Lecture IV

- dark neutrinos+dark forces
- Apparent CPT violation
- Dark Energy
- Dark Energy from mass varying neutrinos

V mixing with exotic fermion

- What happens when we add an exotic fermion coupled to a light boson?
- New force mainly affecting neutrinos
 - → Apparent CPT violation in ν oscillations
 - ➡ v Dark energy

more V

surprises?

- $\operatorname{Prob}(\nu_{\mu} \rightarrow \nu_{\mu}) = \operatorname{Prob}(\overline{\nu_{\mu}} \rightarrow \overline{\nu_{\mu}})$
- absent matter effects, v_{μ} and $\overline{v_{\mu}}$ disappearance should be the same
- In SM at baseline sensitive to atmospheric Δm^2 , v_{μ} disappearance is almost all into v_{τ} and should have negligible matter effects

[≜]UCL

The MINOS Detectors

Near detector, 1.0 ktonne, 1km from source **Far detector**, 5.4 ktonne, 735 km from source Tracking, sampling calorimeters

- > Alternate steel and scintillator planes
- > Functionally identical
- Magnetised to 1.3 T

 e.g. neutrino flux or cross section mismodelings

Minos antineutrinos

 central value of antineutrino mixing parameters about 2σ different from neutrino mixing

FIG. 4: Allowed regions for the $\overline{\nu}_{\mu}$ oscillation parameters from a fit to the data in Fig. 3, including all sources of systematic uncertainty. Indirect limits prior to this work [16] and the MINOS allowed region for ν_{μ} oscillation [3] are also shown.

frpm W. Anthony Mann, Daniel Cherdack, Wojciech Musial, and Tomas Kafka "Non Standard Interaction..

CPT violation?

⇒standard CPT conserving fit has 2% probability
⇒CPTV implies Lorentz violation in local field theory
⇒implies rotational violation in some reference frame
⇒Lorentz violation extremely well tested in other contexts

Minos tests of CPT

- \Rightarrow Need a theory of CPT violation
- \Rightarrow e.g. Kostelecky Standard Model Extension
- ⇒background CPT (and Lorentz) violating field
- \Rightarrow sidereal change in neutrino velocity relative to CPTV/LV field
- \Rightarrow search for sidereal change in oscillation probability
- ⇒strong upper limits (arXiv:1007.2791)

Alternative to CPTV:

Matter effect from a new force

- ⇒MINOS neutrinos go through matter
- ⇒vector interaction with matter distinguishes neutrinos from antineutrinos
- \Rightarrow similar to usual MSW effect, but could be larger?
- ⇒Non Standard interactions typically constrained to be much weaker than weak

"Apparent CPT Violation in Neutrino Oscillation Experiments"

Netta Engelhardt, Ann Nelson, and Jon Walsh arXiv:1002.4452v3

anomalous matter effect
Sterile neutrinos to the rescue again!
propose: gauged B-L, 3 sterile neutrinos

resonance for anti neutrinos

for anti neutrino and $H_{\text{eff}} = \begin{pmatrix} V + V_{nc} + \frac{m^2}{2p} & \frac{mM}{2p} \\ \frac{mM}{2p} & -V + \frac{M^2 + m^2}{2p} \end{pmatrix}$ sterile neutrino

neutrino mass matrix = $\begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$

- m =Dirac mass V =B-L potential
- M = sterile neutrino Majorana mass

NOTE RESONANCE at $2V + V_{nc} \approx \frac{M^2}{2p}$

Mixing with sterile neutrino suppressed for neutrinos, enhanced for antineutrinos

Effects of potential on $V \mu$ disappearance

eg: $V = 1.2 \ 10^{-12} \text{ eV}$ in earths crust

linear combination $(s_{23}c_{13}v_{\mu}+c_{23}c_{13}v_{\tau}+s_{13}v_e)$, $s_{13}=.1$, mixes with sterile neutrino with vacuum mixing angle $\theta=0.1$

