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1. (10%, 10%) Using Dirac delta functions in the appropriate coordinates, express the following

charge distributions as three-dimensional charge densities po(X).

(@ Incylindrical coordinates, a charge Q per unit length uniformly distributed over a cylindrical
surface of radius b.

(b) In spherical coordinates, a charge Q spreads uniformly over a ring of radius a located on the x-y
plane.

2. (10%, 10%) The two-dimensional region, p>a, 0<¢< /3, is bounded by conducting surfaces

at =0, p>a,and ¢=/f held at zero potential, as indicated in the figure below. At large o the

potential is determined by some configuration of charges and/or conductors at fixed potentials.

(@) Write down a solution for the potential ®(p,¢) (that satisfies the boundary conditions for
finite p).

(b) Keeping only the lowest non-vanishing terms, calculate the electric field components E, and
E,s and also the surface-charge densities o(p,0) and o(a,¢) onthe two boundary surfaces.

3. (10%, 10%) Two point charges +q and —q are located on the z axis at z=+a and z=-a, respectively.
(@) Find the electrostatic potential as an expansion in spherical harmonics and powers of r for both
r-a and r<a.
(b) Keeping the product ga =constant, take the limit of a—0 and find the potential for r=0 (i.e.
r >a). This is by definition a dipole along the z axis and its potential.



4. (10%, 10%) A point charge q is placed a distant d in front of a semi-infinite dielectrics ¢.
(@) Find the potential ¢ in both regions (z>0 and z<0).
(b) Find the polarization surface charge (o pol ) at z=0.

[Hint: Image charge method.]
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5.(10%, 10%) Consider a grounded rectangular box with a line-change density in the middle

(A=Agsin(zz/c)).

(a) Find the Green function for the rectangular box V2G(x,x')=-4z5(x—-x') with G(x,x')=0
at the boundaries. [Hint: Eigen function expansion.]

(b) Find the potential inside the box.
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1.
@ p(r)=as(r-b) A=[p(r)drdo=2zba = p =%5(r—b)
T
(b) Lecture note p.48
The x-y plane isat & =7/2. The charge density p(x) can be written as:
Let p =cpo(r—a)o(coso)

Q=ﬂjvp(x)r25in6’drd9d¢=c02na2 = Cp= Q

27ra2

p(X) = %50 —a)o(cosb)
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2. (a)
®(p.4)=(ag +bg In p)(Ay + Bo In ¢)+Z(avpv +bvp_v)(A,, cosvg+ B, sinvg) (2.69 and 2.70)

®(p,4) = ag (1+bjIn p)(1+ Bg Ing) + Z(avpv +b,p™" )(AV cosvg+ B, sinvg) (2.69 and 2.70)

®(p,0)=0 =By=0a=0 A =0
®(p,B)=0 :>v=%, m=123...
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(b). The lowest non-vanishing term corresponding to m=1 is
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E (a,¢):A1£a%_lsin%é, Es(a¢)=0, E,(p,0)=0
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o(a,¢)=¢ Ep\pza = —2clgo%aﬂ sin’%’

G(p: O) =&p E¢‘¢:O = —Clgo _ —1 - -1

3. (@) Use the binominal expansion and expand in spherical coordinate.
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The problem is azimuthally symmetric, only m=0 terms survive.
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4. (a) Tofind @ in the region z>0, we put an image charge q' at z=-d.
To find @ in the region z<0, we put an image charge q" at z=+d.

q_quq" jq'__g—goq & q,,_ 2¢ q
%(QWLQ’):%Q" E+& E+&
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where P = (e —&5)E(z2<0) =—(s —¢7)VD(z <0)

(b) V-P=—pyy =0

pol =~

5. (a) Consider the corresponding eigenvalue problem with f(x)=0 and A—k?
V2 (X) + k’w (X) = 0 with the same b .
Let y(x) = X(X)Y(V)Z(2) =

1d2y , 1d?7
Xd2+7dy2+ d2+k2—0
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X (x) = AKX+ ge—ik X

= 1Y (x) =BeKY + ceKY with k2 =k2 +K2 +k2
Z(x) = De'K 2+ ge=iK 2

X(x)=0atx=0anda [k =!z X =sinlzx,
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b.c. {Y(x)=0aty=0andb = 1k, =%~ and;Y =sin g ,
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Z(x)=0atz=0andc |k,="Z Z =sinhaz,
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Sub. y(x) into (3.160): G(x,X) = 47> % we obtain
i i
= sinlzX sip lzx gin MY gjn M2Y gj ' in NZZ
G(x,X) =2 Z sin “2Csin X sin = % sin =% sin "2 sin N2
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(b) The potential is given by
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