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1. Textbook and Contents of the Course:

J. D. Jackson, “Classical Electrodynamics”, 3rd edition, Chapters
1-7. Other books will be referenced in the lecture notes when
needed.

2. Conduct of Class :

Lecture notes will be projected sequentially on the screen
during the class. Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skipped.
Questions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes before
attending classes (Important!).

3. Grading Policy:
First midterm (~30%); Second midterm (~30%); Final
(~30%); Quiz (~10%0); Participation (~5%, extra). The overall
score will be normalized to reflect an average consistent with
other courses.



4. Lecture Notes:

Starting from basic equations, the lecture notes follow Jackson
closely with algebraic details filled 1n.

Equations numbered in the format of (1.1), (1.2)... refer to
Jackson. Supplementary equations derived in lecture notes, which
will later be referenced, are numbered (1), (2)... [restarting from (1)
in each chapter.] Equations in Appendices A, B...of each chapter
are numbered (A.1), (A.2)...and (B.1), (B.2)...

Page numbers cited in the text (e.g. p. 120) refer to Jackson.

Section numbers (e.g. Sec. 1.1) refer to Jackson. Main topics
within each section are highlighted by boldfaced characters. Some
words are typed in Iitalicized characters for attention. Technical
terms which are introduced for the first time are underlined.




Chapter 1: Introduction to Electrostatics

lf'f\f\lf'\ f\f\lf'f\

1.8 Green’s Theorem
Green's theorem, a powerful tool for treating electrostatic boundary-
value problems, 1s a simple application of the divergence theorem:

jVV-A d3x:<_|SSA-n da 0: theta; ¢: phi; w: psi

Let A= ¢V y, where ¢ and v are arbitrary functions of position.
S

V-A=V(Vy)=gVy+Ve-Vy
= oy n
Sub. these 2 expressions for V- A and A -n into the
divergence theorem, we obtain Green's first identity,

0
Jy(@Vw +Vg-Vy)d x=§ 45 da (1.34)
Interchange ¢ and w 1n (1.34).

= jv(w d+Vi-Vg)d>x = R ¢da
Subtract these two equations, we obtam Green's second 1dentity,

v (@V2y —yV2g)d x = (¢%—Vﬁ—w%)da (1.35)




1.8 Green’s Theorem (continued)

Green's theorem relates a volume integral to a surface integral and
the volume integral contains the operator V. These features are useful
for the manipulateion of the Poisson equation in bounded space.

For example, applying Green's second 1dentity:

2 APE 0 0
I, (@2 V29 d x = 4o (4% —v ¥)da (1.35)
we may convert the Poisson equation into an integral equation, 1o/’ See next

few pages.
In (1.35), letting v be (V2 L = —475(x—x)),“D be the

X—X] X'| x=x|
electrostatic potential (thus, V ‘P = ——) and X' be the integration variable,
we obtain
‘ ' I Yd3x = § 1 0D
IV[_M(D&(X_X )+ 0 X=X/ pX)Jd™X" = Cﬁs[q) on’ (x X' )= X=X/ on’ ]da
X inside Vv

s _
_ 1 ¢ pX) 1 0 40 ([ 1 / \
:> (I)(X) —_ 472'80 IV ‘X X‘ d Cﬁs _X_Xr anr (D anr (X—X,)_ da (1.36)

(1.36) 1s an integral equation (not a solution) for ®@. In infinite space,

1 _ 1 PXX) g3y
we have @ oc . Hence, (1.36) reduces to ®(X) = Iz, fy XX d x'. 5




Delta Functions (pp. 26 - 27)

Definition of delta function: 5()(/; a)

(S(x—a)=0, ifx#a

I ca .

kJ‘aIZé‘(X_a)dXZI . lf al<a<8.2 - \ >X
al a az

Note: Since the delta function i1s defined in terms of an integral,
it takes an integration to bring out its full meaning.

Properties of delta function:

(i) jjlz f(x)o(x—a)dx = f(a) (2)
0

/\.

(i1) j;Z f(x)5r(x—a)dx:ff (X)o(x—a) |:12\_j:12 f'(x)o(x—a)dx
=-f'(a) (3)

6




Delta Functions (continued)

_ _ f(x)

(11;) Let x=a be tfh(z 1‘)00t of f (X) =0, then f(ay)> f(ay)

Jo SLT(0Tdx = 2 5[f(x)]oI (X)df(x) Tal &
dx 7 g

(rf(ap) | 1 ’

[t $:00df =i = iy T@>00 100 )5 ta)

f(a) 1 ]
ff(i)fﬁ(f)df ~fa) f’( )’

Note: In both expressions above, the integration 1s from a samller
value to a larger value, as in the deﬁnition of the delta function

Compare with (2) = o[ f (X)] = 5(X a)[= 5(X a)] (4)

f'(a)<0 a &,

If f (X) has multiple roots X; [f (X ) 0, i =1,2,---], then
oL T(x)]= [ =2 iy 0= %) (5)
Exercise: Show 5(a —X)=0(X—-a) and o(cX)=0(X)/|c| 7