Vacuum mass² differences: .00008eV², .0025 eV², .05 eV²

139

 V_{τ} appearance

eg: $V = 1.2 \ 10^{-12} \text{ eV}$ in earths crust

linear combination $(s_{23}c_{13}v_{\mu}+c_{23}c_{13}v_{\tau}+s_{13}v_e)$ mixes with sterile neutrino with vacuum mixing angle $\theta=0.1$; $s_{13}=.1$

Vacuum mass² differences: .00008eV², .0025 eV², .05 eV²

oscillations into Va

eg: $V = 1.2 \ 10^{-12} \text{ eV}$ in earths crust

linear combination $(s_{23}c_{13}v_{\mu}+c_{23}c_{13}v_{\tau}+s_{13}v_e)$ mixes with sterile neutrino with vacuum mixing angle $\theta=0.1$; $s_{13}=.1$

disappearance (only 1 sterile

neutrino mixes significantly)

Experimental Constraints

- MSW potential $\propto g^2/m_V^2$
- need g²/mv² ~ of similar size to usual MSW effect from usual weak interactions for significant effect
- need $g/m_V \sim 1/(300 \text{ GeV})$
- precision EW, neutrino electron scattering: $g < 10^{-3} \Rightarrow m_V < 300 \text{ MeV}$
- Note: weaker constraints on sterile neutrino couplings

Summary: new fermion + new

light vector boson

- mixing with exotic fermions can affect neutrino oscillation sensitivity to new forces
- apparent CPT violation in ν_{μ} disappearance expts

Mass Varying Neutrinos (MavaNS)

Rob Fardon, A.E.N., Neal Weiner; astro-ph/0309800, hep-ph/0507235 David **B**. Kaplan, A.E.N., Neal Weiner; hep-ph/0401099, Kathryn Zurek, hep-ph/0405141 Weiner and Zurek, hep-ph/0509201 v physics beyond the standard model at the mev scale?

- Dark Energy Density: $\rho_{DE}^{\frac{1}{4}} \sim 2 \times 10^{-3}$ eV
 - See Saw Scale: $M_w^2/M_{Pl} \sim 10^{-4} \text{ eV}$
- $m_{3/2}$ in one scale GMSB ~10⁻³ eV
- Neutrino masses: $(\Delta m_{solar}^2)^{\frac{1}{2}} 9 \times 10^{-3} \text{ eV}$
 - $(\Delta m^2_{atmospheric})^{\frac{1}{2}} \sim 5 \times 10^{-2} \text{ eV}$
 - (Δm²_{LSND})^{1/2}~(0.1—2) eV

Coincidental Scales?

- Neutrino number density scale n_V^{1/3}~10⁻⁴ eV
 n_V depends on redshift as (1+z)³
- Dark Matter Density: $\rho_{DM}^{1/4} \sim 2 \times 10^{-3}$ eV

 ρ_{DM} depends on redshift as $(1\!+\!z)^3$

• Neutrino energy density $10^{-3} \text{ eV} \ge \rho_V^{\frac{1}{4}} \ge 5 \times 10^{-4} \text{ eV}$

 ρ_V depends on redshift as $(1+z)^3$

Recent History of the Energy Density of the Universe

Composition of universe

 $H^2 = (\dot{R}/R)^2 = (8\pi/3) G_N \rho$

Type of ρ dilution rate clustering Particle Physics (P = w ρ)			
CDM, Baryons	(1/R) ³ (w=0)	Gravitationally Clumps	WIMPS Axions Etc.
radiation	(1/R) ⁴	Does not	Photons
	(w=1/3)	clump	Light v
Cosmological	Does not	Smooth	Vacuum
Constant	dilute (w=-1)		Energy
quintessence	(1/R) ^{3(1+w)}	Smooth	Cosmon,
	-1 <w< -0.9<="" td=""><td>(not perfect fluid)</td><td>MaVaNs</td></w<>	(not perfect fluid)	MaVaNs

Looking through the Neutrino portal

- Neutrino number density scale n_V^{1/3}~10⁻⁴ eV n_V scales as z³
- Dark Energy Density: $\rho_{DE}^{1/4} \sim 2 \times 10^{-3}$ eV approximately constant
- Neutrino energy density $10^{-3} \text{ eV} \ge \rho_V^{\frac{1}{4}} \ge 5 \times 10^{-4} \text{ eV}$ red shift dependent mass?

