra, Soleil, DLS

planning/commissioning: TPS, NSLS-2

The challenge of nanoARPES end station

nanoARPES - With spatial and momentum k information in the electronic structure

Spatially-resolved ARPES Zone-plate focusing: beam size ~ 100 nm

Optical Layout of TPS 39A nanoARPES Beamline

Core techniques:

Probe the electronic structure of solids

✓ µARPES (TPS3 9A1)

Beam size $\sim 10 \ \mu m$

✓ nanoARPES (TPS 39A2)
 Boom size ≈ 100 nm

Beam size ~ 100 nm

BL specification:

- Photon energy: 20 650 eV
- Resolving power >10⁵
- Flux ~ 10¹² ph/s with 10⁴ resolving power

Optical Layout of TPS 39A nanoARPES Beamline

Insertion Device of TPS 39A nanoARPES Beamline

• Gap operation : 28 ~ 120mm/ 4.3 m length with 23 periods

Mode	Magnetic field (T)	К	E1st (eV)	Partial power within 4.4 sigma (kW)	Partial power on B1 chamber Miss steering 2mm/0.2mrad (W)
Horizontal linear	By ≤ 0.516	Ky ≤ 8.1	≥ 15	0.568	~ 0
Circular	By=Bx ≤ 0.223	Ky=Kx ≤ 3.5	≥ 39	~ 0	40/16
Vertical linear	Bx ≤ 0.223	Kx ≤ 3.5	≥ 72	0.237	3.6/2

Beam Size and Resolving Power of TPS 39A nanoARPES

	Opening width of exit slit (<i>E slit</i>)	Beam size at 20 eV (<i>HxV</i>)	Beam size at 100 eV (<i>H</i> xV)	Photon flux at 20 eV (<i>photons/s</i>)	Photon flux at 100 eV	Resolving power E/ΔE
High energy resolution	2 μm	8 x 7 μm ²	5 x 4 μm ²	2 x 10 ⁹	4x10 ¹¹	100,000
Medium photon flux	10 µm	9 x 16 μm ²	6 x 16 μm ²	1.2 x 10 ¹⁰	2x10 ¹²	20,000
High photon flux	20 μm	10 x 32 μm ²	7 x 32 μm ²	3 x 10 ¹⁰	4x10 ¹²	8,000

Medium photon flux

High photon flux

The end station of TPS 39A1

µARPES – led and constructed by Prof. Deng-Sung Lin (NTHU) from an user community **Spatially-resolved ARPES/Spin-resolved ARPES/Conventional ARPES** Temperature range 5 – 1500 K *In-situ* thin film preparation **2D-VLEED spin-detector**

- ✓ Assembled in February 2018
- ✓ Located at TPS 39A1
- Conducted Spin-resolved ARPES/Conventional ARPES with He-lamp before the completion of beamline construction

The end station of TPS 39A2

Core techniques:

Probe the electronic structure of solids with much smaller domain size

- nanoARPES (TPS39 A2)
 - Beam size ~ 100 nm
 - Bendable mirrors for HRFMb & VRFMb

Two focal points of KB bendable mirrors

- At ZP-slit with ZP focusing
- Behind ZP-slit ~ 2.5 m without ZP focusing

Simulation result of zone plate & KB focusing stage at TPS

Z.P. object distance	2250 mm	
Z.P. image distance	6 mm	
Z.P. diameter	0.9 mm	
KB focus positin (after HRFMb)	2500 mm	
Z.P. position (after HRFMb)	4750 mm	
Foocus2 position (after HRFMb)	4756 mm	

	Beam Size	Scanned range	Spitial resolution
With KB focusing	~ 50 μm	5 mm x 5 mm	100 nm
With ZP focusing	~100 nm	200 µmx200µm	20 nm

- With KB focusing, we can make a large area mapping of core level to find the position and bonding termination of sample.
- ✓ With ZP focusing, we can make a fine scan of band structure and Fermi surface mapping for sample area.

nanoARPES - With spatial and momentum k information in the electronic structure

Goal : Spatially-resolved ARPES Zone-plate focusing: beam size ~ 100 nm

Sample stage :

- ✓ 6-axis degrees of freedom (x,y,z,yaw,roll,pitch)
- ✓ LHe & LN_2 cooling : 45K & 100 K
- ✓ Optical hutch required
- Monitor the position of sample, OSA and ZP stages with laser interferometer
- ✓ UHV compatible stages

UHV environment/UHV compatible stage
 Baking temperature
Magnetic field shielding
 Motor with long traveling length
6-axis sample stage with high spatial
resolution
✓ Stability
Very short working distance for ZP in VUV
region
✓ low photon energy (50-200 eV)
Vibration control (< 30 nm)
 Environment, pumps
Temperature drift
 Optical hutch required
Space charging issue

In-operando setup

NSRRL

nanoARPES in Exfoliated Graphene on h-BN

Typical result at MAESTRO beamline, ALS

Summary

- With spatial and momentum-resolved information in electronic structure, nanoARPES is a powerful tool for probing the band structure of solids with small domain size.
- Combine with Time-resolved ARPES and Spin-resolved ARPES, extensive scientific topics can be studied.
- With an in-operando setup, a gate configuration of 2D materials is possible to conduct ARPES for probing the effect of gate voltage.
- In conventional ARPES, non-layer structure of crystals are difficult to measure its band structure, such as YBCO.... With nanoARPES, we can revisit these interest topics.

- Insertion Device Dr. Ting-Yi Chung, Dr. Ching-Hsiang Hwang
- Beamline construction : Huang-Wen Fu, Dr. Gung-Chian Yin, Ming-Ying Hsu, Dr. Bo-Yi Chen, Liang-Jen Huang, Chao-Yu Chang, Ming-Han Lee, Dr. Yi-Jr Su, Robert Lee, Dr. Chien-Te Chen
- TPS 39A1 : μARPES
 Prof. Deng-Sung Lin (NTHU)
- TPS 39A2 : nanoARPES Cheng-Maw Cheng, Ping-Hui Lin

Acknowledgement

- Dr. Jose Avila
- Dr. Maria Carmen Asensio ANTARES beamline, SOLEIL, France

Dr. Moritz Hoesch
 P04 XUV beamline, PETRA III,
 DESY, Germany

- Dr. Eli Rotenberg
- Dr. Aaron Bostwick MAESTRO beamline, ALS, USA

