Spintronics in Semiconductors

C.S. Chu

Department of Electrophysics
National Chiao Tung University



Outline

e |Introduction
e Spin-orbit interaction in semiconductors

e Spin-Hall Effect (SHE)
e Spin Dipole
e Detection of spin current:
a nano-mechanical proposal
e Detection of spin current: by inverse SHE
e Spin Injection
e Spin-orbit interaction at metal alloy surfaces
e Summary




Introduction

An electron has a charge —e and a spin 1/2

Electronic industries have made good use of the charge.

But the electron spin has essentially been neglected.



Quoted from the abstract of
“Spintronics: Fundamentals and applications”

Spintronics, or spin electronics, involves the
study of active control and manipulation of
spin degrees of freedom in solid-state
systems.

In Reviews of Modern Physics,
vol. 76, p.323-410, 2004,
by I. Zuti¢, J. Fabian, and S. Das Sarma.
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Spintronics

Where magnetic material Spin-based Quantum

and magnetic field is Computing:
Involved: uses spin of nuclei as
« GMR: giant magneto- gubits

resistive effect
® Memory / storage
°* TMR, CMR

}
All electrical means of generation and
manipulation of spins:

 spin-polarized transport in semiconductors
e spin FET, spin filter

* logic / storage
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Why spintronics ?

new physical principles

new challenges

new working principles for applications
new devices for technologies

potentially decreases electric power
consumption
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Spin-polarized transport Magnetic materials

are involved.
schematic DOS polarization:
E E
HA - ??
Er | P = 1
l T Q n.+n,
N(E) N(E)
Normal Ferromagnetic

« Imbalance of spin population at Fermi level leads
naturally to spin-polarized transport

« commonly occurs in ferromagnetic metals (or alloys)
with P up to 50 %



Introduction

Magnetic materials
are involved.
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“Normal” transistor (MOSFET)

oxide qrgin

source .
metallic gate  (SiO5)

semi-conductor (Si)  conducting channel
(2D electron gas)

Spin transistor

gate

sl °

Datta and Das

source drain
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Why spintronics in semiconductors ?

compatible with the semiconductor industries

highly tunable
spin-orbit interaction (SOI) is much larger than

INn vacuum
zero magnetic field spin splitting in samples that
has bulk inversion asymmetry (BIA) or

structure inversion asymmetry (SIA).



In vacuum: 4;%(;2 g [8V X B]
2
_ 4;]]502 £-’ [I?x 8V]

ﬁg-(lz}x§V)

In vacuum: ) =-3.7x106 A2

In semiconductor such as GaAs: A = 5.3 A2

In semiconductor such as InAs: A = 120 A2

SOl in semiconductors



Compound AZP (eV) AL (eV) fi

C 0.006 0.006 0

Si 0.044 0.044 0

Ge 0.29 0.29 0
a-Sn 0.80 0
AIN 0.012 0.449
AlP 0.060 0.307
AlAs 0.29 0.27¢
AlSb 0.75 0.80 0.250
GaN 0.011 0.095 0.500
GaP 0.127 0.11 0.327
GaAs 0.34 0.34 0.310
GaSb 0.80 0.98 0.261
InN 0.08 0.578
InP 0.11 0.16 0.421
InAs 0.38 0.40 0.357
InSb 0.82 0.80 0.321
Zn0O —0.005 0.03 0.616
/nS 0.07 0.09 0.623
/nSe 0.43 0.42 0.630
Zn'le 0.93 0.86 0.609
CdS 0.066 0.09 0.685
CdSe 0.42 0.699
CdTe 0.92 0.94 0.717
HeS 0.13 0.79
HgSe 0.48 0.68
Hg'Te 0.99 0.65

SOl in semiconductors

Strength of
spin-orbit
goes as Z*.

It is larger
for heavier
atoms.
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Physical origin of this large enhancement
In the SOI coupling constant:

 a brief review of how SOI comes about,
starting from the Dirac equation.

* how does the SOI coupling constant gets
enhanced in semiconductors:
a k:p approach.
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How does spin-orbit interaction arises from Dirac equation,
when relativity is fully taken into account ?

(ca D+ Bmoc® + V) v = By

0 o 5_<12X2 0 )
=150 0 —1oxo

W:




1
— ; (E V) Q/JA
O -PYp = % (E V + 2mgc )1/)]3
E = E—myc? and

normalization of y gives
[dPyy =[dPlywn +viws)=1

(32

E —V + 2mgc2

Up{ }O’-pl/)A(EN’V)Q/)A

We focus upon the large component, when E > mc? .

SOl in semiconductors
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(32

E —V 4+ 2mgc?

Note that this equation cannot replace the original Dirac
equation, when large and small components are coupled.
This is because & , alone is not normalized. From

Ve = [2m0c2 +E-V }1cg- }g%\ we have

0-29{ }U'pU)A(Ev)d)A

e =wi(co-x)| 2me? + BV | (co - 7) v,

L (T r L
~ — WA [72'2+eh0°B) W\

2.2
4mgycC

= B+eK where e >0
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y,=\1-E2dt |7
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2.2
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CZ ~ _1 (1 E—V ) up to order

2myc?+E-V 2m, 2mqc? (vicy’
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SOl in semiconductors

— WV R (W x D) v (B2 rend- B)

2 2
T eh r L eh r ,r r eh” L 1
—tV+—0G-B-——— 0 (7x&)+—55V &
2m, 2m, Am;c 8m,C i
I I ‘
(z°)* ehz’ r L (ehB)’
T om3? 43297 B - 3.2
i 8m,c® 4m,C 8m,c |
= B0l
The spin orbit interaction term comes from the action g _1 %V

of gradient V onto the small component wavefunction.




SOl in semiconductors

We know now how the spin-orbit interaction comes
from the relativistic effect. The Thomas precession has
also been taken into account in our taking of the
nonrelativistic limit.

Can we then understand the amazing enlargement of
the spin-orbit coupling parameter A In semiconductor ?




In vacuum: 4r:112(:2 53 [gv X 8]
— 4;\1202 - [I?x 8V]

2 8.(Fxtv)

In vacuum: A =-3.7x106 A?

In semiconductor such as GaAs: A = 5.3 A2

In semiconductor such as InAs: A = 120 A2

SOl in semiconductors
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K:-p Method for an electron in a periodic potential V4(r)

The derivation of the k - p method is based on the Schrodinger equation

for the Bloch functions e*"u,,(r) = e*7(r|vk) in the microscopic lattice-

periodic crystal potential V()

[ P Vg(?’*)] e* T (1) = B, (k) eF T (r) |
2my

T /AN + —k-p||vk)=FE,(k)|Vvk).

2my mo

[ pZ }—12 k2 A
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If we include the spin-orbit interaction, given by

4£§C2 c? [@V X 8]

we get
2 21.2
p n“k h h
% —k - — D - Vo)l Ink
2mg i 2mg + mo T 4?7‘1,6 c2 p-ax(Vl )] e
= E, (k) nk)
where
h
T =P+ - > 0 X VVj
dmoc* Two component

spinors
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For a fixed wave vector Kk, the sets of lattice
periodic functions {|nk,> } provide a complete
and orthonormal basis. Therefore, we can expand
the kets {|nk >} In terms of band edge Bloch
functions {| ~0 >} times spin eigenstates | o >

nk) = Z Cruvo (k) |V 0",

!
L’

o'=T1,]
where

V') = [V0)®|d").
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! ] 51/1;f 50'0" + _lk ’ Pﬁg; + Ai;i;’} } Cnuv'o’ (k)

2my mo

— En(k) C-mzo*(k) )

where

P... .= (vo|w|v o) |

h
Apyr = Tl (vo||p-ox (V)] |v'e') .