Can we relate dark energy to neutrinos? $(m_{v} \sim Q_{v}^{1/4} \text{ at } z \text{ where } m_{v} \sim n_{v}^{1/3})$

General considerations for ∨arying parameters Varying Parameter→New Field (e.g. varying mass→Higgs)

Significant effects require fields which are lighter than scale of affected physics—for cosmology, this means new sub-meV bosons (not necessarily as light as H~10⁻³³ eV)

Is a light, weakly coupled new sector natural? consistent with expt?

Neutrino Masses vary as A⁻¹

Neutrino mass matrix $\begin{pmatrix} v & q \\ 0 & q \\ q \\ \end{pmatrix}$ For large $\langle A \rangle$ light neutrino is mostly active, mass is $\sim (q \langle H \rangle)^2 / \lambda A$ Heavier neutrino is mostly dark, mass is $\sim \lambda A$

Assume V (A) increasing function of A.

 $V_{eff}(A) = V(A) + (T^2 + m_v^2(A))^{\frac{1}{2}} n_v$ Note: n_v redshifts as $(1+z)^3$

temperature T redshifts as (1+z)

A Technically Natural Model (except cosmological constant) Gauge Mediated Susy Breaking Model with $m_{2/2} \sim 10^{-3} \, eV$ Nearly hidden nearly supersymmetric sector containing A, n chiral superfields $W \supset y Hvn + \lambda Ann , \lambda \sim 1, y \sim 10^{-11}$ susy breaking masses for A, \tilde{n} scalars $M_{\rm e}M_{\rm A} < 10^{-3} \, {\rm eV}$ $V \supset \mathcal{X} |\tilde{n}|^4 + 4\lambda^2 |A\tilde{n}|^2 - \mathcal{M}_{R}^2 |\tilde{n}|^2 + \mathcal{M}_$

 $y^2 |H \tilde{n}|^2 + \mathcal{M}^2_A |A|^2 + constant$

Can we test MaVaN Dark

Energy?

- Cosmological tests of neutrino mass from large scale structure: MaVaN mass was much lighter at high redshift.
- No terrestrial sources of high scalar neutrino density (neutrino density weighted by (m/E)), relative to cosmological, other than nuclear fireball.
- Main interesting astrophysical source of high scalar neutrino density is SUPERNOVA.

Neutríno Mass and míxíng Matter dependent?

• A, \tilde{n} could couple to other matter, e.g. (1/ Λ) $\tilde{n}G^2$, $\xi \tilde{n} H_u H_d$

➡ A, ñ expectation values could be different in dense matter than air

 Neutrino mass and mixing parameters could be different in matter than air or vaccuum (exotic MSW-type effect, **not** CP violating,

energy independent)

Smoking Guns for MaVaNs

- •Effects of environment in neutrino oscillations?
- •Tritium endpoint searches for absolute v mass depends on density of source?
- •Cosmologically "impossible" sterile neutrinos?
- •Cosmologically "inconsistent" neutrino masses?
- θ_{13} in long baseline search for v_e appearance inconsistent with reactor constraint?
- •energy spectrum of solar v_e inconsistent with standard large mixing angle MSW?

Summary

- Effects of "dark sector" with new light fermion mixing with neutrinos and a new light boson
 - new vector boson: apparent CPT violation
 - new scalar boson: MaVaNs.
 - alternate explanation of dark energy
 - motivated by coincidence of neutrino mass and dark energy scales.
 - (Very)Anomalous matter effects