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Outline

• introduction to what we know about neutrinos
➡ mass
★ Majorana vs Dirac

➡ mixing 
➡ oscillation
➡ matter effects
• critical open experimental questions 
• the neutrino portal
• neutrinos in cosmology and astrophysics

➡ effects of sterile neutrinos
➡ dark energy coincidence and MaVaNs
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ν Mass
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Neutrinos in the Standard Model

• Standard Model was formulated without any neutrino mass, even 
though it was formulated after neutrino oscillation and neutrino 
mass had been suggested as a solution to the solar neutrino 
problem, and neutrino mass suggested as a solution to dark 
matter problem.                                                                       
Why leave out the neutrinos mass?

• Now that there is convincing evidence that neutrinos have tiny 
masses,  neutrino mass has been incorporated into                   
“the ν standard model(s)” in either of 2 ways.
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Standard Model with Massless 
Neutrinos: helicity vs chirality

• Chirality = eigenvalue of γ5. 
➡ Lorentz invariant measure of “handedness”.
➡ PL=½(1-γ5), PR=½(1+γ5)
★ Project out “left-handed” and “right-handed” fields
★ chirality is Lorentz invariant
★ for massless particles, (and only for massless states) chiral 

symmetry ⇒ chirality conservation
• Helicity = J⋅P

★ for massless states (and only for massless states), helicity is 
Lorentz invariant

★ for noninteracting particles, helicity is conserved

➡ for massless states (and only massless) chirality ∝ helicity
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 Chirality vs helicity, cont

• Massive states:
➡ Chirality is Lorentz invariant, not conserved
➡ Helicity is not Lorentz invariant, is conserved
• for state initially left chiral: <helicity>= - ½β   (for ν, β≈1)
• for left handed helicity:  <chirality>=-β
• left chiral fields: left chiral particles or right chiral 

antiparticles
• only left chiral fields are weak doublets 
• in SM: neutrino part of weak doublet
• when ν was massless: “all  ν’s are are left handed (have negative 

helicity)  and all ν’s are right handed (positive helicity)” (both 
are weak doublets) 7
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νmass in the Standard Model
Method I: Dirac

• same as any other fermion

•                 weak interaction doublet

•     weak interaction singlet. No gauge charges at all!

• h =Higgs doublet

•  

• no explanation why mν is so small compared with other masses

★ mν < 1 eV (ℏ=c=1 units); me=0.5 MeV
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More about Dirac mass

• For Dirac mass term, need νL and νR fields
• The neutrino and the antineutrino are different
• There are 4 particle states: 

➡ νL(weak doublet in massless limit), 
➡ νR (weak singlet in massless limit), 
➡ νL (weak singlet in massless limit)
➡ νR (weak doublet in massless limit)
• Lepton number is conserved and distinguishes between ν and ν
• The νR field has no interactions other than through the mass term
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Important note about “left” and “right”

• When referring to fields “L” and “R” refer to chirality
• When referring to particles, “L” and “R” refer to helicity
• chirality and helicity coincide for massless particles and are 

opposite for massless antiparticles.
• Neutrinos are so ultra relativistic, so close to massless, that 

chirality and helicity almost coincide.
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Majorana mass term

• For a neutral particle, if there is no conserved quantum number, 

the particle and anti particle may be the same

• νR and νL transform the same way under Lorentz group

• Could have Lorentz invariant mass term νL νL instead of νR νL

• breaks lepton number

• breaks electroweak gauge invariance
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ν mass Method II: 
Seesaw Majorana mass

• νR is gauge singlet field
• νR νR Majorana mass term is gauge and Lorentz invariant

• If both Majorana and Dirac terms are present the ν mass terms 

may be written as a Majorana mass matrix:

• m is just like the Dirac mass term and could                                      

have been written in usual way for Dirac term

• M is a Majorana mass term, breaking lepton                         

number
12
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Seesaw continued

• Consider limit M ≫m (motivated by GUTs)
• Diagonalize matrix perturbatively
• just like 2 state quantum system 
• approximate eigenvalues: 

➡ sign of fermion mass does not matter
➡ as M gets bigger, small eigenvalue gets smaller!
★ mν≈0.1 eV, m ≈ 100 GeV ⇒ M ≈ 1014 GeV! 

- (at low energy, we can only determine  |m2/M|)
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Effective Field theory
• Effective field theory

➡ If a particle is too heavy to make, only see virtual effects
➡ same effects can be approximately included in an effective 

(nonrenormalizable) local operator in the Lagrangian
★ e.g. 4-fermion operator in Fermi theory of weak interactions

• “Integrate out” heavy particles

➡ Leff is sum of ∞ local operators
➡ approximate Leff  with finite set of terms
★ lowest dimension terms in Leff dominate
★ dimensional analysis, 3+1 spacetime dimensions: coefficient 

of dimension d term of order (1/M)(d-4), perturbatively 
expand in powers of   (E/M)
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Effective field theory and seesaw 
Majorana mass

• Standard model is surely an effective theory
• Minimal Standard Model includes all terms to d=4 

(renormalizable)  
➡ 19 parameters 
• next gauge invariant term in expansion: d=5 (nonrenormalizable)

➡ Leff ⊃ c( h2/M) ℓℓ (+ h.c.)