We choose the S and P orbitals for states ‘V'G'>

h
T = D - — o X VV,
p 4moc? !




SOl in semiconductors

\"Fn

conduction
band (s)

valence band (p)

HH
+3/2 _
F =32
LH
\ t1/2 )
+—» ‘SO } j=1/2
K
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l//jm E (k — O)
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Table C.1. Basis functions |jm) of the extended Kane model. The quantization
axis of angular momentum is the crystallographic direction [001]. In accordance
with time reversal symmetry, we have choosen the phase convention that | X), |Y),

and |Z) are real and

S), | X7, |Y"), and |Z") are purely imaginary. Note that our

definition of the basis functions |jm) agrees with common definitions of angular-

momentum eigenfunctions (see e.g. [1])

303 L Xy 301 1| 2z
re 1202/00 V2] 0 2 2/, V6 |—-X' —1iY’
R -y 3 _3 L]0

2 2/, ve | 27 2 2/, V2 | X —iY
P A N AN T P o
T2 2/, V3 | X +iY’ 2 2/, 3| -2

L1 S 1 1 0
iR = L1 )

303 O 301 N
oo 1202/, v2| 0 2 2/, V6 |[-X —1iY
3

31 LR 3.3 N

2 2/ V6| 2Z 2 2/, V2 | X -1y
R N L1 L peebe
"2 2/, V3| X +iy 2 2/, | -z




(EcA+V)laxa V3PT -k ~=Po k
Hsxs = | V3PT' -k (E,+V)Lixa 0
~sFPok 0 (Bu= AotV Lo
. = 1 =1 p;. =1pj
([B+v 0 |APk, \/3Pk. 2Pk 0 Pk =kPk
; —1 py. 2pp. _1_ =1 pp. _1L
0 EAV| 0 tpr, \/;PA.;, 1Pk APk, LPk,
T .
=Pk 0 [E4V 0 0 0 0 0
2pp. =1 py -
_|\/EPr tPe] 0 B4V 0 0 0 0
S R N
1Pk, /2P| 0 0 EA4V 0 0 0
1 : :
0 LPr[ 0 0 0o Eav] o 0
—1 . —1 Py y
ﬁpkz ﬂPﬁl_ 0 0 0 0 |E,—AQ0+V 0
—1p. 1 py. / 7
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_(EC+V)126 JPTk P8k Twl (v
ﬁPT*-kp (E,+V),, 0 Vi |=E| W
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T -k — T' ' k+o0 -k —

SOl in semiconductors

P?/3

E-V + Ey FE —
— (E — V) Ve ,

From normalization consideration

V + Eo + Ao

ag - k] (8

Ve Wt W VotV W,

p 2 P o P
1Tk T ke Bk
(E,+E-V)

= wj 1+ 3P?

P2

3(E, + E+AO -V)

(T - )?)(T+ )?) p2 (&%) (&%) }”

nWE,’ 3n(E+A)

zg-"}yg

(T.)?)(Tﬂ)?):(zgz‘g”g’g)
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Physical meaning of P2 :

3P? . P2/3 |
T -k —= T ' k+o0- -k = / o-k| .
E -V + Ey E—-V + Ey+ Ap
f— (E — L’r) "E;'fr,-’c_ :

Taking the E;>> A :
3p? (2£2 —end-B P2 (B2 +end-B
( M )WC_+ ( M )yQ

E, M’ 3E, n
= (E _V) Ve

P? 3k -

=(E-V
E 7 (E-V)vy.
2

1 _ = I;’ P2and E, combined to give the effective mass of

2m - M°Ey  the electron



Define a normalized wavefunction

SOl in semiconductors

~ _|14 LZgz—eng Ig 7?2+eng Ig
6n°

J

Ve x (B +A) J| 7
3P° P2/3 |
T - k 3P T . k + o - k = / a - k] "f,i'flf’c
E-V + Ey E—-V +Ey+ A
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{1 6P2 [27?2—el]£ Ig }?2+eng gﬂ P? (27(?2 g g){ P? [27?2—el]£ Ig }?2+eng gﬂ‘//
n E (Ey+A,)° E (Ey+A0)°
3P2

(T V(TR v,
PZ |:1 p2 (Zgz—eng g 7@2_'_6“@ g]:l(gz g g){ P2 (27?2_61](? g }22+eng gﬂ@”

+ 2 2 2 2
N (E, +A,) 61’ E (E, +A,)° E (E, +A,)°

P S GHVER .
3n*(E, +
L =L 2792—671(?@ };2+eng|§ 1 p? Zgz—engg 792+enc9£
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28 (Kx V)

SOl in semiconductors

In semiconductor :

1

P2

2m

*

112 E,

The enhancement factor for InAs:

E, m 3
~ 05 MeV 1 2
04186V 0,023 3

= =34.7x10°

P2l 1 1
A= 2 2
3| B (E,+4,)
P [1  E
3NE | E (E+Ay)
L S PR =
6m E, (E, +A,)°
In vacuum:
PO S |
¢ 4Am2c? 4my(m,c?)
0 0 0

Compare with the actual values:

120 A’
3.73x107° A®

/’Lvac

=32x10°
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SOI due to Structure Inversion Asymmetry
Rashba SOI

T 4.0

0.6 F e 1012 a2
ud-Iny 5, Al ;5As gate Schottky layer ( 20 nm ) :\ nS—ZXIO 30({:)1‘1'11{
1 3.0

E:J
=
l ] L]

Pot.:sntlal-El= (eV)
=)
(]
1
Il (' [l
=
Charge (x10"® cm™)

ud-Ing 53Gag 47As channel layer (20 nm )

ud-Inys,Alj 45As spacer layer ( 6 nm )

n*-Ing 5, Al 45As carrier-supply layer
(7nm, n=4 x 1018 cm-3)

ud-Ing 5,Al, 4gAs buffer layer 0.0 TN, | T -1 0.0
02 1-1.0
S. L-InP substrate E ?no_s.g aq_ 4?A.s chm laj.(er o 20
0 20 40 60
Schematic layer structure of an inverted Position (nm)
INg 53Gag 47AS 1 1Ng 5,Alg 4gAS Calculated conduction band diagram (solid
heterostructure. line) and electron distribution (dash line).

(Nitta et al. Phys. Rev. Lett.78, 1355(1997)) (Nitta et al. Physica E, 2, 527(1998))
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Rashba effect (spin-orbit interaction )

Asymmetric Heterostructure:

2DEG

Structure inversion asymmetry:
06 noi0temt |

300K -

] -; ................. 0.
"[ In _Ga_Aschannel layer i

0537 7047

e
~
Ill
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o

Potential EF (eV)
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>
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1
g
o

<
<
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Position (nm)
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{ ﬁeff

o . |
In Lab. frame In the rest frame of an
o electron
The SOI hamiltonian is given by
T I T 1 I
H = -4 By o a-(—VxE)
I where @ is called the

HRashba = %o ( P X Z) 'O Rashba constant.
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Rashba spin-orbit interaction (SOI)

* SOI is significant in narrow gap Rashba term:
semiconductor heterostructures. H o =0 ( 6 . \7) . 5_

 Large variation (up to 50%o) of =

. V.

the SOI coupling constant a, L.

tuned by metal gates, has been :
observed experimentally.

