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Introduction

An electron has a charge —e and a spin 1/2

Electronic industries have made good use of the charge.

But the electron spin has essentially been neglected.



Introduction

Quoted from the abstract of
“Spintronics: Fundamentals and applications”

Spintronics, or spin electronics, involves the
study of active control and manipulation of
spin degrees of freedom in solid-state
systems.

In Reviews of Modern Physics,
vol. 76, p.323-410, 2004,
by I. Zuti¢, J. Fabian, and S. Das Sarma.




Introduction

Spintronics

v

Where magnetic material Spin-based Quantum
and magnetic field is Computing:
Involved: uses spin of nuclei as
« GMR: giant magneto- qubits

resistive effect
* Memory / storage
* TMR, CMR

!

All electrical means of generation and
manipulation of spins:

* spin-polarized transport in semiconductors
 spin FET, spin filter

* logic/ storage
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Why spintronics ?

new physical principles

new challenges

new working principles for applications
new devices for technologies

potentially decreases electric power
consumption
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Spin-polarized transport  Magnetic materials

are involved.
schematic DOS polarization:
E E
| | EF | P _ HA - HJ,
l’ y Q n,+n,
N(E) N(E)
Normal Ferromagnetic

» Imbalance of spin population at Fermi level leads
naturally to spin-polarized transport

« commonly occurs in ferromagnetic metals (or alloys)
with P up to 50 %
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Magnetic materials

Sp|n valve are involved.
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“Normal” transistor (MOSFET)

oxide grain

source .
metallic gate  (SiO9)

semi-conductor (Si)  conducting channel
(2D electron gas)

Spin transistor

gate

e

Datta and Das

source drain
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Why spintronics in semiconductors ?

compatible with the semiconductor industries

highly tunable
spin-orbit interaction (SOI) is much larger than

In vacuum
zero magnetic field spin splitting in samples that

has bulk inversion asymmetry (BIA) or
structure inversion asymmetry (SIA).



In vacuum: 4m [VV v p]

4m [k xVV]

Ao (k x VV )
In vacuum: A =-3.7x106A?2

In semiconductor such as GaAs: A= 5.3 A2

In semiconductor such as InAs: A= 120 A2

SOl in semiconductors



Compound A (eV) AL (eV) fi

C 0,000 0.006 0

Si 0.044 0.044 0

Ge 0.29 0.29 0
a-Sn 0.80 0
AIN 0.012 0.449
AlP 0.060 0.307
AlAs 0.29 0.274
AlSh 0.75 0.80 0.250
GaN 0.011 0.095 0.500
GaP 0.127 0.11 0.327
GaAs 0.34 0.34 0.310
GaShb 0.80 0.98 0.261
InN 0.08 0.578
InP 0.11 0.16 0.421
InAs 0.38 0.40 0.357
InSb 0.82 0.80 0.321
Zn0O —0.005 0.03 0.616
ZnS 0.07 0.09 0.623
ZnSe 0.43 0.42 0.630
Zn'le 0.93 0.86 0.609
CdS 0.066 0.09 0.685
CdSe 0.42 0.699
Cd'Te 0.92 0.94 0.717
HeS 0.13 0.79
HgSe 0.48 0.68
Hg'le 0.99 0.65

SOl in semiconductors

Strength of
spin-orbit
goes as Z4.

It is larger
for heavier
atoms.
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Physical origin of this large enhancement
In the SOI coupling constant:

* a brief review of how SOI comes about,
starting from the Dirac equation.

* how does the SOI coupling constant gets
enhanced in semiconductors:
a k{ approach.
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How does spin-orbit interaction arises from Dirac equation,
when relativity is fully taken into account ?

(co: D+ Bmoc” + V) Vv = By

0 o 6—(]12X2 0 )
Y=15 0 0 —Toxo
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1
o -pYR = p (E V) YA
1
O -PUYA = — (E V 4+ 2mygc )z/)B
C
E = E —m,c? and

normalization of i gives
[dFy 'y =[dF [yaw s +vaws)=1

C2

E—-V 27?@002}

O'p{ o -piha=(E—V)s

We focus upon the large component, when E > m,c?.
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02

E —V + 2moc2

Note that this equation cannot replace the original Dirac
equation, when large and small components are coupled.
This s because w, alone is not normalized. From

}O’-pl/)A(EN’—V)Q/)A

Wy = [2m002 +E-V }105-7? v, Wehave

+ t A= = = 2
Ye¥e :WA(CU'”)[ZmoCZ +E _V] (Co-7) w,
~ Loy (PP +enc B) vy,

4mgcC

7=p+eA wheree>0
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o SOl in semiconductors
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(5-7)V (6 7)

= —ihVV -7 +h (VV x 7)-G +V (7° + ehG - B)

2 2

T eh _ = enh - ,. . en” = .
—+V+—0-B-————0-(7x&)+—5V-&
2m, 2m, Am;cC 8m,C

(7°)°  ehi’ _ - (ehB)’
8m3c?  4mic? o-B- 8m>c?
0 0 0

<

:E¢

The spin orbit interaction term comes from the action F=1yV
of gradient V onto the small component wavefunction. °
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We know now how the spin-orbit interaction comes
from the relativistic effect. The Thomas precession has
also been taken into account in our taking of the
nonrelativistic limit.

Can we then understand the amazing enlargement of
the spin-orbit coupling parameter A in semiconductor ?




In vacuum: 4m [VV X p]

4m [k xVV]

16 (k <VV |
In vacuum: A =-3.7x106A?2

In semiconductor such as GaAs: A= 5.3 A2

In semiconductor such as INAs: A= 120 A2

SOl in semiconductors
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k9 Method for an electron in a periodic potential V,(r)

The derivation of the k - p method is based on the Schrodinger equation

for the Bloch functions e*"u,,(r) = *7(r|vk) in the microscopic lattice-

periodic crystal potential V()

[ AN Vo(r)] kT (1) = B, (k) F T (r) |
2mg

R
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If we Include the spin-orbit interaction, given by

h . J= _
227 [VV X p]
4m,C
we get
2 27.2
P h=k h n
/ —k- — D - Vo) | Ink
2my A 2mg * mo T 4?7"2..6 c2 p-ox(VV )] k)
= F, (k) |nk)
where
N
T =p-+ - 5 0 X V)
4dmoc” Two component

spinors
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For a fixed wave vector k, the sets of lattice
periodic functions {|nk, > } provide a complete
and orthonormal basis. Therefore, we can expand
the kets {|nk >} in terms of band edge Bloch
functions {|v0 > } times spin eigenstates | >

nk) = Z Crvior (k) |V 0",

!
1/

o' =T1,]
where

Vo) = [V0) o),
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2mg mo

| h2k? 0
D {[E (0) + - ] o Ot + ——k - Py + Ay } oo (R)

— En,(k) C-n,m:r(k) )

Pv = (vo|x|V o) ,

h
4771.0(_,

(vo|lp-ox (V)] |v'a") .

We choose the S and P orbitals for states ‘V'G'> .

h
T =P - o X VV
p 4o c? !




band

+3/2
LH

K

+1/2 |

conduction
(s)

valence band (p)
HH )

| j=3/2

. ‘SO } j=1/2

SOl in semiconductors
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Table C.1. Basis functions |jm) of the extended Kane model. The quantization
axis of angular momentum is the crystallographic direction [001]. In accordance
with time reversal symmetry, we have choosen the phase convention that |X), |Y),

and |Z) are real and

S), \X’)J 1Y), and |Z") are purely imaginary. Note that our

definition of the basis functions |jm) agrees with common definitions of angular-

momentum eigenfunctions (see e.g. [1])
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(EA4V)1loxs V3PT -k ~—=Po-k
Hsvs = | V3PT' -k (E,4+V)Lixy 0
—%PJ -k 0 (E«L_,—ﬁ{}—i—l"r)]lzxg
(|[E.+V 0 L Pk, \/gm =Pk 0 ZPk =LPk \
0 EAV| 0 Pk, \/;D,L.z 1Pk APk, LPk
—1 _
_ | \/3Pk. APE| 0 E4T 0 0 0 0
1 pj. 2 D1, _
5Pk, \/3PR| 0 0 E,4V 0 0 0
1 pi. _
0 HPk| 0 0 0 EA4V| 0 0
—1 —1 py. _ ,
“+Pk. APk 0 0 0 0 |E,—Ag+V 0
—1 . 1 . : / 7
\ APk, Pk 0 0 0 0 0 E,—Ao+V))
i 3ih
_ 0 Ay = — X | [(VVh) x Z
P o (S |p.| X) 0 4m(2)02< [[(VVo) x ply | Z)
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(E4VIL, 3PTk  —FPok |r, 9 )"
\/§F)TJrlz (Ev +V)14><4 O Wv+ — E l//v+
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3 P P?%/3 |
T -k —= L T - kE+o- -k —= / G‘-k]‘t)c
E -V + Ej E—-V + FEy+ Ag
= (E — V) 9,
From normalization consideration
Ve Wt W, W, W, W,
B 2 2
=y, |1+T -k SP T -k+o-k F =0 K |y,
i (E,+E-V) (E,+E+A,-V)
B — + = 2 (= =\ (= =
| 143P2 (T 7z)2(T2 ) N P (02 7) (o 722) v,
i n°E, 3 n°(E,+A,)
_>2_ _>. =
(T-7)( +-7?)=(27T efio-B)

9
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Physical meaning of P2 :

