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1. (10%, 10%) A plane wave is incident on a quartz slab of thickness d as shown in the figure. The indices of the

reflection of the three media are n;=1 (air), n,=2 (quartz, e=4&y), and ns=1(vacuum).

(a) Calculate the transmission and reflection coefficients (ratios of transmitted and reflected Poynting’s flux to the
incident flux, i.e. power ratio.).

(b) Find the minimum thickness (d > 0) so that there is no reflected wave for a frequency of 3 GHz.
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2. (10%, 10%) A plane wave is incident normally on a perfectly absorbing flat screen.

(@)  Write down the law of conservation of linear momentum, and show that the radiation pressure exerted on the
screen is equal to the field energy per unit volume in the wave.

(b) Inthe neighborhood of the Earth, the flux of electromagnetic energy from the Sun is approximately 1.5 kW/m?. If
an interplanetary “sailplane” had a sail of mass 1g/m? of area and negligible other weight, what would be its

maximum acceleration in meters per second squared due to the solar radiation pressure?
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Hint: = 2 -~(E. 2g.
[Hint: T, go[EaEﬂH: B,By 2(E E+c?B B)éaﬂ}]

3. (10%, 10%) Conservation of energy.
(@) Prove the Poynting's theorem for a system of particles and electromagnetic waves. [Hint: Starting from the rate of
work done by the electromagnetic fields on the charged particles.]

(b)  Show the complex Poynting's theorem using the phasor representation.

4. (10%, 10%) The generalized dielectric constant.

Assume there are N molecules per unit volume and Z electrons per molecule. The electrons could be classified into two

groups, bound electrons and free electrons. Each molecule contains f; electrons with binding frequency @jand damping

factor y. The free electrons are denoted as fo, =0, andy,. Z = fo+ 2

(@) Find the general polarization P and the general form of the comple;< dielectric constant.

(b)  For a uniform medium (independent of position), D(w) = ¢(w)E(w) is a constitutive relation in a-space valid
for all . How about the relation between D(t) and E(t) ? Do they have simple relation? When? [Hint: Use the

Fourier transformation. ]

5.(10%, 10%) A magnetically "hard" material is in the shape of sphere of radius a. The sphere has a uniform permanent
magnetization M=M, Z .
(a) Find the volume current density (Jy, =V x M) and the surface current density (K ;=M x n).

(b) Find the magnetic field inside the magnetized sphere. [Hint: you can use either scalar potential or vector potential.]
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E, = Be'k2? + ce7k2?
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4 4 _
Hy =«/—go Be'ke? _ [0 ¢ce ka2
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Eyi = De't?

Region Il .
Hyn =\/Z—°De'klz
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Boundary conditions. Tangential E:

@z=0,E, =E,; =1+A=B+C Q)
@ Z= d, EX|| = EX||| = Beikzd +Ce_ik2d = Deikld (2)
Tangential H: (no free current)

@ZZO,Hy|:Hy|| =1-A=2B-2C (3)
@z=d, Hyy =Hyy = 2Be"2? —2ce 2 = pe'td  (4)
What we rerally care are the coefficients of A and D.

(4) - (2) = B = 3Ce 1kd

M =1+A=C@e 1) _  _30-e )
2(1) - (3) = 1+3A=4C ge t4ad _1

. _ ~i3kyd
(2)= 4Ce Zad _pelkd  p_ %
ge—|4kld _1

Reflection coefficient: R = A- A* = 3¢ _.e_l4kld) 3(1-_ 8I4kld) = 181 - cos(Hyd))
9o 14kid _1 gei4kd 7 82-18cos(4kyd)

ge-idkid  gaidkyd 64
9 140 _1 ggikid _1 ~ 82 —18cos(4k;d)

Transmission coefficient: T=D-D* =

Varification: R+T =1
R =0 when 1-cos(4kd) =0, d :Zn—ﬁzﬂiz, where A, “Y_°% _5cm
2k, 2 f 2f

»d=25cm



2. (a) %(ﬁmech + Priig )0, - ;Iva%Taﬁd X = ff;-raﬂnﬂda - §f -hda
B s s

1/ - _

2 2

T, = go[EaEﬁ +¢?B,B, —E(E E+c’B- B)&aﬂ}

In Cartesian coordinate system with the z-axis along the wave propagation direction

n=-¢,=(00-1) E=(E,,E,,0) B=(B,,B,.0)

L2, 202 1o 202 2 ]
E2+¢c BX—E(E +c%B ) E,E, +C?BB, 0 .
= 2 2 p2 (2 252
Tofi=eg EyEy + B, B, Ey+By—§(E +c2B ) 0 0
1
0 0 —3(E2+c252)
L 2 i
=%(E2 +c%8?) g,
d(p Pfieig ) = 4T - nd LIS Y BZAA ince Prech =0
a( mech + fleld)—‘fi> -hda = =gt field =% €0 +ﬂ_0 €2, SINCE Frmech =
= 2
EZE 80E2+B— éZ
A 2 Ho

The radiation pressure is equal to the field energy density.

(b).
power per area
F P 15x10°w/m?

A ¢ 3x108m/s
% 1.5x10%w/m?
a=—-= = ) 3 2
m % 3x108m/sx1x10"3kg /m

P, =

m

—5x103m/s?