[ Nitta et. al. PRL 78 (1997)

Engels et. al. PRB 55 (1997)
Grundler, PRL 84 (2000) ]

normal to interface
the Pauli spin operator

E(ky)

e Static gate control of a has been

the focus of previous proposals
on spin polarized transistors.
[ Datta et. al. APL 56 (1990), ...... ]
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0.024. -

0.014.

0.2

y 02 .02 -0.1

Fig.3.Dispersion relation for a 2D
Rashba-type system and the Rashba

constant ¢ =0.13.

'] -

0 kx

Figure 13: SIA (001) effective field.
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14x10712
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Spin-orbit coupling parameter & of the
first (circle) and second (square) subband
as a function of the gate voltage: including
(solid) and not including (open) band
nonparabolicity correlation.

(Nitta. et al. Phys.Rev.B 60,7736(1999))




Dresselhaus SOI
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SOI due to Bulk Inversion Asymmetry

Examples: Zincblende structures GaAs, InAs

Hsm = hf)

I
O

ff—.v‘ 7/
z

Or =

hy

he = gk, (k; —«x°);

- Bk, (k; = x°)

B 1. \\

Figure 11: BIA (

001) effective field.

Ky
ll|

- B <
Ny u/

Ill.\“.
\ '*-.\R\ . l l

,TT TBT t,

W

\ sl *
'.‘"-, '-_______--"'-"__ 0

Figure 12: BIA (110) effective field.
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Summary: Physical origin of SOI

: . - . )
Extrinsic origin: (P )
SOl impurity A g K xVV
Intrinsic origin: H ﬁ L
; =h: - &
Structural effect >0 b
Dresselhaus SOI: Rashba SOI:
Bulk Inversion asymmetry Structure inversion
asymmetr
h' = Bk, (k2 — k2); —
_ hr =a (KxZ
h = - pk, (kP — &) ( = o (kx2)




Spin Hall Effect

A simple picture for the extrinsic spin Hall effect

Spin Hall effect

J.E. Hirsch, PRL 83, 1834 (1999)
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Spin accumulation & Spin Hall Effect:
Spin-dependent deflection of injected carriers
produces spin accumulation at lateral edges

A

Injection of

unpolarized current:

Spin accumulation
without charge
accumulation

® R
o >
J) b
|
S|
® LB
|
1

Injection of partially
polarized current:

Spin accumulation is
accompanied by charge
accumulation



f%‘.. Spin Hall Effect
Fgm gy
@ NCTU

Q[

Earliest proposal:

An electrical current passes through a sample with spin-
orbit interaction induces a spin polarization near the
lateral edges, with opposite polarization at opposing
edges (M.l. D’yakonov and V.I. Perel’, JEPT Lett., 13,
467 (1971)).

This effect does not require an external magnetic
field or magnetic order in the equilibrium state
before the current is applied.

The M.I. D’yakonov and V.I. Perel’ (1971) paper was
titled: “Possibility of orienting electron spins with
current” in which an extrinsic mechanism was proposed
for the spin Hall effect.



V.M. Edelstein, Solid State Commun. 73, 233 (1990)
“Spin polarization of conduction electrons induced
by electric current in two-dimensional asymmetric

electron systems”

Spin Hall Effect

-I. .

S. Murakami, N. Nagaosa, S.C. Zhang, J;

= 0,

ijk
Ek

Science 301, 1348 (2003)
“Dissipationless quantum spin current at room
temperature”

J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T.
Jungwirth, and A.H. MacDonald,

Physical Review Letters 92, 126603 (2004)
“Universal Intrinsic Spin Hall Effect”
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A simple picture for the extrinsic SOI effect

2p WV (F)+2e & (b x E)

I I
mie vV mme%( E x cr;)—zev[é}-(f)x E)|

M —VV +ime o (\r/xi)[dE/dr + E/r]

e>0; & along 7 ,andlinearin A.

For an attractive scatterer with
E~r—"(n>1), spinup electronis
deflected more to the left and

spin down electron is deflected more

to the right.




- In the presence of an electric field the
Fermi surface (circle) is displaced an amount [eE,7y/h| at

time 1, (shorter than typical scattering times). While moving

In momentum space, electrons experience an effective torque
whlc!l tilts t.he Spins up for p},.> 0‘ and down for p, <,
creating a spin current in the y direction.

(b) ic D i
Green arrows: N 5, This picture is not

A correct because it

E=E
wavevector "/' has not taken into

account 2 features:

Green arrows: Py v 1. the effect of
Effectl\{e _ background
magnetic field impurities;
direction
2. the form of SOI.:
t=0 linear or non-
linear in k ?

J. Sinova, et al PRL 92, 126603 (2004)
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Experimental observation of extrinsic spin Hall Effect

In thin 3D layers (weak dependence on crystal orientation)

Y.K. Kato, R.C.Myers, A.C. Gossard, D.D. Awschalom, Science 306,
1910 (2004)

Kerr rotation (urad)
2 -1 0 1 2
_::_

A4O-l ) L) ) '- ) ] L} l-
ey 'B» '
gl
m -20} -+ -
-40F 1 | | n'
= f: & E //[110] E//[110]
L

S o - T\--\
= -1F

< )

_ 402002040402002040
unstrained GaAs Position (um) Position (um)
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-20 -10 0 10 20-20 -10 0 10 20
Position (um) Position (um)
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NCTU

Experimental confirmation of spin Hall Effect ina 2D

hole gas (intrinsic SHE)
J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 (2005)

1505 1510 1515 1520

E [eV]




Spin Hall Effect
NCTU

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 (2005)

B "Wafel'* 1

n-AlGaAs
GaAs/AlGaAs superlattice

149 130
E [eV]

131



Spin Hall Effect

Spin Is not conserved:

[ Torque density

8_‘513+V-J5.=T7.
Ot -

and definition of spin current remains an issue
(Shi J, Zhang P, Xiao D, and Nui Q, Phys. Rev.
Lett. 96 76604(2006)). e

= d—tZE (l/in)[é\z,ﬁ]

Experiments measure spin accumulation, not
spin current.

Spin accumulation, not spin current, iIs the key
physical quantity of our interest.



Spin Hall Effect

Derivation of a spin diffusion equation

1 I
He, = hﬁ O
Dresselhaus SOI: Rashba SO|:
_ 2 2. 1 Lo
he = Bk, (k; —x°); h = a (kx2)

he = — Bk, (kg —x°)

Dresselhaus SOI contains
cubic term in k




Spin Hall Effect

H’:
Perturbing
Hamiltonian

H = V() +BF.t).& = > P

where %=1 and 7'= &' for i=xy,z

Four vector density D. (f,t) :

D, (r,t) = n(r,t)

D.(r,t) = 2 S.(r,t)




Spin Hall Effect

D, (F.t)=—i Tr[ 7' & (r,rt,t)]

Linear response:

C%J(F,F,t,t):-i<] _‘i'v(lf,t)‘i'j,(?,t+)(_i)j H-(T)df_>

< .....> denotes averaging over impurity configuration




Spin Hall Effect

. ! I
— I — :
I’_I_G + Gr(k,a))za) 8k+lr+hk o)

(w—g +il')" —h?
Ly

a(ﬁ w)_a)—gk—ll-“Jrzhk-O'
(0—¢ —iC) —h;




Spin Hall Effect




Spin Hall Effect

D? (4, @) =—-2N,(E )@, (4, w)