3P? P?/3 |
T -k — T - k+o- -k —= / o k|,
E -V + Ej E—-V + Ey+ Ag
= (E — ’I) "ZI.,-"T",-’C :
Taking the E;>> A :
3P? (272 —eho - B) P? (%% +eho-B)
2 l//C + 2 l//C
E, Oh 3E, h
— (E _V) V.
P* 37° ~
=(E-V
3E0 hz WC ( )WC
2
1 _ = I; PZand E, combined to give the effective mass of
2m 7°B,  the electron



Define a normalized wavefunction

SOl in semiconductors

~ _|,, P [27°-enc-B 7’+enc-B ”
Ve 672 x (E,+A)7 ||
3 P? P?/3 |
T k= T -k+o-k—= / J-k]uc
E -V + Ey E—-V + Ey+ A

— (E — V) Ve
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- )
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SOl in semiconductors

1 P’
2m°  h°E,
In semiconductor :
_ PZ{ 1 1 } The enhancement factor for InAs:
3 Eo2 (Eo +A0)2 . Xmo Xg
R Pz{l E, } .l E m 3
— - _ :
3 "By By (Ep+Ay) 05MeV 1 2—347><106
2 2 - 0.418 eV 0.023 3
— h 1 E0
N 6m'E, - (E, +A,)° Compare with the actual values :
2
In vacuum: Al 1O0A 08
, , A,..| 3.73x10° A’
h h
Huae = amic?  4m,(m,c?)
0 0 0
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SOl due to Structure Inversion Asymmetry
Rashba SOI

T 4.0

0.6 F _ 12 -
ud-Iny 5, Al 45As gate Schottky layer ( 20 nm ) :\ 1‘13—2}{10 30(61‘1;{
1 3.0

ud-In, 53Gagy 47As channel layer (20 nm )

<
~
[] L] l ] L]

Pot.:sntu:ll-El= V)
=)
[
L L) l
1 (' Il
2 3
Charge (x10"® cm™)

ud-Ing 5, Al 45As spacer layer (6 nm )

nt-In, ;,Al 4sAs carrier-supply layer
(7nm, n=4 x 1018 cm-3)

ud-Ing 5,Alg 45As buffer layer 0.0 TN | T T 7 0.0
02 1-1.0
S. L-InP substrate é lnu 53 0 47AS chﬂel laycr o »
0 20 40 60
Schematic layer structure of an inverted Position (nm)
INg 53G8g 47AS 1 1Ng 55Alg 456AS Calculated conduction band diagram (solid
heterostructure. line) and electron distribution (dash line).

(Nitta et al. Phys. Rev. Lett.78, 1355(1997)) (Nitta et al. Physica E, 2, 527(1998))
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Rashba effect (spin-orbit interaction )
Asymmetric Heterostructure:

2DEG

Structure inversion asymmetry:
1 T 1 77 4.0

0.6 F = 2 ]
\ ns—2}110l 2em?
[ 300K 4130
0.4 i 1 <
o~ - S E
2 - < i '.._) 120 °
o™ 0.2 F S | =
— B K 1 1.0 \5
5 [ R ] e
5 0.0 - Ef > . 0.0 E
& - NS | ©
0.2 | 1-1.0
[ In,Ga _As channel layer ’
........ 1 1 1 1
-2.0
0 20 40 60

Position (nm)



In Lab. frame In the rest frame of an
electron

The SOI hamiltonian is given by

—

H = -4-By o &-(-VxE)

B A\ — where & is calledthe
HRashba = %o ( P X Z) O Rashba constant.




» SOl is significant in narrow gap
semiconductor heterostructures.

 Large variation (up to 50%o) of
the SOI coupling constant a,
tuned by metal gates, has been
observed experimentally.

[ Nitta et. al. PRL 78 (1997)

Engels et. al. PRB 55 (1997)
Grundler, PRL 84 (2000) ]

e Static gate control of o has been

the focus of previous proposals
on spin polarized transistors.

[ Datta et. al. APL 56 (1990), ...... ]

SOl in semiconductors

Rashba spin-orbit interaction (SOI)

Rashba term:

V : normal to interface
o . the Pauli spin operator

E(ky)
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0.01 {.

y 02 02 0.1

K

Fig.3.Dispersion relation for a 2D
Rashba-type system and the Rashba
constant oy =0.13.

-

0 ky

Figure 13: SIA (001) effective field.
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14x1072
4 b)
12+
ot )
T %ig
nl SEERREEE:
) IREREEE:
j_l_l__1||||||||||||||l|l||||||||l||t|

-1.5 10 65 00 05 10 15 20
Ve (V)

Spin-orbit coupling parameter & of the
first (circle) and second (square) subband
as a function of the gate voltage: including
(solid) and not including (open) band
nonparabolicity correlation.

(Nitta. et al. Phys.Rev.B 60,7736(1999))
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SOI due to Bulk Inversion Asymmetry
Dresselhaus SOI

Examples: Zincblende structures GaAs, InAs

SOl - h hlz( :IBkX(kj _Kz)’
h = - Bk, (k; —x°)

A

oy

Of = 'j \ B /
\% o\ -
\\ St / R

. e 190 BRTIA (110 tive field
Figure 11: BIA (001) effective field. Figure 12: BIA (110) effective field.
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Summary: Physical origin of SOI

Extrinsic origin: 16 (IZX%V)

SOI impurity
Intrinsic origin: H =h .&
= N.-O
Structural effect S0l P
Dresselhaus SOI: Rashba SOI:
Bulk Inversion asymmetry Structure inversion
asymmetry

he = Bk, (k; —x%);
hky: _ﬁky(kf_KZ) hE:CZ(kXZ\)




Spin Hall Effect

A simple picture for the extrinsic spin Hall effect
Spin Hall effect

Yvvvvjg
Vv m Y F
=

F

m Ix

- 0

J.E. Hirsch, PRL 83, 1834 (1999)



Spin Hall Effect

Spin accumulation & Spin Hall Effect:
Spin-dependent deflection of injected carriers
produces spin accumulation at lateral edges

Injection of

unpolarized current:

Spin accumulation
without charge
accumulation

® R
o >
4) P
|
; P
® B
|
1

Injection of partially
polarized current:

Spin accumulation is
accompanied by charge
accumulation



Spin Hall Effect

Earliest proposal:

An electrical current passes through a sample with spin-
orbit interaction induces a spin polarization near the
lateral edges, with opposite polarization at opposing
edges (M.I1. D’yakonov and V.I. Perel’, JEPT Lett., 13,
467 (1971)).

This effect does not require an external magnetic
field or magnetic order in the equilibrium state
before the current is applied.

The M.I. D’yakonov and V.I. Perel’ (1971) paper was
titled: “Possibility of orienting electron spins with
current” in which an extrinsic mechanism was proposed
for the spin Hall effect.



Spin Hall Effect

V.M. Edelstein, Solid State Commun. 73, 233 (1990)
“Spin polarization of conduction electrons induced
by electric current in two-dimensional asymmetric
electron systems”

S. Murakami, N. Nagaosa, S.C. Zhang, J; = o, E,

Science 301, 1348 (2003)

“Dissipationless quantum spin current at room
temperature”

J. Sinova, D. Culcer, Q. Niu, N.A. Sinitsyn, T.
Jungwirth, and A.H. MacDonald,

Physical Review Letters 92, 126603 (2004)
“Universal Intrinsic Spin Hall Effect”
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A simple picture for the extrinsic SOI effect

p’
2m+V(r)+/1e &-(p x E)

mr =—VV +/1me%( E x &)—ﬂ,eﬁ[&-(lﬁx E)J

MF =—VV +Ame & (Vx2)[dE/dr + E/r]

e>0; & along 7 ,andlinearinA.

For an attractive scatterer with
E~r—"(n>1), spinup electronis
deflected more to the left and

spin down electron is deflected more

to the right.




- In the presence of an electric field the
Fermi surface (circle) is displaced an amount |eE . 7y/h| at
time f, (shorter than typical scattering times). While moving

in momentum space, electrons experience an effective torque
whlch tilts t'he Spins up for p},'> 0. and down for p, <0,
creating a spin current in the y direction.

Green arrows: (b} This picture is not

correct because it
wavevector has not taken into

account 2 features:
1. the effect of

Green arrows:

Effectiv_e _ background
magnetic field Impurities;
direction
2. the form of SOI.:
t=0 linear or non-
linear in k ?

J. Sinova, et al PRL 92, 126603 (2004)
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Experimental observation of extrinsic spin Hall Effect

In thin 3D layers (weak dependence on crystal orientation)
Y.K. Kato, R.C.Myers, A.C. Gossard, D.D. Awschalom, Science 306,
1910 (2004)

Kerr rotation (urad)
2 -1 0 1 2
EE

£ “Opa TB i

> ol b Iy '

£ 4- -+

o -20 | - -
"40 l l n'

= f '-. E/[110] | E//[110]

@

o~ -

= -1F

* 2k

. 402002040402002040
unstrained GaAs Position (um) Position (um)
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-20 -10 0 10 20-20 -1
Position (um) Position (um)
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Spin Hall Effect

Experimental confirmation of spin Hall Effectin a 2D

hole gas (intrinsic SHE)
J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 (2005)

1.5pum —~7
channel

1505 1510 1515 1.520

E [eV]



Spin Hall Effect

J. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, Phys.
Rev. Lett. 94, 047204 (2005)

n-AlGaAs

GaAs/AlGaAs superlattice
(GaAs substrate

S -150

148 14 19
E [eV]

B "W afel.‘ 1

18 182



Background Review

Nonequilibrium Spin Polarization in the bulk
Case of Rashba SOI

v

+13: SIA (001) effective field.