3. (a)

The rate of work done by the E-field on charged particles inside a volume V is given by
vd3x = : 3y — [ J.Ed3x = : .9 pyg®
jvf vd x_jvpv (E +vxB)d x_jVJ Ed x_jV(E VxH-E-£D)d’

J=VxH-£D, E-VxH:H-V;E—V-(ExH)z—H-%B—V-(EXH)
-9
ot

:J.VJ-EdSX:—IV[V-(ExH)+E gtD+H gt }d3x (6.105)

rate of conversion of EM energy into mechanical and thermal energies.

The terms E-%D and H -%B in the integrand can be interpreted

physically if we make the following assumptions:
Assumption 1: The medium is linear with negligible dispersion and negligible losses.
We can then write (reasons given in Ch. 7 of lecture notes)
D(x,t) = ¢E(x,1), B(x,t) = H(X,1)
0 10 0 10
= E- atD 26’[(E'D)'H'§B 28t(H B). (6)
Assumption 2: The field energy density for static fields
-2(E-D+B-H) (6.106)
represents the field energy density even for time-dependent fields.
From (6) and (6.106), we have

M_g 0p.H. aB:[rateofchangeof }

7
ot ot ot field energy density 0

Rewrite (6.105): [ J-Ed®=—[ | V-(ExH)+E-2D+H 2B i

Sub.=~== ou forE- 9 D+H- el B, we obtain

ot ot ot
3 ou 43 3, _
[, 9-Edx+ L5t dx + [ V-(ExH)d*x=0 (6.107)
_ ou _
= +V-s=-J-E (6.108)

where, S = Ex H, is called the Poynting vector.

The meaning of S becomes clear if we write (6.107) as

3 ou 3y _
JVJ-Ed X+ 6td X+IVV-(ExH)d x=0

dEg

$Emech GEfiel  fsSnee

= %(Emech + E field ) = —cﬁss -nda [Poynting's theorem]  (6.111)




In terms of phasors, the Maxwell equations can be written as:

V-B(x,t) =0
5 V-B(X)=0
VxEX 1) =-ZBX1) V x E(X) = ioB(X)
V-D(x,1) = p(x.t) VD) = p(x)
V x H(x,1) :J(x,t)+gt—D(x,t) VxH(x) = J(x) ~iwD(x)

Complex Poynting's Theorem : Using the phasor representation of Maxwell equations, we obtain

JoB

~-V-(ExH")+H".VxE
1 * 3 1 * : *743
EIVJ ‘Ed X:EIV[ E-VxH —iwE-D*]d3x

:%JV[—V-(EX H)io(E-D* ~B-H") |d% (6.131)

Rewrite (6.131):
1 3 Ed3x =1 [-v. Y _iw(E-DF —B-H")1d3
ZjVJ Ed3x zjv[ V- (ExH*)—io(E-D* —B-H")]d%x (6.131)
This equation gives the complex Poynting theorem:

31,9 Ed*x+2i0f (we —wy)d®x+p S-nda=0  (6.134)

where S = %E x H* [called the complex Poynting vector] (6.132)

and the real part of S is the time-averaged power [see (10)].
In (6.134), w, and w;,, are defined as

_1 EE2 . .
We =ZE'D* 22|E| {The real part of w, (W) is the time

: .| (6.133)
averaged E (B) field energy density.

Wy = 1B H* = £H[?



4. (a)

Let x(t) = x,e™* and substitute
X(t) = x,e™
{E(x,t) = E(0)e
we obtain m(-e’ —iwy + o?)x, = —eE(0) with the solution:
e EO e E(Qiot
M 2—w?-iwy M 2-w?-iwy

nto  m(X+ yX+ a?Xx) = —eE(x,t),

Xy =— = X(t) = -
bound electrons: o; # 0

Divide the electrons in the medium into
free electrons: w; =0, f; = f;, », =7,

f. f
_ _| Ne? j . Ne? 0 _
P(x) = N; fjpj = (‘m‘bound a)jz—a)z—ia)]/j 1 m —ia)2+a)7/oJE(X) = & X.E(X)
D(X) = g,E(x) + P(x) = ¢E(x)
&=+ 7,)
to fields with exp(—iwt) dependence, we obtain D(Xx) = ¢E(X)
f. Ne? f
. 2 . .
with & = &, + & | I 0 - +iC
ot m i Gy a)JZ—a)Z—Ia)yj ma)(yo—la)) bl
\_ﬁ_—/
& o/®

(b.)

D(w) = ¢(w)E(w) is a constitutive relation
in w-space valid for all @. For multi-frequency fields, we may
obtain the t-space D through a Fourier transformation

D(t) = éj‘w D(a))e_ia)tda) = %J‘w g(a))E(a))e—iwtda) (3)
) £ Ne? f
Ne2 j . 0
=& tTme ——+i )
(@) o j (bound) a)jz_a)z_la)yj ma)(]/o—la))

EM) = L j E(w)e ' dw

We find from (3) that, in general, D(t) = €E(t) because ¢ is a function of .

5. See Jackson, pp. 196-200. HW problems 5.13, 5.19, and 5.20
Griffith, pp. 263-264. Examples 5.11 and 6.1



