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九十八學年第一學期 PHYS5310 Electrodynamics Midterm Exam (1 page) 
[Jackson Ch.5-7]  2010/01/14,  10:10am–12:00am, 教師：張存續 

 記得寫上學號，班別及姓名等。請依題號順序每頁答一題。 

1. (10%, 10%) A plane wave is incident on a quartz slab of thickness d as shown in the figure. The indices of the 

reflection of the three media are n1=1 (air), n2=2 (quartz, =40), and n3=1(vacuum). 

(a) Calculate the transmission and reflection coefficients (ratios of transmitted and reflected Poynting’s flux to the 

incident flux, i.e. power ratio.).  

(b) Find the minimum thickness (d > 0) so that there is no reflected wave for a frequency of 3 GHz. 

 

2. (10%, 10%) A plane wave is incident normally on a perfectly absorbing flat screen. 

(a) Write down the law of conservation of linear momentum, and show that the radiation pressure exerted on the 

screen is equal to the field energy per unit volume in the wave. 

(b) In the neighborhood of the Earth, the flux of electromagnetic energy from the Sun is approximately 1.5 kW/m . If 

an interplanetary “sailplane” had a sail of mass 1g/m2 of area and negligible other weight, what would be its 

maximum acceleration in meters per second squared due to the solar radiation pressure?   

[Hint:  2 2
0

1

2
T E E c B B c              

E E B B ] 

3. (10%, 10%) Conservation of energy. 

(a) Prove the Poynting's theorem for a system of particles and electromagnetic waves. [Hint: Starting from the rate of 

work done by the electromagnetic fields on the charged particles.] 

(b) Show the complex Poynting's theorem using the phasor representation.  

 

4. (10%, 10%) The generalized dielectric constant. 

Assume there are N molecules per unit volume and Z electrons per molecule. The electrons could be classified into two 

groups, bound electrons and free electrons. Each molecule contains fj electrons with binding frequency j and damping 

factor j. The free electrons are denoted as f0, 0=0, and0. 0 jZ f f  
.
 

(a) Find the general polarization P and the general form of the complex dielectric constant. 

(b) For a uniform medium (independent of position), ( ) ( ) ( )   D E  is a constitutive relation in -space valid 

for all . How about the relation between ( )tD and ( )tE ? Do they have simple relation? When? [Hint: Use the 

Fourier transformation. ] 

 

5.(10%, 10%) A magnetically "hard" material is in the shape of sphere of radius a. The sphere has a uniform permanent 

magnetization M=M0 ẑ . 

(a) Find the volume current density ( M =J M ) and the surface current density ( M ˆ= K M n ). 

(b) Find the magnetic field inside the magnetized sphere. [Hint: you can use either scalar potential or vector potential.] 
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2. (a)      
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3.  (a)  

  

3 3 3 3

     The rate of work done by the -field on charged particles inside a volume  is given by       

  ( ) ( )
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rate of conversion of EM energy into mechanical and thermal energies.

The terms  and  in the integrand can be interpreted
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sically if we make the following assumptions: 

     : The medium is  with and .

     We can then write (reasons given in Ch. 7 of lecture notes)

 

Assumption 1 linear negligible dispersion negligible losses
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( , ) ( , ),  ( , ) ( , )
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: The field energy density for static fields

 (6.106)

represents the field energy density even for 
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    Sub.  for ,  we obtain
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                                                              (

d x
v

 

d x d x d x
v v v

t

t tt

t

t

u

u

u

   

  

      

     




 
 












  

B

E D H B

J E E H

S J E

 3 3 3

6.108)

where, , is called the Poynting vector.  

    The meaning of  becomes clear if we write (6.107) as

       0
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In terms of phasors, the Maxwell equations can be written as:
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Rewrite (6.131):   

    ( ) ( )    (6.131)

     This equation gives the complex Poynting theorem: 

    2 0   (6.134)
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and the real part of  is the time-averaged power [see (10)]. 

     In (6.134),  and  are defined as
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4.  (a)  

0

20
0

2 2
0 0

0 2 2
0

Let ( )  and substitute

( )
            into    ( ) ( , ),  

( , ) (0)

we obtain  ( ) (0) with the solution: 
(0)

                

i t

i t

i t

t e

t e
m e t

t e

m i e

i
e
m





  

  

  








      

    

   

x x

x x
x x x E x

E x E

x E
E

x x

 

2 2
0

(0)
( )

i te
t

i
e
m



  


   
E

 

0 0

0
bound

2 2 2
2 2 0

0

bound electrons: 0
Divide the electrons in the medium into    

free electrons: 0,  ,  

( ) ( ) ( ) 

j

j j j

j j e
j j

j

j

f f

f fNe NeN f im mi i


  

     


   

 
       
 P x p E x E x

 

0

0

0
 (bound)

2 2

22 0

0

( ) ( ) ( ) ( )  
 

(1 ) 

to fields with exp( ) dependence, we obtain  ( ) ( )

with 
( )

e

b
j

b

j

j

j

i t

i i
f Ne fNe

m m ii

 

 
  

 

       

  
  

 

     

D x E x P x E x

D x E x


 

(b.) 
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5. See Jackson, pp. 196-200. HW problems 5.13, 5.19, and 5.20 

     Griffith, pp. 263-264. Examples 5.11 and 6.1  