Spin polarization is normal to the driving E field

V.M. Edelstein, Solid State Commun. 73, 233 (1990)



Background Review

i‘ =% (‘

eI Nonequilibrium Spin Polarization in the bulk
Case of Dresselhaus SOI

Hey =hy-0 he :ﬂkx(kj_’fz);
h = —pk, (ki —«°)

A TTH

B

o uU

v
/'—‘_

BIA (110) effective field.

BIA (001) effective field.

Spin polarization is in the direction of the driving E field

A.G. Mal’shukov, L.Y. Wang, C.S. Chu, and K.A. Chao, PRL. 95, 146601 (2005)




Background Review

F NCTU Nonequilibrium Spin Polarization in the bulk
Case of Extrinsic SOI

ek ending
PRL 95, 166605 (2005) PHYSICAL REVIEW LETTERS 14 OCTOBER 2005

Theory of Spin Hall Conductivity in n-Doped GaAs

Hans-Andreas Engel, Bertrand I. Halperin, and Emmanuel I. Rashba

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 21 May 2005 published 13 October 2005)

We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at
charged scatterers, which leads to skew-scattering and side-jump contributions to the spin-Hall con-
ductivity. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are
in reasonable agreement with experiments by Kato er al. [Science 306, 1910 (2004)].

Heor = A6 (KxVV ) Cr = —(ehr/m") %L

7/;(

f(k)=folk) +k-|E+ (o XE)|C

Spin polarization is zero




Spin Hall Effect

Spin is not conserved:

[ Torque density

a_SerV-JS:TT.
Ot -

and definition of spin current remains an issue
(Shi J, Zhang P, Xiao D, and Nui Q, Phys. Rev.
Lett. 96 76604(2006)). ds

— = (1/ih)[§z, I:I]

Experiments measure spin accumulation, not
spin current.

,z.’

Spin accumulation, not spin current, is the key
physical quantity of our interest.



Spin Hall Effect

Derivation of a spin diffusion equation

Hsm = hr) -0
Dresselhaus SOI: Rashba SOI:
he = Bk, (k; —x°); h =a (kx2)

h = — Bk, (kg —x°)

Dresselhaus SOI contains
cubic termin k
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X

yJ H' = V(F,t)+B(F.1)-& = ZCDi(F,t) r

y=d/2 y=—d2 where °=1, and 7' = &' for i=x,y,z

H; o=(h +B) - o B=g"usB/2

D.(r,t)=—i Tt[7G*(r,r,t,1)]
D.(r,w) = f d2r' > IL(r,r", w)®(r', w) + D?(r,w)
J

D’ (G, w)=-2N,®,(d,®) is the local equilibrium densities
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e x
. do’ dfpple’) 4 |
I;(q,w) =i X, > DA T G (K, py - 4. ) I y
Pk T I B,
X7G' (pr.k +q o+ w')7]), y=di2 y=—d/2

07 N,
Hq(q,w)——z J fFD( ”)f 7, VY (w,0',q)

X{[1 -V(w,0,q)] -,

W= =S TGO p 0+ )G O’ — g0
27TNO p

I/ (mNy) =Ci|Vsc|2/ V
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] % N,
I;(q.0) = =X f do’ f“?(“ O)f 7V (0,0',q)
T J

X{[1-V(w,0,q] ",

il = ETr[aJG” (p' o+ )7?G"%p —q,0")]
27TNO p,

(1 -¥)(D,-D)) =iwrVD],

Expansion of " over G leads to the Spin Diffusion equation
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is ' & 1Ci i~a (= = N\ _SAT (= |
¥ (a),a),q)=§\7’\/s‘2;Tr[rG (P—0,0")r°G (p,a)+a))]

To get some feeling, let’s consider the case h—0:

P (o, a)',ﬁ)‘ = 5is[1+ loT— qur]
o1 Dirty limit : h) <<T
2I°

w<<I',vV.-g<<T,
I'<<E;
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gs (0,0',G)

linear in h and »=0 1“2

Precession of the inhomogeneous spin
polarization about the effective SOI field.

‘{'is(a),a)',ﬁi)‘ = 5° [1+ia)r—qur]

h=

Angular average

D’akonov-Perel
spin relaxation

P (@,0',G)|q-0,00 = 472 (5” —nLnkj)J
h? term
U = T ar]IF St 0 =<
‘Plo(w’w’q):Fhﬁp @g (i) =¥"* (@, @"9

L

Charge-spin coupling
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D'(D-D°) =-iwD,
J
o ) —————— h> on_ _
D' =5'DV? + 47" VIV, —4rh? (5% —ninl )+ 2 2.V
F F F ap
N\ J g _/ \§ J
Y ~ N
RI"V i WL

D is the diffusion constant




Bulk spin polarization in Rashba-type strip Spin Hall Effect

Spin densities Diffusion equation
for Rashba-type semiconductor strip

202 y
Da@ySZ —FZZSZI—RZW% X E
Dazsy WSy = RyzyaSZ+M><yo OD(()) |
oy° oy 2 OX y
20 X
D%ysz —T¥S* =0
Bulk spin density : S*=S5"=0
3 V.M. Edelstein
Solid State Comm. 1990
Sg’ :_(|\/| Xyo / zryy)%:_Neraz- J.(I).Inofjaetit aol, PRB 2003
X




Boundary condition needed for the spatial spin distribution

Relating the spin flux to the spin densities

7(7) =D Lo (s1-8))+ 41,
oy 2
_ 1 4y g | I\Io y aﬁk H’
ISH__ER b+eEFVF @TX ‘

Boundary condition :
1Y(£d/2)=0

Spin Hall Effect



Boundary condition Spin Hall Effect

More recent work on the boundary conditions for the spin
diffusion equation:

*G. Bleibaum, Phys. Rev. B 74, 113309 (2006)
“Boundary conditions for spin-diffusion equations with
Rashba spin-orbit interaction”

V.M. Galitski, A.A. Burkov, and S. Das Sarma,
Phys. Rev. B 74, 115331 (2006)
“Boundary conditions for spin diffusion in disordered

systems”

*Y. Tserkovnyak, B.1. Halperin, A.A. Kovalev, A. Brataas,
New Journal of Physics 9, 345 (2007)
“Boundary spin Hall effect in a two-dimensional
semiconductor system with Rashba spin-orbit coupling”

* Work that agrees with our result for hard wall boundary.



Edge spin accumulation in a Rashba-type strip Spin Hall Effect

0°S”

D —I™S* =0

2

Bulk spin density : S*=5"=0
oD? -
y _— _ y0 yy 0o _ NO Spin
Sp = (M X /ZF ) =—Neekar Accumulation at

OX
edges for Rashba-
type strip.
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0°S”

2

D

0°S’

2

D

Edge spin accumulation in a Dresselhaus SOI strip

—FZZSZ — szyg
oy
Z 0
—FXXSX — _ szyé_l_ M))((O aDo
oy OX
~TWSY =0

Bulk spin density : ¥ =S =0

S) =—

oD

Spin Hall Effect

(M, /2r)

OX

hlz( = ﬂkx(kj _Kz);
W = -k, (k2 — &%)




Edge spin accumulation in a Dresselhaus SOI strip Spin Hall Effect

k=13 | Spin densities

~- - wk=LO - for j = x, z as a functions of its width
0000 k/k=0.9 d

~=Fzz=—==z=—==-=-=- Theinset shows the dependence of
AS,(Y) on the transverse coordinate
y. Lengths are measured in unit of

AS(y)

Phys.Rev.Lett. 95, 146601(2005)
Mal’shukov, Wang, Chu, Chao

ASE

0 2 4 ) 8 10
d



Dresselhaus SOI strip Spin Hall Effect

Spin densities of AS, are of odd parity in a 2D strip with «/k=1.3
for the strip width d = 10.

Spin accumulation in a Dresselhaus-type 2DEG has a
comparable magnitude (~17um~2 for GaAs)




Perspective

At the time the semiconductor spintronic community
gradually realized that disorder due to normal impurities
removes completely the Rashba SOI Spin Hall Effect.

SHE in Rashba-type spin-orbit systems vanishes
In the presence of weak disorder

J.1. Inoue, et al, Phys. Rev. B 70, 041303 (2004)

E.l. Rashba, Phys. Rev. B 70, 201309 (2004)

O. Chalaev et al, Phys. Rev. B 71, 245318 (2005)

E.G. Mishchenko, et al, Phys. Rev. Lett. 93, 226602 (2004)
A.A. Burkov, et al, Phys. Rev. B 70, 155308 (2004)

O.V. Dimitrova, Phys. Rev. B 71, 245327 (2005)

R. Raimondi et al, Phys. Rev. B 71, 033311 (2005)

A.G. Mal’shukov et al, Phys. Rev. B 71, 121308(R) (2005)
B.A. Bernevig and S.C. Zhang, Phys. Rev. Lett. 95, 016801
(2005)

Cubic dependence on k is crucial.