Delta Functions (continued)
Extension to 3 dimensions:

1. Cartesian coordinates: X = (X;, X, X3)

S(X=X)=8(X = %) (X = %) (X3 = X3) (6)
= Iy S(x=x)d>x = [6(x = x))dx [ 5%y = X)X, [ (% — X5 )dxs
_ 0, if X' lies outside V i‘g X
1, if X' lies inside V
2. Cylindrical coordinates: X = (p, 6, 2) / oy
5(X—X')5%5(/?—/?')5(6’—6")5(2—2') " ()
= |y 5(x—x’)d3x:jv o(x—x") pd pdOdz 1 Z]~l X

=[5(p-pdp]5(0-0)d0]5(z—12")dz

0, if X lies outside V o !

1, ifx' lies inside V g pi

Question: If X and X both have the dimension of cm, what are the
dimensions of 0(X) and 6(X)? [See Appendix (A), Eq. (A.9).]

=




Delta Functions (continued)

3. Spherlcal coordlnates r=(r, 6, )
o(r—r"Ho@-6"0(p—¢"), or

S(r—r'y=- aing (8)
r—25(r— r')5(c056’?cos6”)5(gp—g0')
By (4), 6(cos@ —cos ') = smH 0(0 - «9)— 5(«9 0), 0<0<r

fyy o(r—r"d X = fy 5(rr;r’) 5(cos 0 —cos 0 (p— @) r*drd(cos @)dp

_ 10, 1f r’ lies outside V e
1, if r’ lies inside V [see (9) below]
Note: Volume integration in spherical coordinates

0 (T 2 . (O 2 (T 2z Variables are to
[, drf;rd@ " rsinfdg="r dl‘!O Suied‘?jo do be integrated

from smaller to

0 9 | 27 _
=Jo rodr|_ d(cos0);" dg —h 1d(wsg)/ larger values.
— d°x=r%sinddrddde or rdrd(cosd)de 9,




Delta Functions (continued)

\ 'I- v'
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The delta function, 6(X), can be represented analytically by the
following functions because they satisfy the definition of the delta
function in the limit y — 0 (¥ > 0).

o(X)=lim 1 4

y—>0 7 X2+7

X2

)
o(X)=lim e 27
y—0 2 7/

1 for —L <x<Z
S(x)=lim{7’ 2 2

7910, otherwise

10



Delta Functions (continued)

s % 2729 R ka2

m 1. A 1 1hhiitead nd
Fropiem 1. A totai L/llaléc \{ lb uuuu1uuy UlbLllUULUU aluvuliu

a circular ring of radius a and infinitesimal thickness. Write the

charge density p(X) in cylindrical coordinates.

Solution: Is there any 0-dependence?
Let p(X) = Ko(r —a)o(z) and find K as follows.

[ p(x)d°x =K [8(r-a)s(z)rdrdddz
=27Ka=Q
Q

> K=—-
2ra

= p(x)= 3 5(r—a)é(2)

Vi

N

a

Note: o has the dimension of "charge/volume" as expected.

11



Delta Functions (continued)

Problem 2: Prove V> 1 = —475(r) (V> 1.7

x—x'
o(r)=0,1f r=0 r
[s(ryd x =1

Solution: Definition of o(r): {

Hence, we need to prove
(i) V> =0, ifr=0
(i) [V* $d°x=-4z[5(r)d x =47

It is convenient to use the spherical coordinates. To prove (1), we

we write V2 as (see back cover of Jackson)

2_10 (20 1 0 (sing 0 1 &2

Vo= ror (T o0 rasing 06 5% 000 r2sin2 0 52

2 2 .
>vii=Lardh=-L8E)=0 if r=o

2 . .
Note: % 1s undetermined at r = 0. However, here we are only

concerned with the region r > 0. 12



Delta Functions (continued)

To prove (i1), we integrate V- + over a spherical volume V
2143x = 143x = lda=—¢r2lgo=_
[V pd'x=[,V-Ved'x=¢.e - Vg da=—¢.r rde_ 4z

g 1
divergence thm| — .

Note: Since r > 0 on the spherical surface, again we do not have
the problem of evaluating r?/r* atr =0.

r
Change to a coordinate system in which r = X — X’ X!
and r =|x—X'|. We obatin from vil= —47o(r) X
1 '
V? x| =~ (X=X) (1.31)

optionalProblem 3: Derive V2M(X) = —%;() from ®(X) = 47;5 ﬁ();% d-x’
e

AN 2 | N2 ] R,
Solution: V (D(X)_—47zgo [ p(X"V |x—x'|d X

— 4L [ POO[-478(x—X)]d X = -2 5



1.9 Uniqueness of Solution with Dirichlet or
Neumann Boundary Conditions
Dirichlet boundary condition: ® specified

{ Neumann boundary condition: gn @ specified

Cauchy boundary condition: @ and gn @ . both specified

As another application of Green's theorem, we use it to prove the
uniqueness theorem for the solution of the Poisson equation.