➡ for c =1, M is scale at which approximation of keeping only 
low dimension terms in expansion of Leff breaks down

➡ Leff  breaks lepton number
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Effective Field Theory of the seesaw
• Integrate out heavy ‘sterile’ singlet with Majorana mass and what do 

you get?
- Leff ⊃ -(λ2 h2/M) ℓ ℓ 
- nonrenormalizable dimension 5 term
- unique dimension 5 term you can add to Standard Model with only 

Standard model fields
- h➜<h> :  Leff ➜ into tiny Majorana mass term for ν

★ mν= λ2 <h>2/M
• ν has 2 components: left and right helicity
• Lepton number is broken⇒0 ν ββ nuclear decay possible

★ rate ∝ mν2

• ν is its own anti particle. 
➡ weak interactions convert νL  to charged lepton  and  νR  to charged 

antilepton. 
➡ we usually refer to νL as the “neutrino” and its CP conjugate νR as 

“antineutrino” 16



17S. Parke Neutrino 2010



Weak Mixing and 
flavor violation
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What do we know about

neutrinos?

• Three types of neutrinos: e, µ, !

– Type determined by what lepton is produced

See the charged lepton produced!

Need enough energy:

"e -> e  .511 MeV

  "µ-> µ  105 MeV

"! -> !  1777 MeV
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Lepton flavor
• Discovery of 2 types of neutrinos solved problem of why no 
μ→eγ

γW-

νμ e

• Lepton flavor conservation (e,μ,τ numbers) a key piece of 
standard model
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“I have done a terrible thing. I have postulated a particle which 
cannot be detected.’’-Pauli, 1930

• 1956  Neutrinos discovered by Reines and Cowan

• 1957  Neutrinos showed to have left handed helicity by Goldhaber 
et al

• 1961  Muon neutrino discovered at Brookhaven

• 1957-62 Pontecorvo, Sakata independently speculate that neutrino 
variety oscillates between electron and muon

 Early History of Neutrinos
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Weak Interactions violate 
flavor in the quark sector  

• quark doublets:

• quark weak eigenstates are not mass eigenstates

• weak quark mixing:

• V=VCKM

• VV†=1

• mixing requires both up and down quarks to be massive, with 
non degenerate masses

• off diagonal CKM elements are small
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Lepton mixing?

• Why not an analog of CKM matrix for leptons?

• In minimal SM, with no νR field, ν’s are massless and lepton 
flavor conservation is “automatic”

• If neutrinos are massless, then can always make                             
mass eigenstates = flavor eigenstates

• What if ν’s have tiny mass? lepton flavor violation should 
become unobservable as m⇒0
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PMNS matrix in Lepton sector
• lepton doublets:

• lepton weak eigenstates are not mass eigenstates

• lepton mixing:

• U=UPMNS 

• UU†=1

• mixing requires neutrinos to be massive, and have 
nondegenerate masses

• observing mixing requires observing effects of nondegenerate 
neutrino mass
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ν flavor 
oscillations
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kinematic Effects of mass

• Usually we observe effects of mass through the kinematic 
relation

• Produce ν with E >> MeV

• m<eV

➡ p≈E-m2/(2E)

➡∆p<10-15 MeV

➡∆x>100 m ! classical kinematic effects of mass not 
observable

E = p2 + m2
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Quantum Mechanical Effects 
of νmass

• Neutrino wave packet is so ultra relativistic that it propagates  
with ω ≅ k

• essentially no dispersion, distance traveled x ≅ t

• effect of mass on overall phase of wave packet:

• flavor eigenstate produced in coherent superposition of mass 
eigenstates which acquire different phases as they travel

• If only 2 ν’s mix (e.g. νμ,νe) simple formula for probability of 
flavor transition
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mass vs flavor eigenstates

from Smirnov
hep-ph/0305106
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> 2 flavor mixing

• Probability of producing flavor a in a beam of flavor b at a 
distance x from the source

• With >2 flavors, U can have a CPV phase, just like in quark 
mixing. For antineutrinos:
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A brief history of neutrino

mass…

• The Standard Model (‘67-’68) - massless

neutrinos

• 1967 - Homestake Experiment on solar neutrinos:

“solar neutrino problem”

!50% depletion => need very small masses, large angles

 “Theoretical prejudice that !" should be small makes this

an unlikely explanation of [the solar neutrino problem].”

- anonymous

!Probably just astrophysics
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effects of matter 
on  oscillations
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The MSW mechanism: effects 
of propagating though matter

• neutrinos propagate through matter

• matter is full of electrons

• forward scattering of electron neutrino

• additional phase for νe 
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Effective H forνpropatin
• in flavor basis: (simplified case of 2 neutrinos) 

• ignore terms ∝1, only can see Δm2=m22-m12
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• V is matter effect for electron neutrinos from electrons

• V∝density of electrons

• when diagonal terms are equal, resonant enhancement of mixing
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Level crossing in the sun

• adiabatic conversion “start heavy, stay heavy”

increasing 
density

eigenvalues ~νe

ν2

from Smirnov
hep-ph/0305106
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More details of MSW
from Smirnov

hep-ph/0305106
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Fast forward to mid-90’s…
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‘98 Super-K Atmospheric !’s

• Super-kamiokande sees atmospheric large

atmospheric neutrino depletion
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Fast forward to ‘02-’03

• KamLAND and SNO

– SNO: Sees neutral currents, missing neutrinos

– KamLAND: Reactor experiment, controlled

source => finds large angle MSW
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2010 Summary of standard 
picture

• All confirmed results can be explained with 3 neutrinos
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S. Parke Neutrino 2010



Mixing angles

41S. Parke Neutrino 2010

not 
observable 

in 
oscillations



Summary of history of neutrino

mass theory

• Neutrinos are massless

• Neutrinos have small masses and small mixings,
but they’re not relevant for anything

• Neutrinos have small mixings, and the MSW
mechanism might explain the sun

• Neutrinos have one large mixing for atmospheric
neutrinos, and the other two angles are small

• Neutrinos have two large mixings and one small
mixing, and this time we really mean it.
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