Spin Hall Effect
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Spin-Hall Effect for Dresselhaus SOl 2DEG in a
magnetic field



Cy=1(oh’/ 9k ) (DY dx)
C,=M*Dy/2

Dgz —2NpeEx

Spin Hall Effect

Spin diffusion equation for Dresselhaus SOl 2DEG

B O GO N P

D—S +=———§_ - -+ BS———O
é’yz Yk gy ﬁz h h?
(92 vy 7
D—S$,-——=35,-=B.S5,=0,
Jy S /)
D dzs R™ 9 FZZS 2§S B.S ~"C 0
T oot o Ox T — D, t+ Dy~ T — Y,
PRI T MRS ERC I R hoC

do/di=2/5)BX o

D’akonov-Perel
spin relaxation

Precession of
Inhomogeneous
Spin
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Spin current for Dresselhaus SOl 2DEG

(jy

' (?Sl ISH
I'(r)=-2D— - —(§;- S") + =55..
L(r) PR ($;=S57) y O

. { Jh
[ y=- RZJ3’S? + 472€ENOU%(§_kk X hk) |

X

Boundary condition :
1Y(£d/2)=0
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Spatial profile of the spin densities
for the case of longitudinal B

Numerical parameters:
GaAs

[ (2) A B=-300mT
B =0 mT
----B =300mT

m*=0.067m,
g*=0.44

B =27.5€eVA?
n=2.4x10"cm™
w = 300A

|, =1 um

l,, =2.9um

TE X
|-

S, changes most drastically: contribution from precession of S,

y=d/2 y=-—d/2
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Spatial profile of the spin densities
for the case of transverse B

Asymmetry in the 4L @ | )
Spin density 3 E/\ : /
spatial profiles is C] N I !
- = | T L ,
related to the spin S /W. o M
polarization. 2 -/ 15 m S
O/ —+B=0mT )
_15_ - - 4B =300mT
3F —
TE , 2t
w’; 1
Yq—T 2 0 [
By »v -1}
y=d/2 y=—dn2 §

Asymmetry arises from competition between DP relaxation and spin precessions.




y=d/2

Yy ¢—

y=—d/2

Spin Hall Effect

Magnetic field dependences of the spin densities
at the transverse edges

Lo = o

3

2
(um ")
W - — Wi W,

1

S.

-3

(9]

R
p——

.-
-
———
——
o -

00 200 -100 0
B _(mT)

100 200 300

00 -200 -100 0
B, (mT)

100 200 300

—_
a
g
3
~—

-

S+

4
3

21

0OF
1h

2300 -200 -100 0

1k

(b)
TN L L
2300 200 <100 0100 200 300
B _(mT)

(d)

100 200 300
By (mT)

Asymmetry arises from competition between DP relaxation and spin precessions.
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Out-of-plane S,
Asymmetriesin both y and B

= 3

5 N

m200 ° E 2
y=d2 y=-d2

—400 _
-5 —4 -3 2 -1 0 1 2 3 4

(a) () - 0
400

200

0

-

B (mT)

=200

—400
-5 -4 -3 -2 -1 0 | 2 3 4 5
(b) y(i )

SO

L.Y. Wang, C.S. Chu, A.G. Mal’shukov, PRB 78, 155302 (2008)



Spin Hall Effect

Summary

The strong in-plane magnetic-field anisotropy in the
symmetry characteristics of the S, profile is distinct for the
Dresselhaus SOI.

Out-of-plane spin density can be generated in the case of
Dresselhaus SOI by a transverse in-plane magnetic field.

The out-of-plane spin density is closely related to the spin
polarizations.

We commence the notion of utilizing low in-plane magnetic
field for the determination of the underlying SOl in a
particular sample, without the need to prepare controlling
samples of different crystal orientations.



Extrinsic SHE: a theoretical explanation Spin Hall Effect

. : ek ending
PRL 95, 166605 (2005) PHYSICAL REVIEW LETTERS 14 OCTORER 3005

Theory of Spin Hall Conductivity in s -Doped GaAs

Hans-Andreas Engel. Bertrand [. Halperin. and Emmanuel I. Rashba
Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
' ~ {Received 21 May 2005; published 13 October 2005)

We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at
charced scatterers, which leads to skew-scattering and side-jump contributions to the spin-Hall con-
ductivity. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are
in reasonable agreement with experiments by Kato ¢f al. [Science 306, 1910 (2004)].

DO 1000 103 hysRevLel 95, 1 666035 PACS numbers: 72.25D¢, TLT0E]



Extrinsic SHE: a theoretical explanation Spin Hall Effect

What should be the distribution of electrons in the momentum

space if there is spin-orbit scatterers in the system (extrinsic
SOlI) ?

Physical Review Letters 95, 166605 (2005)

We start by refreshing our understanding on the normal
Boltzmann equation.

ehE af(k)_—ZZ”Nv [5(s ¢, )—[f(k)—f(k )
k'

Connection to differential cross - section :

1 7k do 27 V
Q. = —&.)—dQ. k” dk'

Vm*dQOI K IhNV\5(8 5) d d (27)’°

*2

d
i~ g Ml




Extrinsic SHE: a theoretical explanation Spin Hall Effect

RHS of the Boltzmann equation : the scattering rate

Z5(e, e, )—[f(k)—f(k )

_Z 27T 4722h4 dG
h m*

hlc
=———|dQ, k—fk—fk
= ) - (k)]
For a total of N. |mpur|t|es,the

total scattering rate is

eE of (k) k' do . - _
——= ==, [dQ, = | F(K) - f (K

hoo ok I “m dQ[() ()]
—e'g-af(fh—é”'z) f(K) = fo(K)+ o (K)

h 8k T
— S (k) = E.K SL For isotropic scatterers, we have j dQy., of (k')=0




Extrinsic SHE: a theoretical explanation Spin Hall Effect

When the impurities are spin-orbit scatterers, the
distribution f(k) will become a matrix, a 2X2 matrix.

f(K) = £ (K) L+ ( #K) Lo+ F(K)-6 )

We may expect the scattering rate to become a
scattering rate matrix.

_eE.@f(R’)_
ook

How do we come up with an appropriate
definition of the scattering rate matrix ?

-, [do, fnk gg -k
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Before we go on to find the scattering rate matrix expression,
It i1s beneficial for us to look at the physical meaning of the
scattering from a spin-orbit scatterer.

Ao - (IZ xVV)
26K +KY < (K—K) V(K +K)/2)
46 (Kxk=kxK )V (K +K)/2)

26K xK'V (K +K)/2)

= the effective magnetic field due to

scattering event k — k'is along the

direction k xk'.
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We first consider the scattering matrix of a spin-orbit
scattering event.

Without loss of generality, we can assume that the
particle is incident along z and the spin is either
parallel or anti-parallel to z.

Wine = eikza :
_ ikr 0/
—>e'kza+[811a+821,8]67; K
Wine = eikle ~ | Ta
| aikr K=12 Lp
—>e“f+[S,a+S, IB]T
Thescattering matrix S; are functions of dand ¢.
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To find the ¢ dependence of S;; we look at the
total angular momentum along z.

ikr

I

10 1 1
(-+2(7z}(8110‘+821,3):2(5110“"521 ,3)

10 1 1
10 1 1 1 0¢
T S =55, 85

| 0p 2 2 21 _

0S,, 0¢
-0 c y
o¢ =9, €

1S,
—

Similarly, we have

S, ce™ and S22 _ g

h(%ﬁJr;O-Zj{eikzaJr(Sll &+ Sy ﬂ)e} i Z{ “a+(Sya+S, p)

Spin Hall Effect

eikr
r
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To find the 0 dependence of S we look at the “reflection symmetry”
in the yz plane.

Symmetry operator for the reflection in the yz plane :
Po,
P, make changes x — —x toany function at its right
hand side.
00,0, =0, ; 0,0,0,=—C 0,0,0, =—0O

y ! z

Po, (L-S)Po, =L-5

Applying our reflection operator to our scattering state :

PXGX {eikza + [811(6’ ¢) a+ S21(‘9’ ¢) ﬂ] %kr}

— eikzﬂ+[811(‘9’77_¢) B+5,,(0,7—¢) a]i:r
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From reflection symmetry, we have

— eikzﬁ+[511(9,77_¢) B+35,.(0,7—¢) 0[] e:(r

From our previous scattering convention, we have
ikr

> ep+[8,(0.9) a+5,,(6.) BI
S,(0.4)=h()e™ ; S,(0.4)=h'(0)e"| ,_kxk
= h(8) =-h'(6) KxK!

Scattering matrix :
s 90O hEe"
~h@@)e”  g(6)

): g(@L,,,+1h(@)n-c
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The scattering wavefunction becomes:

- § eikr
S A ZUT

Scattering rate for such a scattering waveis :

i ridQ Ak, oa.a

scattering rate = =
mV




Extrinsic SHE: a theoretical explanation Spin Hall Effect

Define the scattering rate matrix as follows :

eh = —of, (k) K 2 ae . o
s E-K é;gk L. :_ni;jdgﬁ' m*SZnZnS o, (k)
40, "8 (-A) . 7S (-A)SF (K
0 [0y =S ()7, 7,8 (=N, (K
n
eh = —of, (k) K 2, oo 2 o8 2 g
- —E. k2221, . =-n dQ. —S(A) o (k) ST(A
o B K g loxa =~ L[ 40 TS () o () S7 ()

hk 2 A WL <+ A
+n> j dQ =S (=) of (') $7 (=)
n
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S(A) & (k) S* (k)
= [9(0) Ly, +i0(0) A-6][p(R) 1, + T(§)-5 ][0 (0)" 1,,., =in(0)" 1-5]
SS* =|g[ +i(hg"—gh") h-& +|h[

$68+ =|gf 6 +ilhg”(1-5)G — gh"s(A- &) |+ [ (A-6)6(A- &)

o g,
m 0&,

/714
o

2X?2

_nfdo, o)t @) - F K]+ 1@)s@)-6[p0) + 47

Sherman function

@) =lg[ ] |55 - i@aE) ~g(@)n(@)]
19)
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{ O)|F ) - £ &) |+ 10)s5(0)8-Glp(K) +9(K) |

f(K) = f,(K) Lo+ [ 9(K) Lo+ F(K) -G )
We can see that the following ansatz must be valid :
(k) =k -E

eht of (k) 1 jd
m  Og,

Ci=

]
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Spin Hall Effect

h
m

0=-n j dQ.