N,(E.) Is the density of states per spin
states at the Fermi energy
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(F10)d, (o)

Fourier transform of jdzr 'T1
J
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To get some feeling, let’s consider the case h—0:

\P'S(a)a)a) = 5"° [1+ia)r—qur]
T:% Dirtylimi;: h, <<T
<<I', vo-g<<I,
[ =7zc V| Ny (Ep) @ ' F é)
['<< E;

D=vir/2



Spin Hall Effect

5 NCTU
is I r . iglsm r r m
\P (((),(() ’q)linearinhand =0 N 1"2 (q VF)hpF
Precession of the inhomogeneous spin /
polarization about the effective SOI field.
s ¥ s D2 Angular average
Y (a),a),q)‘hzoz ) [1+|a)r Dq z'] g g

¥ (0, a)‘q:o,mo =—47°h; (5ij —n.n/ ) J Drakonov-Perel
h? term spin relaxation

| ~ | 4
T 4 ON [ [ nlg—hlg/hlg

O (0,0, 8)= 502 T (1) =¥ (0,00 4)

[’ op

Charge-spin coupling




Spin Hall Effect

D, (f,@)-D} (Fo) = [d’r Y11 (F,F0)0 (o)
J
D’ (D - DO)j = —iwD,
D' = 5'DV? + 47" vV —4zh? (5% —ninl)+ hig a”I'pF v
N YF J “ F — _ \F ip J
Riimvm i M ©

D is the diffusion constant




Bulk spin polarization in Rashba-type strip Spin Hall Effect

Spin densities Diffusion equation
for Rashba-type semiconductor strip

azsz wgr__pow 87 5
oy =

5 S pwgy_ g 85" M 0D} |
oy’ oy 2 OX .y

(’9ZSX

XXSX -0

Bulk spin density : S*=S"=0

V.M. Edelstein
@DO Solid State Comm. 1990
) _Neraz' J.1. Inoue et al, PRB 2003

S = (M7 /2r

OX




Boundary condition needed for the spatial spin distribution

Relating the spin flux to the spin densities

|3(F)=-D%—%R”V(si -5 )+ 6,1l

T
1 N oh, [
., =—=R¥S) +eE—Lv!| —%xh

Boundary condition :
1Y(£d/2)=0

Spin Hall Effect



Boundary condition Spin Hall Effect

More recent work on the boundary conditions for the spin
diffusion equation:

*G. Bleibaum, Phys. Rev. B 74, 113309 (2006)
“Boundary conditions for spin-diffusion equations with
Rashba spin-orbit interaction”

V.M. Galitski, A.A. Burkov, and S. Das Sarma,
Phys. Rev. B 74, 115331 (2006)
“Boundary conditions for spin diffusion in disordered

systems”™

*Y. Tserkovnyak, B.l. Halperin, A.A. Kovalev, A. Brataas,
New Journal of Physics 9, 345 (2007)
“Boundary spin Hall effect in a two-dimensional
semiconductor system with Rashba spin-orbit coupling”

* Work that agrees with our result for hard wall boundary.



Edge spin accumulation in a Rashba-type strip Spin Hall Effect

8282 FZZSZ _ Rzyy aSy X
oy
20 Y A y0 0 &
D—_ 0°S Fnyy RyZy 0S 4+ |\/Ix aDO
oy’ oy 2 OX
2¢Q X >y
& S —I'™S*=0

Bulk spin density : S*=S*=0

O -
)8D =N _eEqr| |NO>PIN
OX 0 Accumulation at
edges for Rashba-

type strip.

S} =—(MJ°/2r




Edge spin accumulation in a Dresselhaus SOl strip Spin Hall Effect

202 X
Daasz _FzzSz:_szy% «

y y

5%S* 85 oD° -
DY o S A Y

oy OX

2y -y

D%y—sz—rwsyzo

Bulk spin density : SY =S =0

oD
OX

S, :—(I\/I XXO/ZFXX) h' = pk, (k2 - &?);

hY = - Bk, (K2~ k%)




Edge spin accumulation in a Dresselhaus SOl strip Spin Hall Effect

k=13 | Spin densities

----wk=lL.0 | forj=x, z as a functions of its width
SR k/k=0.9 d

~SEz=—====--===- TIhe inset shows the dependence of
AS,(Y) on the transverse coordinate
y. Lengths are measured in unit of

AS(Y)

Phys.Rev.Lett. 95, 146601(2005)
Mal’shukov, Wang, Chu, Chao

ASE

ﬁ'll 6 8 10
d



Dresselhaus SOl strip Spin Hall Effect

0

10 .5 y X 10 .5 | y

Spin densities of AS, are of odd parity in a 2D strip with «/k=1.3
for the strip width d = 10.

X

Spin accumulation in a Dresselhaus-type 2DEG has a
comparable magnitude (~17 £ m= for GaAs)




Perspective

At the time the semiconductor spintronic community

gradually realized that disorder due to normal impurities
removes completely the Rashba SOI Spin Hall Effect.

SHE in Rashba-type spin-orbit systems vanishes
In the presence of weak disorder

J.1. Inoue, et al, Phys. Rev. B 70, 041303 (2004)

E.l. Rashba, Phys. Rev. B 70, 201309 (2004)

O. Chalaev et al, Phys. Rev. B 71, 245318 (2005)

E.G. Mishchenko, et al, Phys. Rev. Lett. 93, 226602 (2004)
A.A. Burkov, et al, Phys. Rev. B 70, 155308 (2004)

O.V. Dimitrova, Phys. Rev. B 71, 245327 (2005)

R. Raimondi et al, Phys. Rev. B 71, 033311 (2005)

A.G. Mal’shukov et al, Phys. Rev. B 71, 121308(R) (2005)
B.A. Bernevig and S.C. Zhang, Phys. Rev. Lett. 95, 016801
(2005)

Cubic dependence on K is crucial.

Spin Hall Effect



Extrinsic SHE: a theoretical explanation Spin Hall Effect

r 'y ek ending
PRL 95, 166605 (2005) PHYSICAL REVIEW LETTERS 14 OCTORER 3005

Theory of Spin Hall Conductivity in n-Doped GaAs

Hans-Andreas Engel, Bertrand 1. Halperin., and Emmanuel 1. Rashba
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
' * {Received 21 May 2005: published 13 October 2005)

We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at
charged scatterers, which leads to skew-scattering and side-jump contributions to the spin-Hall con-
ductivity. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are
in reasonable agreement with experiments by Kato ¢f al. [Science 3, 1910 (20047].

DO 100103 PhysRevLett. 95, 166605 PACS numbers: T2.25.D¢, T1.70E]



Extrinsic SHE: a theoretical explanation Spin Hall Effect

What should be the distribution of electrons in the momentum

space if there is spin-orbit scatterers in the system (extrinsic
SOl) ?

Physical Review Letters 95, 166605 (2005)

We start by refreshing our understanding on the normal
Boltzmann equation.