1) [F)- F(k)] 6 +s0)n 6]k +k

lEc.f

Another ansatz : since f (k) must change sign
if kK >—k,thenwelet f(k)=b(s)xk

After some calculatio n, we get
- 3 ) j dQ., 1(6)S(6)siné

b=1C, v. E : where y, =
7 Tk 740, 1(6) @-coso)

f(K)= £, (K) Ly + C K| Edypp+ 26 (G X E )| fe. - 22 0O

2

m Og,
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A’k hk,

“ ) Qw)Y mt

Fk) = 5= (Jy),,
€

-‘,U, -

where

Jy = 2e f(!3k(277)_3(7?.k/m“:)k - EC,

where J, Is the charge current in the absence of SO coupling.
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Theory of Spin Hall Conductivity in n-Doped GaAs

Hans-Andreas Engel, Bertrand [. Halperin, and Emmanuel I. Rashba
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(Received 21 May 2005; pub]jshed 13 October 2005)

We develop a theory of extrinsic spin currents in semiconductors, resulting from spin-orbit coupling at
charged scatterers, which leads to skew-scattering and side-jump contributions to the spin-Hall con-
ductivity. Applying the theory to bulk n-GaAs, without any free parameters, we find spin currents that are
in reasonable agreement with experiments by Kato ¢i al. [Science 306, 1910 (2004)].

DOL 101 103 PhysRevlelt 95, 166605

Next, we estimate the spin-Hall currents. The mea-
surements  were performed at electrical fields E =
20 mV pm~! where the conductivity increased o o, =
3 %X 10° Q' m™! due to electron heating. We assume that
v 1S not very sensitive to these heating effects and we still
use Eq. (8) but with the increased conductivity. For an
electrical field E = XE,, we lind both mnlrihulinm Lo

the spin-Hall conductivity % = — ji /E,. namely. 05§ =

—{-y/He}aH ~ 1.7 Q 'm/le| and o3 = 2nAe/h =
—0.8Q 'm1/le|l. In uml we arrive al the extrinsic
spin-Hall s.*.nmluu:lhfil}-' ol =09 Q 'm!/|e]. The
magnitude i1s within the error bars of the experimental
value of |o3h| = 0.5Q 'm™!/[e| found from spin accu-

mulation near the free edges of the specimen [1.27].

PACS numbers: 72.25.D¢, 71.70.E]



Spin Dipole

Spin dipole around a local scatterer

* Isotropic normal scatterer in a Rashba 2DEG

* extrinsic spin-orbit scatterer in a normal 2DEG




Spin Dipole

R. Landaver N

Spatial Variation of Currents and Fields / 2
Due to Localized Scatterers
in Metallic Conduction ! S T ey

miber of ele ess The cati
tered by the background. The excess and deficit diffise together and recombine along the arcs.

Abstract: Localized scatterers can be expected to give rise to spatial variations in the electric field and in
the current distribution. The transport equation allowing for spatial variations is selved by first considering
the hemogeneous transport equation which omits electric fields. The homogeneous solution gives the
purely diffusive motion of current carriers and invelves large space charges. The electric field is then found,
and approximate space charge neutrality is restored, by adding a particular solution of the transport
equation in which the electric field is associated only with space charge but not with a current. The pres-
ence of point scatterers leads to o dipole field about each scatterer. The spatial average of a number of
these dipole fields is the same as that ebtained by the usual approach which does not explicitly consider
the spatial variation. Infinite plane obstacles with a reflection coefficient r are also considered. These pro-
duce a resistance proportional te r/(1 —r).
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\
Topography image

llll]]I

Potential image

Au-contact 100 nm

In,.Ga,As, n', 10" em™ | 500 nm

In,,Ga,,As, n, 10" em’” Eﬂnm

InP, semi-insulating 500 nm

Potential (mV)

In,,Ga,,As, n, 10" em” E} nm
In,,Ga,As, n', 10" em”™ | 500 am

InP, 0", 10" cm™ B Gl S N TN TR N S A
-300 =200 -100 O 100 200 300 400
T T Scan distance (A)

PRB 54, R5283 (1996)
BG Briner, RM Feenstra
et al.
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Isotropic normal scatterer In a Rashba 2DEG

fdrzU(r)e ik —k)r

Scattering amplitude f(k k') =
of the scatterer S

\/_*5—

Gl (@) = 810GV (w) + G (w) + G (w),

Gy (@) = Gf(“}(w)ukksa*‘{f}}(w),

G2(w) = G, )y UGy (@) Uy G ().
k."."

Spin density in the vicinity of the scatterer

o.(r) = Z oi(p—k)r fd“’ dngp(w) Vertex part
¢ 27 dw
k.k',p

X Tr[Gﬁ,k(w)frzG;k;(w)T(w, k’)]



Spin Dipole
k k

P P
k!
< 5 k
g, vE
i %

Spin dipole in the ballistic regime: (PRL 97, 76601 (2006))
spin accumulation occurs regardless of zero spin current in the bulk

mv,o 2R m* v R
o, (r) = —=—— d 1 sin(—) sinfl + — dz sinz(—)
v 2T RL, 27°R L

S0 50

F

77 |
X Sin?’ﬁ((ﬁm + \[k—ﬁRe[/‘(W)emfR])J
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We invoke both the in-plane potential gradient SOI and the
resonant effects for the amplification of the spin accumulation.

Chen, Chu, and Mal’shukov (Phys. Rev. B 76, 2007)

A ring-shaped potential
pattern is embedded in a
2DEG. An electric field E
sets up a current in the
2DEG.

H, =4 G- (kxVV)

e V(p) =Vol0(p—2)-6(p-b)]
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5.p) = 15 | dkalk )3 0 ¥ () )

Sorbelloand Chu, IBM J. Res. Dev. 32, 58 (1988) Dipole-like
Chu and Sorbello, Phys. Rev. B 38, 7260 (1988) (\

S.(p) =ny Z ZRI I+1(P) Sing,,

Radial wavefunction
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sin S
Asymptotic S, = (bp |:p3 + v :|

form: k*p k*p
n*E kUJ_
Ps = 47
L eEQOZO
E mh
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8 | (a)
n=1 N ;_| NS (J
— a2 | ‘ ] |I BEi
n=2 series 4r
. ST \T f 4 l l l
n=3 series ijl )0.5
" (@)

V,=0.75

gll----v,=0151 ||

a

0.2484 " 02496 03312 4 03330 04238

u/E*

Partial sum involving
E* = 77.1 meV 0=5
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10

5
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V=1
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Possible realization of the microstructure:

Gate-patterning on the 2DEG

Carrier distribution profiles in Si-doped
layers formed by focused ion beam

Implanatation and successive overlayer
growth
Ref. J. Vac. Sci. Technol. B 18, 3158 (2000)

Spin Dipole



Spin Dipole

Summary

1. Nonequilibrium spin accumulation (spin cloud or
spin dipole) is found in the absence of bulk “spin
current”.

2. For the case of Rashba SOI, nonequilibrium spin
cloud is formed around a normal impurity.

3. For the case of a normal 2DEG, nonequilibrium
spin cloud is formed around a local SOI structure.

4. The interplay between the in-plane potential
gradient SOl and quantum resonances can lead to
significant effects.



Giant spin splitting in

NCTU surface metallic alloy

Other recent work that invoked the importance
of in-plane potential gradient:

Phys. Rev. Lett. 98, 186807 (2007)

Giant Spin Splitting through Surface Alloying

Christian R. Ast,'** Jiirgen Henk.® Arthur Ernst.” Luca Moreschini,” Mihaela C. Falub.> Daniela Pacilé, >’
Patrick Bruno.? Klaus Kern."? and Marco Grioni?
"Wax-Planck-Institut fiir Festkorperforschung, D-703569 Stuttgart, Germany
2Ecole Polviechnique Fédérale de Lausanne (EPFL), Institut de Physique des Nanostructures, CH-1015 Lausanne, Switzerland
*Max-Planck-Institut fiir Mikrostrukturphysik, D-06120 Halle (Saale), Germany
(Received 26 October 2006: published 3 May 2007)

The long-range ordered surface alloy Bi/Ag(111) is found to exhibit a giant spin splitting of its surface
electronic structure due to spin-orbit coupling, as i1s determined by angle-resolved photoelectron
spectroscopy. First-principles electronic structure calculations fully confirm the experimental findings.
The effect is brought about by a strong in-plane gradient of the crystal potential in the surface layer. in
interplay with the structural asymmetry due to the surface-potential barrier. As a result, the spin
polarization of the surface states is considerably rotated out of the surface plane.
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Giant spin splitting in

NCTU surface metallic alloy

TABLE 1. Selected materials and parameters characterizing
the spin splitting: Rashba energy of split states E, wave number
offset k,, and Rashba parameter «.

ER !\’0 dp
Material (meV) (A7) (eVA) Reference
InGaAs/InAlAs heterostructure <1 0.028 0.07 [4]
Ag(l11) surface state <0.2 0.004 0.03 [5.6]
Au(111) surface state 2.1 0.012 0.33 [6,7]
Bi(111) surface state ~14 ~0.05 ~0.56 [3]

Bi/Ag(111) surface alloy 200 0.13 3.05 This work




Band structure
measurements by
ARPES (left-hand
panels) and
calculations (right-
hand panels) in the
vicinity of the I'
point.

Note the different
horizontal scales.
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Giant spin splitting in

NCTU surface metallic alloy

RAPID COMMUNICATIONS

Spin-orbit split two-dimensional electron gas with tunable Rashba and Fermi energy

PHYSICAL REVIEW B 77, 081407(R}) (2008)

Christian R. Ast,'"** Daniela Pacilé.*! Luca Moreschini.? Mihaela C. Falub.”? Marco Pﬂpﬂgllﬂ,j Klaus Kern.!? and
Marco Grioni®
'\Max-Planck-Institut fiir Festkirperforschung, D-70569 Stuttgart, Germany

*Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique des Nanostructures, CH-1015 Lausanne, Switzerland

Jiirgen Henk, Arthur Ernst, Sergey Ostanin, and Patrick Bruno
Mare- Planck-Institut fiir Mikrostrulturphysil, D-06120 Halle (Saale), Germany
(Received 15 January 2008; published 15 February 2008)

We demonstrate that it is possible to tune the Rashba energy, introduced by a strong spin-orbit splitting, and
the Fermi energy in a two-dimensional electron gas by a controlled change of stoichiometry in an artificial
surface alloy. In the Bi,Pb,_./ Ag(111) surface alloy, the spin-orbit interaction maintains a dramatic influence
on the band dispersion for arbitrary Bi concentration x, as is shown by angle-resolved photoelectron spectros-
copy. The Rashba energy Ep and the Fermi energy Ep can be tuned to achieve values larger than one for the
ratic Eg/Eg, which opens up the possibility for observing phenomena, such as corrections to the Fermi liquid
or a superconducting state. Relativistic first-principles calculations explain the experimental findings.

DOL: 10 1103/PhysEevB. TT.08 1407 PACS number(s): 73.20.At, 79.60.—i, T1.70.Ej
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Giant spin splitting in
surface metallic alloy

(b) x=0.25 (9) x=1

_| (d) x=0.75
| |

f T 1 1 1 f T 1 1 1
-0.2 01 00 01 0.2 -01 00 041 0.2 -02 -01 00 01 02 -02 -01 00 04 02 02 -01 00 01 02
Wave vector (A™) Wave vactor (A™) Wave vactor (A™) Wave vector (A™) Wave vactor (A™)

FIG. 1. (Color online) Experimental band structures of Bi,Pb,_,/ Ag{111) surface alloys for x as indicated. The photoemission intensity

is depicted as linear gray scale, with dark corresponding to high intensity, versus energy E and wave vector £ along KTK. Data are taken at
21.2 eV (Hel). Red {dark gray) lines represent parabolic fits to the surface-state bands. The Fermi energy of the holes is indicated in (a). The
spin-orbit splitting k;. the Rashba energy Eg as well as the energy offset E; are defined in (e).



Spin Current Detection
Nano-bridge proposal

Spin Current Detection

« A nano-mechanical proposal

 An Inverse spin-Hall proposal and experiment



Spin Current Detection
Nano-bridge proposal

Nanobridge consists of:
Semiconductor ; Metal (green region);
Insulator (blue region)

provides the strain-induced SOI,;
Metal provides a rapid spin relaxation;
Insulator is to provide an asymmetric environment for the
semiconductor so as to allow for a net torsional stress.

. Relate torsional energy to spin current

. Derive equation of motion for the torsion angle

. Relate the spin current to the spin density

. Estimate torsion angle and its thermal fluctuation



Spin Current Detection
Nano-bridge proposal

Target: To study the torsion angle the nanobridge is to twist
upon the diffusion of electron spin into the nanobridge

from the semiconductor side.

Dimension of the Nanobridge:
b : thewidth L, : total length of the nanobridge

c/2 : thickness of the semiconductor
L : length of the semiconductor in the nanobridge

c/2 : thickness of the insulator




Spin Current Detection

NCTU Nano-bridge proposal

Strain-induced SOI in semiconductor

HSO,:a[aX(u k, —uy K, )+0, (u,k —u,k, )+o, (uk, —u,k )]

X" \z Xy vy Xy ' X yz' \z ZX X

i ,B[kax (uyy _uzZ)+ ok, (uzz _UXX)+ ok, (UXX ~ Yy )]

Ui j are elements of the strain tensor

X is the coupling constant for torsional motions

[3 is the coupling constant for flexural motions

[ << for narrow gap semiconductors



Spin Current Detection

NCTU Nano-bridge proposal

X' \Z Xy vy Xy ' X yz \z ZX' VX

HSO,za[aX(u k, —uyk, )+o, (uyk, —u,k,)+o, (u,k, —u,k )]

r
— I I LAl "/
Uy, =0 for torsional motion rt‘zléx‘

along x axis > o ]

terms involving (k, ) and (k,) vanish

Heg, :a[a u, —o,u ]kx

y Xy Z7 X




Spin Current Detection

AN NCTU Nano-bridge proposal

Z " IX
uyx — 7'-(X)@_)(’ Uy = _T(X)a_)(
0z oy
00
X)=——
7(X) =

V?x(y,z) =-1 with the boundary condition y =0




Spin Current Detection

75 NCTU Nano-bridge proposal

An influx of diffusive spin current can be represented by a
Boltzmann distribution function F,! (r) from which we can
calculate the spin distribution function P, ! (r). We assume P! (r)
to be uniform within the cross section of the semiconductor.

Torsional energy:

= :IZTr[IfIZ (T) SO,] dxdydz

_ZaIdx Zk PR.y (’;Z+P~ Z/( dydz
- Z

From the above expression it is clear that the insulator
plays a very important role in providing a net
torsional stress.




Spin Current Detection
Nano-bridge proposal
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; Y NCTU Nano-bridge proposal

b =400 nm A.G. Mal’shukov, C.S. Tang,
C.S. Chu, K.A. Chao,
¢ =200 nm Phys. Rev. Lett. 95, 107203
a/h =4x10° mis (GaAs) 2%
y =2.4x10"* J sec
For eJ¥=10"° Amp. For L =5um
3=15x10" Nm E=2 it
Q ~10°
within the sensitivity of 4 5
P. Mohanty’s group, 00 ~0.5x10

Phys. Rev. B 70, 195301
(2004)



Spin Current Detection

NCTU Nano-bridge proposal

Summary

1. Strain-induced SOI provides a nanomechanical
scheme for the detection of spin current

2. The effect can be inverted for the generation of spin
current from torsional motion



Spin Current Detection
Inverse SHE experiment

patore Vol 44213 July 2006|doi10.1038/nature04937

LETTERS

Direct electronic measurement of the spin Hall

EffECt The generation, manipulation and detection of spin-polarized
electrons in nanostructures define the main challenges of spin-
based electronics'. Among the different approaches for spin
generation and manipulation, spin—orbit coupling—which
couples the spin of an electron to its momentum—is attracting
considerable interest. In a spin—orbit-coupled system, a non-zero
spin current is predicted in a direction perpendicular to the
applied electric field, giving rise to a spin Hall effect’*. Consistent
with this effect, electrically induced spin polarization was recently
detected by optical techniques at the edges of a semiconductor
channel® and in two-dimensional electron gases in semiconductor
heterostructures®™’. Here we report electrical measurements of
the spin Hall effect in a diffusive metallic conductor, using a
ferromagnetic electrode in combination with a tunnel barrier to
inject a spin-polarized current. In our devices, we observe an
induced voltage that results exclusively from the conversion of the
injected spin current into charge imbalance through the spin Hall
effect. Such a voltage is proportional to the component of the
injected spins that is perpendicular to the plane defined by the
spin current direction and the voltage probes. These experiments
reveal opportunities for efficient spin detection without the need
for magnetic materials, which could lead to useful spintronics
devices that integrate information processing and data storage.