_eI}-_:) @f({k‘):_ZZEM ‘5(5p—5p)—[f(k)—f(k )]

n
Connection to differential cross - section :
Lk do, _jZ”M \5(5p—gp)—dgz 2 dk'
V. m dQ (27)
do m * 2
=M
dQ 4rn’*




Extrinsic SHE: a theoretical explanation Spin Hall Effect

RHS of the Boltzmann equation : the scattering rate

—ZZ” r d%(gp—gp)—[f(k)— 108)

nile
=———|dQ, k—fk—fk
1| £ ()]
For a total of N, |mpur|t|es, the
total scattering rate is

D
eE o (k) nk'do [ O o P
-EE A - fao, ST [ - 1
5 n,dekmdQ[() ()]
elj::’ of (L() i (ﬁ) f(lzj) = fo(lz})+éf (iz})
n 8k

— 5 (k) _ zen £ P df For isotropic scatterers, we have j dQp, of (|2") =0

€k




Extrinsic SHE: a theoretical explanation Spin Hall Effect

When the impurities are spin-orbit scatterers, the
distribution f(k) will become a matrix, a 2X2 matrix.

f(K) = £, (K) L+ 4K) Lo + T (K)-& )

We may expect the scattering rate to become a
scattering rate matrix.

eE of (k) K do [z P - P
— . ——— H dQ" f k _f k
n_ ok ] "'m*dQ[() )

How do we come up with an appropriate
definition of the scattering rate matrix ?




Extrinsic SHE: a theoretical explanation Spin Hall Effect

Before we go on to find the scattering rate matrix expression,
It is beneficial for us to look at the physical meaning of the
scattering from a spin-orbit scatterer.

c(k -k (K +k7)/2)
S 28 (kK k—kxk IV (K +K)/2)

S a8 (kKx kN (K +k7/2)

= the effective magnetic field due to

. b P,
scattering eventk — k'isalong the
... PP
direction k xk'.




Extrinsic SHE: a theoretical explanation Spin Hall Effect

We first consider the scattering matrix of a spin-orbit
scattering event.

Without loss of generality, we can assume that the
particle is incident along z and the spin is either
parallel or anti-parallel to z.

l//inc = eikza :
| ikr 0/ b
efa ]S, a+S, o 7k
r 5}
Wine = eikzﬂ ~ Al Ta
| aikr K=12 Lp
—> e+ [812 a+ Sy, IB]_
"
The scattering matrix S; are functionsof dand ¢.
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To find the ¢ dependence of S;; we look at the
total angular momentum along z.

+ ——
| 0 2 2 0S,, i o
a¢ 21
N 0Sy; _ 0 |
O¢ =S, oce”

Similarly, we have
0S,,

S, ce™ and =0




Extrinsic SHE: a theoretical explanation Spin Hall Effect

To find the & dependence of S;; we look at the “reflection symmetry™
In the yz plane.

Symmetry operator for the reflection in the yz plane:
Po,
P, make changes x — —x to any function at its right
hand side.
0,0, =0, , 0,0,0,=-—C 0,0,0, =—0O

y ! z

Po, (It)g) Po, = .8

Applying our reflection operator to our scattering state :

anx {eikza T [Sll (0’ ¢) q+ S21 (‘9’ ¢) ﬂ] i:r}

— eikzlg+ [811(917T_¢) B +5,(0,7—¢) a]irkr
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From reflection symmetry, we have
eikr

— e“B+[S.(0,7—¢) f+5,(0,7—¢) o] :

From our previous scattering convention, we have

S P[5, 00 @+ 5,0.0) 51°

€

SL(0.4)=h(@)e™ ; S,(0.4)=N'(O)e"| -_ gx_lg
= h(6) =-h'(6) kK]

KxK'
Scattering matrix :
c_[ 9O hEe"
-h@)e”  g(o)

j:g(9)12X2+ih(9)ﬁ-£-’
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The scattering wavefunction becomes:

ey +§ e”
Kn T2 Xy~

Scattering rate for such a scattering wavels:

_nk + QHQ
_mrzlns SZ??

. 2 o
JrrdQ: nk Z+S+SanQ

scattering rate =
J mvVv ~7
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Define the scattering rate matrix as follows:

e“r? 5f (k) L, = Zjdg Sy 72876 (K)
+n2jdg K¢ —A) 7, 7:S* (~A)SF, (k)
ené) af (k) L Zfdﬂ kg

n)éf(k)S (-n)
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S(f) of (k) $* (k)
~[9(8)1,,, +ih(9) A-&] [¢(|f) 1., + F(f)-é-’][g(e)* 1,,,—ih(@) i8]
SS* =|gf +i(hg"—gh") A-&+]h[

S&8+ =|gf E+ilhg"(A-&)E- gh"E(@- &) [+ |} (- 5)5(@A- F)
_enp (k)
m o0&,

2X?2

[, ®fi@ff - i) 1@s@n-Spid + o)

Sherman function

©)=lg] +I[] |55 M@9@) ~a@n©)]
1(6)
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| &
en £ @0f(K)

*

m o0&,

2X?2

h@)[F ) Tk 10)50)7- Epk) + 9]

-n j dQ., gk

F0) = 1,00 Lo+ #R) Ly + T ()-8

We can see that the following ansatz must be valid

#() =k -Ec,

_enr of, (Ig) 1

_ K
Co==3 " —=n deQFI(H)[l—COSH]
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0=-n,[do, " @1 [F &) - P &+ s@y-8[K+k] Ec,]

m

Another ansatz : since f (Iy) must change sign
If I?—> —I?, then we let F(I?) = k‘))(gk)xlg

Aftersomecalculation, we get
i j dQ.. 1(0)S(0)sing
j dQ2.. 1(0) (1—cosb)

P
b=35C, » Ig ; where y,

m Oeg,

1?(l?) = fo(l% Lo +C lE £12x2 +%(gx|§ ¢, - e (k)
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d*k hk,. - v
“ (k) = L ek (Jg),.
0 (277_)} m* f( ) Ve & (JU)I.

-‘,U, .

where

Jo = 2e f(]3k(27r)_3(f1.k/m“:)k - EC,

where J, Is the charge current in the absence of SO coupling.



PRL 95, 166605 (2005)

PHYSICAL REVIEW LETTERS

Spin Hall Effect

week ending
14 OCTOBRER 2005

Theory of Spin Hall Conductivity in s -Doped GaAs

Hans-Andreas Engel. Bertrand [. Halperin. and Emmanuel [. Rashba

!r-:ll:'lll:lill.l..rj'lllll:".l |'!‘ I'-'_I‘- !r:l.'lll I'-.."‘u'.l:'.ll., !.lrn. i .'”I E--.l 4 |'-'|'l:".|..ll-|'..r‘|.. {_.ill.rll.'.'r:'.' -.'-l: II._'_;'I'.". .‘L.irl: i .Il..‘lilll:'."l‘llll."ll:".r.r.l- r'l_.‘.ll..'rl:w, {I‘:l"l

~ {Received 21 May 2005; published 13 October 2005)

We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at
charged scatterers, which leads to skew-scattering and side-jump contributions to the spin-Hall con-
ductivity. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are
in reasonable agreement with experiments by Kato ¢f al. [Science 306, 1910 (2004)].

DOL 100103 hysRevLet 95, 1666035

Next, we estimate the spin-Hall currents. The mea-
surements were performed at electrical fields E ==
20 mV wm ™! where the conductivity increased to o, =
3 X 10° Q@ 'm™! due to electron heating. We assume that
¥ 1S not very sensitive to these heating effects and we still
use Eq. (8) but with the increased conductivity. For an
clectrical field E = XE,. we find both mnlnhulmm o
the spin-Hall conductivity % = — i /E,. namely. o34 =
—(y/2e)o, = 1.7 Q 'm ™ /|e| and o3 =2nde/h =
—0.8 Q0 'm1/le|. In mlul we arrive at the extrinsic
spin-Hall conductivity o381 =09 Q" 'm~!/|e[. The
magnitude is within the uml bars of the experimental
value of loanl = 0.5Q'm~!/[e| found from spin accu-
mulation near the free cdgcs of the specimen [1.27].