S. 0. Valenzuela't & M. Tinkham'



Spin Current Detection
Inverse SHE experiment

Figure 1 | Geometry of the devices and measurement schemes. a, Atomic
force microscope image of a device. A thin aluminium (Al) Hall cross is
oxidized and contacted with two ferromagnetic electrodes with different
widths (FM1 and FM2). A magnetic field perpendicular to the substrate, B |,
sets the orientation of the magnetization M of FM1 {and FM2), which is
characterized by an angle 6. b, Spin Hall measurement. A current I'is injected
out of FM1 into the Al film and away from the Hall cross. A spin Hall voltage,
Vg, 1s measured between the two Hall probes at a distance Ly from the
injection point. Vi is caused by the separation of up and down spins due to
spin—orbit interaction in combination with a pure spin current. ¢, Top:
spatial dependence of the spin-up and spin-down electrochemical
potentials, g; | . The black line represents the electrochemical potential of
the electrons in the absence of spin injection. A «is the spin diffusion length.
Bottom: associated spin current, J,. The polarized spins are injected near
x = 0 and diffuse in both Al branches in opposite directions. The sign
change in J; reflects the flow direction. d, Spin-transistor measurement for
device characterization. I is injected out of FM1 into the Al film and away
from FM2, which is located at a distance Ly from FM1. A voltage Vis
measured between FM2 and the left side of the Al film. e, Asin ¢ but for the
conditions shown in d. Note that both Vg, inb and Vin d vary with 6.
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Spin Current Detection
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Interesting recent work
on spin injection

New Journal of Physics

The apen-accass Journal for physics

Extracting current-induced spins: spin boundary
conditions at narrow Hall contacts

| Adagidelil”, M Scheid’, M Wimmer!, G E W Bauer®

and K Richter®

! Instaiut fir Theoretsche Fhysik, Unmversifat Pegensburg, D-23040, Gemmany
= Favli Instthwie of Manoscience, TU Delft, Lorentzveg 1,

2428 CT Delft, The Metherlamds

E-mail: mans adagideliaphysik nni-rezensinrg.de

New Journal of Physics 9 (2007) 332
Facaived 30 Tuly 2007

Publishad 24 Ootober 2007

Cmlime at bitp:/mrarw njporg

ded: 10,1038/ 1 357-2830/ 071 0382

Abstract. We consider the posstbility to eximact sps that are generated by
an elecmic omrrent in a two-dinnensions] eleciron gas with Fashba—Dressallaus
spir—orbit inferacton (FIDEG) in the Hall geomety. To this end, we disouss
boundary conditions for the spin acomnulations bemween a spim—ochit (509
coupled region and a coatact withont S0 conpling, i e. 3 nonnal tvo-dimensional
elecimon gas (IDEGE). We damoasoaie that o conirast to contacts that exbend
dloag the whole sample, a spio acommalation can diffuse ot the normal region
throngh finite contacts and be detectad by .z famomnagwers. For an inpedance-
mawched namow contact the spin acomnulation in the 2DEG is egual to the
cuorent induced spin acounmlation in the bulk of FADEG up o & geomeTy-

dependant numerical factor
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on spin injection

{h) o= 0 =0
J l js;
il
I
-
i i

Figure 3. Geometry of the contact: (a) 2ZDEG with a constriction in the middle.
On the left side there is an applied homogeneous current density which is
modified near the opening. On the right side. the current density far away from
the contact as well as the net charge current flowing from the left region to
the right region is zero. However, there is a finite spin current and a finite spin
accumulation in the right region. The respective mobilities of the left and right
regions are assumed to be the same but the Rashba coefficients are different.
(b) An idealized version of (a) used in the calculations of this section. The origin
is chosen at the center of the opening with width .
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3
x10
[e6V)
-40a 0.5
Figure 6. Top left panel: spin accumulation (s,} in a quantum wire of width
W = 52a with an abrupt drop of the SO coupling strength at x =37a from 0
the constant & = w/25(Lgg = 25a) for x < 37a to zero on the other side. Top
right panel: spin accumulation (s,) for a system as shown in figure 4 with 05
W =37a, Wy = 80a and Lo = 25a. Bottom panel: same as top right panel with 0
Wy = 20a. In all three panels, {s,) is obtained by averaging over 50 000 disorder
configurations. "]
-1.5

40a
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Non-uniform field

Spin-Hall Effect in a non-uniform driving field



Nonuniform field

Restoration of the SHE in a Rashba-type 2DEG
by a nonuniform electric field ?

h,l,,; = Od(k X 2)
A spin diffusion equation for a nonuniform driving field:

"

(sz - 2%) Sy + (26vp 2
(DV2 —2£) 5, + (260,

2
(DV2 —4£) 5. — 2¢up 2

) S. —&az-Dy =0
)s +&2a-2DY =0
Sy — 28vp 525y =0

=

e
=

\

f — OékFT
D8 = 2Npep (1)

We consider a situation when the electric current flows
around a hole in the Rashba-type 2DEG.



Nonuniform field

o(r) = —Eo(r + Ro*/1)cose
E = —Vo(r)



hk — Oz(k)( 2)

p(r) = —Eo(r + Ro® /r)cose
D = v47/2
Dy = 2Npep (r)

o~

E = ebEgNpT

Nonuniform field

Total spin densities:

N

S, =S +SP +AS.
’ 2
St = —aE 0 gin 20

2
S,gj:cuE( 1+R COSQO)

\ SP =0




Nonuniform field

NCTU
V2 (AS,) —4AS, +2(V,L +V_)AS. =0
V2 (AS,) —4AS, —2i (VL —V_)AS. =0
V2 (AS.) —8AS. —2(VL +V_)AS, +2i(Vy —V_)AS, =0

Vi = 0/0x £0/0y
AS, = S AR (vp)eime

m

Asy Z Bm hm) ( ) zmr)

m

AS. = S CnhlY (vp)eime

m

.

121, ::\/2 + 2?:\/? and - \/2 — 2?:\/?




Nonuniform field

Boundary condition:
zero radial spin current at the hole boundary

(L1 (7Y, + 69V _) AS, — 2cos dAS. | zn-ERg‘ sin20| (=0
o=

S —% (e OV, 4 eV ) AS, — 2sin ¢AS, H- Zf:tE 0 cos 20 el 0

\ —% (¢ TV, 4 eV ) AS., + 2cos pAS, + 25111 {-':}&Lgy|p=Rg =0

Compare with what we have previously for the spin current
_ J8S. (jy I

] _ l b sH

I(r) =— 2D—(9y e (S;=5S)) + - 5.




Nonuniform field

Total spin densities:

S, =5"+SP +AS.
Bulk spin densities: Particular spin densities:
2

S, =0 S P :—%eENFr(R—OZSin 2¢)

Yo,
SP = —ZeEN.7 3 i

n g :—eENFr(—gcos 2¢j
Sh =0 n P
Sy =0




Nonuniform field

Physical parameters used for the following figures:

o = 0.3x102eVm
E =40 mV/um

l,,=3.77 um




Bulk spin densities:
SP =0

0p)
o
|l

S?=0

VA

Particular spin densities:
2

2
SP = —ﬁeENFT(R—gsin 2¢j = —3.33(R—%sin 24
h P P

2
gp=%

S'=0

Z

—%eENFz’ - -3.33 (1/ um?)

V=7 eENFr(%cosM

Nonuniform field

Total spin densities:

S, = SP +57 +AS,
\
(1/ um?)
R2 )
j = 3.33(p—gcosz¢ 1/ um?)



In-plane spin polarization: S,

Nonuniform field
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In-plane spin polarization: S,
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Nonuniform field

Out-of-plane spin polarization: S

E S (1/um?)
> z
3 .
1
-2 | 0.8
0.6
1 A -~ 04
Y-
o)
_cn 0 1 : - -0
>
- 402
1 v SRR
0.6
2 0.8
1
-3 -2 -1 0 1 2 3



Nonuniform field
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Summary

We have shown that a Rashba-type SOl 2DEG supports
Spin-Hall-type spin accumulation in simple background
scatterers: If the driving field is nonuniform.

Nonuniform field




Competition between SOls



Rashba and Dresselhaus SOI

Competing interplay between
Rashba and cubic-k Dresselhaus SOI

hy | = o (ky, ko) + 8K (ki y) (= Br?)
(Blyk2, —Bkyk2) .

i

[
i
W

|

Spin diffusive equation for a semiconductor strip

( 02 R*~YY 9 **
D (WSz) FL 87_}8’ {:9 Sz — O
0 Ry“ Fyy C,. _
0 FII r+v

y=d/2 y=—d/2



Rashba and Dresselhaus SOI

Spatial profile of AS,

(b) a/3=0.5

Spin accumulation
IS entirely suppressed

when 05:2,5’

AS. (pm—?2)

3
2+ -
(d) a/5=2.0

o i
Nl'l.
UEP
4 !

_2 L

-3 : - : ' y -3 ! ! : ! ;
-15 -10 -5 0 5 10 15 -15 -10 -5 0 5 10 15
v (um) v (um)



Rashba and Dresselhaus SOI

AS, at sample edges vs /3

3 T T T T T I I

Spin accumulation
Is essentially
suppressed

when o =22.
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Rashba and Dresselhaus SOI

AS; atsample edges vs Kk
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Rashba and Dresselhaus SOI

Bulk spin polarization
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Rashba and Dresselhaus SOI

Bulk spin polarization
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Quantum Spin-Hall
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Quantum Spin Hall