PACS numbers: T2.25.10¢, 71.70E]



Spin Dipole

Spin dipole around a local scatterer

e Isotropic normal scatterer in a Rashba 2DEG

o extrinsic spin-orbit scatterer in a normal 2DEG




R. Landaver

Spatial Variation of Currents and Fields
Due to Localized Scatterers
in Metallic Conduction

Abstract: Localized scatterers can be expected to give rise to spatial variations in the electric field and in
the current distribution. The transport equation allowing for spatial variations is selved by first considering
the homogeneous transport equation which omits electric fields. The homogeneous sclution gives the
purely diffusive motion of current carriers and inveolves large space charges. The electric field is then found,
and approximate space charge neutrality is restored, by adding a particular solution of the transport
equation in which the electric field is associated only with space charge hut not with a current. The pres-
ence of point scatterers leads to a dipele field about each scatterer. The spatial average of a number of
these dipole fields is the sume as that ebtained by the vsual approach which does not explicitly consider
the spatial variation. Infinite plane obstacles with a reflection coefficient r are also considered. These pro-
duce a resistance proportional te r/(1—rl.

Spin Dipole




Spin Dipole

Topography image

llll]]‘[

Potential image

Au-contact ED nrm
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PRB 54, R5283 (1996)

BG Briner, RM Feenstra
et al.



Spin Dipole

Isotropic normal scatterer in a Rashba 2DEG

fdrzU(r)e”k —k!}r’

Scattering amplitude [(k k') = —
of the scatterer S

.
V27kp

Gl (@) = 8, G (@) + Gl N(w) + G (),

Gy (@) = G (@)U G (o),

2 0 0 0
G (@) = G @)Y Up Gy (@) Unig G ().
k.-'.-'

Spin density in the vicinity of the scatterer

o.(r) = Z clp—K)r fdw dnp(®) Vertex part
¢ 27 dw
k.k',p

X Tr[Gﬁ;k(w)frzG]’;ks(w)T(w, k')],



Spin Dipole
k k

P X
o] , vE 0 , vE
k!
k D k
0 , vE
k k’

Spin dipole in the ballistic regime: (PRL 97, 76601 (2006))
spin accumulation occurs regardless of zero spin current in the bulk

mvy o, . (2R\ m'v, . (R
o (r) = — = sin{ — | sinf) + ——>sin”( —
- 2m RL, b 277°R L

50 50

87 .
X sin39(frml + \[k—wRe[/'(W)ez‘k*H]),

F



Spin Dipole

We invoke both the in-plane potential gradient SOI and the
resonant effects for the amplification of the spin accumulation.

Chen, Chu, and Mal’shukov (Phys. Rev. B 76, 2007)

A ring-shaped potential
pattern is embedded in a
2DEG. An electric field E
sets up a current in the
2DEG.

Ho =4 &-(kxVV)

V(p)=V,[0(p—a)-6(p-b)]




Spin Dipole

S.p) = 5 [ dkalk) Y o UL, (0)Va ()

Sorbello and Chu, IBM J. Res. Dev. 32, 58 (1988) Dipole-like
Chu and Sorbello, Phys. Rev. B 38, 7260 (1988) (\

S:(p)=n, Re) o) Ri(p)R7}\(p) sing,
[=0

a

a

Radial wavefunction




Spin Dipole

sin
Asymptotic S, = Cbp |:p3 + L :|

form: k*p k*p
n”]; ]{JJ_
Ps = 4
>k %
T eEol
n* — 5 4
E mh




8 (a)
n=1 5 3' | | 1 | | 1. (_J
A2 ] ‘ T | T
n=2 series i
-8 \T * 4 1 1 1
n=3 series J;L_)O's
(@)

V,=0.75

[----¥,=0.751

0.2484

E*=77.1meV

0.2496

03312 4

0.3330  0.4238

Spin Dipole

u/E*

Partial sum involving
0 =5
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Spin Dipole
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-5
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Possible realization of the microstructure:

Gate-patterning on the 2DEG

Carrier distribution profiles in Si-doped
layers formed by focused ion beam
Implanatation and successive overlayer

growth
Ref. J. Vac. Sci. Technol. B 18, 3158 (2000)

Spin Dipole



Spin Dipole

Summary

1. Nonequilibrium spin accumulation (spin cloud or
spin dipole) is found in the absence of bulk “spin
current”.

2. For the case of Rashba SOI, nonequilibrium spin
cloud is formed around a normal impurity.

3. For the case of a normal 2DEG, nonequilibrium
spin cloud is formed around a local SOI structure.

4. The interplay between the in-plane potential
gradient SOl and quantum resonances can lead to
significant effects.



Giant spin splitting in

NCTU surface metallic alloy

Other recent work that invoked the importance
of in-plane potential gradient:

Phys. Rev. Lett. 98, 186807 (2007)

Giant Spin Splitting through Surtace Alloying

Christian R. Ast,'* Jiirgen Henk.” Arthur Ernst. Luca Moreschini,” Mihaela C. Falub.> Daniela Pacilé, >’
Patrick Bruno.? Klaus Kern.'? and Marco Grioni?
"Max-Planck-Institut fiir Festkirperforschung, D-70569 Stuttgart, Germany
2Ecole Polvtechnique Fédérale de Lausanne (EPFL), Institut de Physique des Nanostructures, CH-1015 Lausanne, Switzerland
*Max-Planck-Institut fiir Mikrostrukturphysik, D-06120 Halle (Saale), Germany
(Received 26 October 2006: published 3 May 2007)

The long-range ordered surface alloy Bi/Ag(111) is found to exhibit a giant spin splitting of its surface
electronic structure due to spin-orbit coupling, as is determined by angle-resolved photoelectron
spectroscopy. First-principles electronic structure calculations fully confirm the experimental findings.
The effect is brought about by a strong in-plane gradient of the crystal potential in the surface layer. in
interplay with the structural asymmetry due to the surface-potential barrier. As a result, the spin
polarization of the surface states is considerably rotated out of the surface plane.




Giant spin splitting in
surface metallic alloy

TABLE I. Selected materials and parameters characterizing
the spin splitting: Rashba energy of split states E, wave number

offset ky, and Rashba parameter «,.

Ep ko ap
Material (meV) (ﬁf‘ ) (eV A) Reference
InGaAs/InAlAs heterostructure <1 0.028 0.07 [4]
Ag(l11) surface state <().2 0.004 0.03 [5.6]
Au(111) surface state 2.1 0.012 0.33 [6,7]
Bi(111) surface state ~14  ~0.05 ~0.56 [8]
Bi/Ag(111) surface alloy 200 0.13 3.05 This work




Giant spin splitting in
surface metallic alloy
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Giant spin splitting in

NCTU surface metallic alloy

RAPID COMMUNICATIONS

Spin-orbit split two-dimensional electron gas with tunable Rashba and Fermi energy

<=
Y

PHYSICAL REVIEW B 77, 081407(R) (2008)

Christian R. Ast,'">* Daniela Pacilé.*" Luca Moreschini.” Mihaela C. Falub.”? Marco lF:'zL]:lla.gncr,2 Klaus Kern,!* and

Marco Grioni®
'\ Max-Planck-Institut fiir Festkirperforschung, D-70569 Stuttgart, Germany
*Ecole Polytechnigue Fédérale de Lausanne (EPFL), Institut de Physigue des Nanostructures, CH-1015 Lausanne, Switzerland

Jirgen Henk, Arthur Ernst, Sergey Ostanin, and Patrick Bruno
Mee- Planck-Instirus fiir Mikrostrukturphysik, D-06120 Halle (Saale), Germany
(Received 15 January 2008; published 15 February 2008)

We demonstrate that it is possible to tune the Rashba energy, introduced by a strong spin-orbit splitting, and
the Fermi energy in a two-dimensional electron gas by a controlled change of stoichiometry in an artificial
surface alloy. In the Bi,Pb,_./ Ag(111) surface alloy, the spin-orbit interaction maintains a dramatic influence
on the band dispersion for arbitrary Bi concentration x, as is shown by angle-resolved photoelectron spectros-
copy. The Rashba energy Ep and the Fermi energy Ep can be tuned to achieve values larger than one for the
ratic Eg/Ep, which opens up the possibility for observing phenomena, such as corrections to the Fermi liquid
or a superconducting state. Relativistic first-principles calculations explain the experimental findings.

DOL 10103/ PhysRevB.7T.08 1407 PACS number(s): 73.20.At, 79.60.—i, TL.T0.E]



Giant spin splitting in
surface metallic alloy
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FIG. 1. (Color online) Experimental band structures of Bi,Pb,_ ./ Ag(111) surface alloys for x as indicated. The photoemission intensity

is depicted as linear gray scale, with dark corresponding to high intensity, versus energy E and wave vector & along KTK. Data are taken at
21.2 eV (Hel). Red (dark gray) lines represent parabolic fits to the surface-state bands. The Fermi energy of the holes is indicated in (a). The
spin-orbit splitting k. the Rashba energy Eg as well as the energy offset Ej are defined in {e).
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Nanobridge consists of:
Semiconductor ; Metal (green region);
Insulator (blue region)

provides the strain-induced SOI;
Metal provides a rapid spin relaxation;
Insulator is to provide an asymmetric environment for the
semiconductor so as to allow for a net torsional stress.

. Relate torsional energy to spin current

. Derive equation of motion for the torsion angle

. Relate the spin current to the spin density

. Estimate torsion angle and its thermal fluctuation
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Target: To study the torsion angle the nanobridge is to twist
upon the diffusion of electron spin into the nanobridge
from the semiconductor side.

- of
% 2%
e K

* o oo

Dimension of the Nanobridge:
b : thewidth L, : total length of the nanobridge

c/2 : thickness of the semiconductor
L : length of the semiconductor in the nanobridge
c/2 : thickness of the insulator
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Strain-induced SOI in semiconductor

HSO,:a[ax(u k, —u K, )+o, (U k, —uk,)+o, (u.k, —u,k )]

X' \Z Xy vy Xy ' X yz \z ZX VX

+ ﬁ|:o-xkx (uyy —UZZ)+ Gyky (uzz _uxx)+ szz (uxx _uyy):|

Ui [ are elements of the strain tensor

X is the coupling constant for torsional motions
L3 is the coupling constant for flexural motions

[ << a for narrow gap semiconductors
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HSO,:a[o-X(u k, —uyk, )+o, (u,k —u,k, )+o, (uk, —u,k )]

X" \z Xy 'y Xy ' X yz'\z ZX VX

U

— I I L2 [ o
Uy, =0 for torsional motion r?‘ﬁéx‘
o o oo

along x axis

terms involving <ky> and (k,) vanish

He,, :a[o- u, —o,u }kx

y o xy Z7 X




H,, =a[a u, —o,u }kx

y Xy 277X

=700 % U, =)L
0z oy

06
X)=—
() OX

V?y(y,z) =-1 with the boundary condition y =0
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An influx of diffusive spin current can be represented by a
Boltzmann distribution function F,'(r) from which we can
calculate the spin distribution function P/ (r). We assume P,!(r)
to be uniform within the cross section of the semiconductor.

Torsional energy:

j ZTr[ ; SOI]dxdydz

oo >k Pﬁy a7(+Prz x dydz
oxX T 0z oy

—ZaIdX

From the above expression it is clear that the insulator

plays a very important role in providing a net
torsional stress.
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M NeTIT Nano-bridge proposal

b =400 nm A.G. Mal’shukov, C.S. Tang,
C.S. Chu, K.A. Chao,
¢ =200 nm Phys. Rev, Lett 9_5?307203
a/h =4x10° m/s (GaAs) (2099
y =2.4x107* J sec
For eJY=10"° Amp. For L, =5um
5 =1.5x10% Nm ==2Zpm
Q ~10*
within the sensitivity of 4 5
P. Mohanty’s group, o0 = 0.5l

Phys. Rev. B 70, 195301
(2004)
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Summary

1. Strain-induced SOI provides a nanomechanical
scheme for the detection of spin current

2. The effect can be inverted for the generation of spin
current from torsional motion
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namre Vol 44213 July 2006|dei:10.1038/nature04937

LETTERS

Direct electronic measurement of the spin Hall

effECt The generation, manipulation and detection of spin-polarized
electrons in nanostructures define the main challenges of spin-
based electronics'. Among the different approaches for spin
generation and manipulation, spin—orbit coupling—which
couples the spin of an electron to its momentum—is attracting
considerable interest. In a spin—orbit-coupled system, a non-zero
spin current is predicted in a direction perpendicular to the
applied electric field, giving rise to a spin Hall effect” . Consistent
with this effect, electrically induced spin polarization was recently
detected by optical techniques at the edges of a semiconductor
channel® and in two-dimensional electron gases in semiconductor
heterostructures®™. Here we report electrical measurements of
the spin Hall effect in a diffusive metallic conductor, using a
ferromagnetic electrode in combination with a tunnel barrier to
inject a spin-polarized current. In our devices, we observe an
induced voltage that results exclusively from the conversion of the
injected spin current into charge imbalance through the spin Hall
effect. Such a voltage is proportional to the component of the
injected spins that is perpendicular to the plane defined by the
spin current direction and the voltage probes. These experiments
reveal opportunities for efficient spin detection without the need
for magnetic materials, which could lead to useful spintronics
devices that integrate information processing and data storage.

S. O. Valenzuela'+ & M. Tinkham'
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Figure 1| Geometry of the devices and measurement schemes. a, Atomic
force microscope image of a device. A thin aluminium (Al) Hall cross is
oxidized and contacted with two ferromagnetic electrodes with different
widths (FM1 and FM2). A magnetic field perpendicular to the substrate, B |,
sets the orientation of the magnetization M of FM1 (and FM2), which is
characterized by anangle 6. b, Spin Hall measurement. A current I'is injected
out of FM1 into the Al film and away from the Hall cross. A spin Hall voltage,
Vi, is measured between the two Hall probes at a distance Lgyy from the
injection point. Vgy is caused by the separation of up and down spins due to
spin—orbit interaction in combination with a pure spin current. ¢, Top:
spatial dependence of the spin-up and spin-down electrochemical
potentials, p; . The black line represents the electrochemical potential of
the electrons in the absence of spin injection. A is the spin diffusion length.
Bottom: associated spin current, J,. The polarized spins are injected near
x = 0 and diffuse in both Al branches in opposite directions. The sign
change in J; reflects the flow direction. d, Spin-transistor measurement for
device characterization. I is injected out of FM1 into the Al film and away
from FM2, which is located at a distance Ly from FM1. A voltage Vis
measured between EM2 and the left side of the Al film. e, Asin ¢ but {or the
conditions shown in d. Note that both Vg in b and Vin d vary with 6.
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Extracting current-induced spins: spin boundary
conditions at narrow Hall contacts
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Abstract. We copsider the posstbhiliny to evmact spins thar are zenerated by
an elecmic cwrent in & two-dimensiona] eleciron gas with Fashba—Dressalbans
spin—orbdt inferacton (FIDEG) i the Hall geometry. To this end, we disouss
boundary conditions for the spin acompoulations between a spim—orbat (S0
coupled region and a coatact withont SO conpling, i e 3 ponnsl twvo-dimens:onal
elecmon Zas (IDEG). We demonsmate that o conirast 1o contacts that eciend
dlong the whols sample, a spin acouomalation can diffse invo the normal region
throuzh fnite contacts and be detectzd by 2.z famomnagues. For ao mnpedance-
maiched narmow contact the spin acomnulation in the 2DEG is egual to the
current indnced spin acoummilation in the bulk of F2DEG up to 3 geomety-
dependant nomerical factor
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(a) (b) o =0, a=0
J
J l 5;
ZZIZIITWH
S -
b 5’