Quantum Spin Hall Effect and
Topological Phase Transition In
HgTe Quantum Wells

B. Andrei Bernevig,™? Taylor L. Hughes,* Shou-Cheng Zhang*

We show that the quantum spin Hall (QSH) effect, a state of matter with topological properties
distinct from those of conventional insulators, can be realized in mercury telluride—cadmium
telluride semiconductor quantum wells. When the thickness of the quantum well is varied, the
electronic state changes from a normal to an “inverted” type at a critical thickness d.. We show that
this transition is a topological quantum phase transition between a conventional insulating phase
and a phase exhibiting the QSH effect with a single pair of helical edge states. We also discuss
methods for experimental detection of the QSH effect.
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Fig. 1. (A) Bulk energy
bands of HgTe and CdTe
near the I' point. (B)
The CdTe-HgTe-CdTe
quantum well in the
normal regime £1 > H1
with d < d. and in the
inverted regime H1 >
E1 with d > d.. In this
and other figures, ['s/H1
symmetry is indicated in
red and I'¢/E1 symmetry
is indicated in blue.
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Fig. 2. (A) Energy of £1 (blue) and H1 (red) bands at k; = 0 versus quantum well thickness d. (B)
Energy dispersion relations E(kyk,) of the £1 and H1 subbands at d = 40, 63.5, and 70 A (from left
to right). Colored shading indicates the symmetry type of the band at that k point. Places where the
cones are more red indicate that the dominant state is H1 at that point; places where they are more
blue indicate that the dominant state is E1. Purple shading is a region where the states are more
evenly mixed. At 40 A, the lower band is dominantly H1 and the upper band is dominantly £1. At
63.5 A, the bands are evenly mixed near the band crossing and retain their d < d. behavior moving
farther out in k-space. At 70 A, the regions near k;; = 0 have flipped their character but eventually
revert back to the d < d, farther out in k-space. Only this dispersion shows the meron structure (red
and blue in the same band).
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(€) Schematic meron configurations representing the d;(k) vector near
the I" point. The shading of the merons has the same meaning as the dispersion relations above.
The change in meron number across the transition is exactly equal to 1, leading to a quantum jump
of the spin Hall conductance c;{,ff, = 2e°/h. We measure all Hall conductances in electrical units. All

of these plots are for Hgy 3,Cdg 4aTe-HgTe quantum wells.
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I H l”2 Fig. 3. (A) Experimental
setup on a six-terminal
. " Hall bar showing pairs of

- Y . .
— ey edge states, with spin-up
H P~ Ha states in green and spin-
— down states in purple. (B)

A two-terminal measure-
ment on a Hall bar would
give G.p close to 2e°/h
contact conductance on
the QSH side of the
transition and zero on
the insulating side. In a

Eg six-terminal measure-
S ment, the longitudinal

g voltage drops p, —
wy and pg — ps vanish
on the QSH side with a
power law as the zero
temperature limit is
approached. The spin
Hall conductance cs{,f;
has a plateau with the

value close to 2€°/h.
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Quantum Spin Hall Insulator State
in HgTe Quantum Wells

Markus Kénig,* Steffen Wiedmann,* Christoph Briine,® Andreas Roth,* Hartmut Buhmann,*
Laurens W. Molenkamp,’* Xiao-Liang Qi,? Shou-Cheng Zhang?

Conductance
channel with
up-spin charge
carriers

Conductance
channel with
Quantum down-spin
well charge carriers

Schematic of the spin-polarized edge channels in a quantum spin Hall
insulator.
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Recent theory predicted that the quantum spin Hall effect, a fundamentally new quantum state of
matter that exists at zero external magnetic field, may be realized in HgTe/(Hg,Cd)Te quantum wells.
We fabricated such sample structures with low density and high mobility in which we could tune,
through an external gate voltage, the carrier conduction from n-type to p-type, passing through an
insulating regime. For thin quantum wells with well width d < 6.3 nanometers, the insulating regime
showed the conventional behavior of vanishingly small conductance at low temperature. However,
for thicker quantum wells (d > 6.3 nanometers), the nominally insulating regime showed a
plateau of residual conductance close to 2e/h, where e is the electron charge and h is Planck’s
constant. The residual conductance was independent of the sample width, indicating that it is caused
by edge states. Furthermore, the residual conductance was destroyed by a small external magnetic
field. The quantum phase transition at the critical thickness, d = 6.3 nanometers, was also
independently determined from the magnetic field=induced insulator-to-metal transition. These
observations provide experimental evidence of the quantum spin Hall effect.
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Coupling of spin and orbital motion of electrons in

carbon nanotubes

Electrons in atoms possess both spin and orbital degrees of free-
dom. In non-relativistic quantum mechanics, these are indepen-
dent, resulting in large degeneracies in atomic spectra. However,
relativistic effects couple the spin and orbital motion, leading to
the well-known fine structure in their spectra. The electronic
states in defect-free carbon nanotubes are widely believed to be
four-fold degenerate'"’, owing to independent spin and orbital
symmetries, and also to possess electron—hole symmetry''. Here
we report measurements demonstrating that in clean nanotubes
the spin and orbital motion of electrons are coupled, thereby
breaking all of these symmetries. This spin—orbit coupling is
directly observed as a splitting of the four-fold degeneracy of a
single electron in ultra-clean quantum dots. The coupling favours
parallel alignment of the orbital and spin magnetic moments for
electrons and antiparallel alignment for holes. Our measurements
are consistent with recent theories'*" that predict the existence of
spin—orbit coupling in curved graphene and describe it as a spin-
dependent topological phase in nanotubes. Our findings have
important implications for spin-based applications in carbon-
based systems, entailing new design principles for the realization
of quantum bits (qubits) in nanotubes and providing a mechanism
for all-electrical control of spins'! in nanotubes.

F. Kuemmeth'*, S. llani'*, D. C. Ralph' & P. L. McEuen'

In this work we directly measure the intrinsic electronic spectrum
by studying a single charge carrier, an electron or a hole, in an ultra-
clean carbon nanotube quantum dot. Remarkably, we find that the
expected four-fold symmetry and electron-hole symmetry are bro-
ken by spin—orbit coupling, demonstrating that the spin and orbital
motion in nanotubes are not independent degrees of {reedom. The
observed spin—orbit coupling further determines the filling order in
the many-electron ground states, giving states quite different from
models based purely on electron—electron interactions.
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Figure 1| Few-electron carbon nanotube quantum dot devices. a, Electrons
confined in a nanotube segment have quantized energy levels, each four-fold
degenerate in the absence of spin—orbit coupling and defect scattering. The
purple arrow at the left (right) illustrates the current and magnetic moment
% arising from clockwise (anticlockwise) orbital motion around the nanotube.
The green arrows indicate positive moments due to spin. b, Expected energy
@ splitting for a defect-free nanotube in a magnetic field By parallel to the
nanotube axis in the absence of spin—orbit coupling: At B; = 0T, all four
& states are degenerate. With increasing B each state shifts according to its
b

orbital and spin magnetic moments, as indicated by purple and green arrows
respectively.

Theoretical model for spin-orbit interaction in nanotubes and
the energy level spectroscopy of a single hole. a, Schematic of an electron
with spin parallel to the nanotube axis revolving around the nanotube
circumference. The carbon p, orbitals (red) are perpendicular to the surface.
In the rest frame of the electron, the p, orbital rotates around the spin.



respectively. ¢, Device schematic. A single nanotube makes contact to source
and drain electrodes, separated by 500 nm, and is gated from below by two
gate electrodes. The two gate voltages (Vyy, V,,) are used to create a quantum
dotlocalized above the right or left gate electrodes. The energy band diagram
is shown for the first case. d, Scanning electron micrograph of the device,
taken before nanotube growth to avoid damage to the nanotube. e, The
measured linear conductance, G = dI/dV, as function of gate voltage, V,,
for a dot localized above the right gate (B = 6 T, temperature T'= 30 mK).
The number of electrons or holes in the dot is indicated. The conductance of
the top two peaks is scaled by 1/10.
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a b
192 Figure 2 | Excited-state spectroscopy of a single electron in a nanotube
dot. a, Differential conductance, G = dI/d V4, measured as function of gate
= 190 : w voltage, Vi, and source—drain bias, Vg, at B = 300 mT, displaying
K : transitions from zero to one electron in the dot. b, A line cut at
188 B Vsa = —1.9 mV reveals four energy levels o, f§, 7 and 6 as well as another peak

S &, 2 w corresponding to the edge of the one-electron Coulomb diamond.

0 01 2 3
V,q (MV) G (10 e2/h)

¢, G = dI/dV as a function of V and B at a constant bias Vg = —2mV.
The resonances o, f, 7, 6 and w are indicated. The energy scale on the right is
determined by scaling AV, with the conversion factor o = 0.57 extracted
from the slopes in a. Inset: orbital and spin magnetic moments assigned to
the observed states. d, Extracted energy splitting between the states o and f§
as a function of B (dots). The linear fit (red line) gives a Zeeman splitting
with g = 2.14 = 0.1, and a zero-field splitting of A5o = 0.37 = 0.02 meV
(error bars, 1 s.d.). e, Magnified view of panel ¢ showing the zero-field
splitting due to spin—orbit interaction (Agp) as well as finite-field
anticrossing due to K—K' mixing (A ). Dashed lines show the calculated
spectrum using Agg = 65 peV.




\\ \
1mV

2h

AN

A\
A

-0.4

-0.2

B, (M

0.2

0.4

b Exchange

d Spin orbit

New Development

Ground state

Excitations

Figure 3 | The many-electron ground states and their explanation by spin-
orbit interaction. a, G = dI/dV4, measured as a function of gate voltage, Ve,
and magnetic field, B, showing Coulomb blockade peaks (carrier addition
spectra) for the first four electrons and the first two holes (data are offset in Vi
for clarity). b, Incorrect interpretation of the addition spectrum shown in

a using a model with exchange interactions between electrons. Dashed/solid
lines represent addition of down/up spin moments. The two-electron ground
state at low fields, indicated at the left, is a spin triplet. ¢, Comparison of the
measured two-electron addition energy from a with the one-electron excitation
spectrum from Fig. 2e. d, Schematic explanation of the data in a using
electronic states with spin—orbit coupling: The two-electron ground state at low
fields, indicated on the left, is neither a spin-singlet nor a spin-triplet state.
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