Figure 3. Geometry of the contact: (a) 2ZDEG with a constriction in the middle.
On the left side there is an applied homogeneous current density which is
modified near the opening. On the right side, the current density far away from
the contact as well as the net charge current flowing from the left region to
the right region is zero. However. there is a finite spin current and a finite spin
accumulation in the right region. The respective mobilities of the left and right
regions are assumed to be the same but the Rashba coefficients are different.
(b) An idealized version of (a) used in the calculations of this section. The origin
is chosen at the center of the opening with width 7.
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Figure 6. Top left panel: spin accumulation (s,) in a quantum wire of width
W = 52a with an abrupt drop of the SO coupling strength at x = 37a from
the constant & = 7w /25(Lgg = 25a) for x < 37a to zero on the other side. Top
right panel: spin accumulation {s,} for a system as shown in figure 4 with
W =37a. Wg = 8§0a and Lsp = 25a. Bottom panel: same as top right panel with
Wy = 20a. In all three panels, (s, ) is obtained by averaging over 50 000 disorder
configurations.

-40a

40a

RPa
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Figure 7. Left panel: average spin accumulation inside the normal region (s¥)
relative to the accumulation in the bulk of the SO region (s®) for various
geometries averaged over 20000 disorder configurations as a function of
Lso/Wy. Right panel: (sF)/(sB) for two different geometries averaged over

60 000 disorder configurations.
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Symmetries of spin accumulation
in weak in-plane magnetic fields

L.Y. Wang, C.S. Chu, A.G.
Mal’shukov, 2008
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Thank you for your attention
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Quantum Spin Hall Effect and
Topological Phase Transition in
HgTe Quantum Wells

B. Andrei Bernevig,* Taylor L. Hughes,* Shou-Cheng Zhang™*

We show that the gquantum spin Hall (Q5H) effect, a state of matter with topological properties
distinct from those of conventional insulators, can be realized in mercury telluride—cadmium
telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the
electronic state changes from a normal to an “inverted” type at a critical thickness d,.. We show that
this transition is a topological quantum phase transition between a conventional insulating phase
and a phase exhibiting the Q5H effect with a single pair of helical edge states. We also discuss
methods for experimental detection of the QSH effect.

he spin Hall efTect (/-3) has recenty at-
tracted greal attention in condensed mat-
ter physics, not only for its Nundamental

scientific importance but also because of s
potential application in semiconductor spin-

tronics. In particular, the intrinsic spin Hall effect
promises the possibility of designing the intrinsic
electronic properties of materials so that the effect
can be maximized On the basis of this line of
reasoning, it was shown (65) that the mtrnsic spin

Interesting recent work

on spin injection

Hall effect can i principle exist in band in-
sulators, where the spin current can fow without
dissipation. Motivated by this suggestion, re-
searchers have proposed the quantum spin Hall
(QSH) effect for graphene (7) as well as for
serconductors (8, 9), where the spin current 15
carried entirely by the helical edee states i two-
dimensional samples.

Time-reversal symmetry plays an important
role in the dynamics of the helical edge states
(10—12). When there is an even number of pairs
of helical states at each edge, impurity scatlenng
or many-body mieractions can open a zap at the
edge and render the system wopologically rivial
However, when there is an odd number of pairs
ol helical states at each edge, these effects can-
not open a gap unless Bme-reversal symmetry is

YDepartment of Physics, Stanford University, Stanford, CA
94305, USA. “Kavli Institute for Theoretical Physics, University
of Califorria, Santa Barbara, CA 93106, USA

*To whom comespondence should be addressed. E-miail:
sczhangi@stantord.edu
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Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the T" point. (B)
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quantum well in the
normal regime £1 > H1
with d < d. and in the
inverted regime H1 >
E1 with d > d.. In this
and other figures, I'g/H1
symmetry is indicated in
red and I"y/E1 symmetry
is indicated in blue.
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Quantum Spin Hall Insulator State

in HgTe Quantum Wells

Markus Kdnig,* Steffen Wiedmann,® Christoph Briine,® Andreas Roth,* Hartmut Buhmann,*

Laurens W. Molenkamp,* Xiao-Liang Qi,> Shou-Cheng Zhang?

AUTHORS' SUMMARY

he discovery more than 25 Conductance
I years ago of the guantum channel with
Hall effect (1), in which the up-spin charge

“Hall,” or *“transverse electrical” con- carriers
ductance of a material is quantized,
came as a total surprise to the physics
community. This effect occurs in
layered metals at high magnetic
fields and results from the forma-
tion of conducting one-dimensional
channels that develop at the edges
of the sample. Each of these edge
channels, in which the current moves
only in one direction, exhibits a quan-
tized conductance that is chamcter-
istic of one-dimensional transport. The
number of edge channels in the sam- Quantum
ple is directly related to the value of well

the quantum Hall conductance. More-
over, the charge carriers in these chan-
nels are very resistant to scattering.
Not only can the quantum Hall effect be observed in macroscopic samples
for this reason, but within the channels, charge carriers can be transported
without energy dissipation. Therefore, quantum Hall edge channels may be
useful for applications in integrated circuit technology, where power dis-
sipation is becoming more and more of a problem as devices become smaller.
Of course, there are some formidable obstacles © overcome—the quantum
Hall effect only occurs at low temperatures and high magnetic fields.

insulator.

Schematic of the spin-polarized edge channels in a quantum spin Hall

theoretically that the electronic
structure of inverted HgTe quan-
tum wells exhibits the properties
that should enable an observation
of the quantum spin Hall insula-
tor state. Our experimental obser-
vations confirm this.

These expenments only be-
came possible after the devel-
opment of quantum wells of
sufficiently high carrier mobility,
combined with the lithographic
techniques needed to pattern the
sample. The patteming is espe-

Conductance cially difficult because of the very
channel with high volatility of Hg. Moreover,
down-spin we have developed a special low—

charge carriers deposition temperature 5i-0-N
gate insulator (7), which allows
us o control the Fermi level (the
energy level up to which all
elecronics states are filled) in the quantum well from the conduction band,
through the insulating gap, and into the valence band. Using both electron
beam and optical lithography, we have fabricated simple rectangular
structures in various sizes from quantum wells of varying width and
measured the conductance as a function of gate voltage.

We observe that samples made from narrow quantum wells with a
“normal” electronic structure basically show zero conductance when the
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