Let there be two solutions, @; and ®,, which both satisty
® =@, on S (Dirichlet b.c.), or

20 :
Vi@ =-p/ey with gn(l) ®p, on S (Neumann b.c.) ,, n

2 — (I)l 2 — (I) on S or |

e |V P1=7PI%0 i | S

U=®,-®,=00nS,or

oy = O, —D,=00nS
14

Define U = ®; - D,, then V2U =0 with{
on



1.9 Uniqueness of Solution... (continued)

+A vrann!la 1ot 1 dantitr 2.,,| s 3\1_ 6 fa
Rewrite Green's 1st deuuty. Jrv((?//‘v [ TV(?/AVgu)d A —CﬁSQJ/‘a—lgda
Let g =y =U b.c.U=00rdU/on=0o0nS
= [,(UY2U +VU YUY x =4 U M da0= ], VU dPx =0
0
Cq . n
= VU =0 everywhere within V Vv

0, 1ifU=0o0onS
const, ifoU /on=0 on S S
= @, and @, differ by at most a constant, hence are the same solution.

Note: Since the solution 1s uniquely determined by specifying either
® or 0® /on on the boundary, the Cauchy boundary condition
(® and 0d / on both specified on the boundary) 1s an over-
specification, which may lead to inconsistency.

Exercise : Prove that there cannot be any static E inside a closed,
hollow conductor if there 1s no charge in the hollow region.



1.10 Formal Solution of Electrostatic Boundary-Value

DerAalrlAara wvanndlh M vAanmm T iirmaAatiAanrn
FTUMICILHI VWILIT OI1cCl FUlivuvul i

Green Function Gp (X,X"): Gp =0 for
In electrostatics, the Green function 1s X on S
the solution of the following problem: 0 = S

V2Gp (X, X') = —478(x —x") with G (X,X") =0 for X on S,
where X is the variable of the differential equation and X' is treated as

a constant. Gp(X,X") is the potential of a unit point source (q — 475;)

located at X' subject to the b. c. that Gp (X,X") vanishes for X on S.
0 for

Symmetry Property of Gp(X,X'): y %nzs
0~ ~S

Consider two equations: one with a
point source at X, the other with a point source at X'. The variable is y.

ViGp(Y.X) =—475(y —X), b.c. Gp(Y,x)=0 fory onS
ViGp(y,X)=—-475(y —X'), b.c. Gp(y,X)=0 fory onS 15



1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)

[ Ow
Rewrite: IV(¢VyW l//Vy¢)d3y =W -y aana (1.35)
Let ¢ =Gp(Y,X) and v =Gp (Y, X'), where Y is the variable.
—47z5(y X") —47z§(y X)
= [, [Go(¥.X) V2Gp (. X) ~Gp (¥.X) V2Gp (v x)]dy

= §s[Gp (¥, %) £ Gp (¥, X) GD(y,x)an Gp (Y,x)]da
=0onS =0onS
= 47[Gp (X', X) =Gp (X,X)]=0
= Gp (X, X) =Gp(X,X") [symmetry property of Gp (X, X)]

Questions:

1. Does VzGD (X,X") =476 (X—X") imply V’zGD (X,X") = =470 (X' —X)?
2. Give two examples to show the physical meaning of the symmetry
property of Gp (X, X').

17



1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)

Formal Solution of Electrostatic Boundary - Value Problem :

";)(( X,) d>x’ is applicable only to

unbounded space. By Green's theorem, we may generalize it to an
expression for bounded space with prescribed boundary conditions.

The expression @(X) = 4~ g I
0

Consider a general electrostatic boundary-value problem:

VZD(X) = —p(X)/ &, with ®(X) =D () for xon S (10)
Green's 2nd 1dentity: P
N _
Ju| OOV 2y () =y (V2 p(x) |d X 5
= ¢ [¢(X') gn, y (X)—y(X) g},, ¢(X’)] da’ (1.35)

In (1.35), let #(X") be the solution of (10) with variable X’ (i.e. ®(X")).
Let w(X') =Gp(X, X'), where G (X, X') is the Green function satisfying
V'?Gp (X, X') = —475(x—X') with Gy (x,X)=0 forx'on S (11)
Substitution of @¢(x") and w(X') into (1.35) gives 18



1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)

~475(x-X) )

Jy [®(X)V’2GD(X x) Gp (X, X)V’2CD(X )]d X'
_Cﬁs CD(x)an, p (X, X') — GD(X X)an,(D(x )]da’ S
Thus, we obtain =0onS

D(X) = g1 [y PG (X)X = L gD (x)

(1 .44) expresses the solution @ of the general electrostatic problem
in (10) in terms of the solution G (X, X’) of the point source problem
in (11) and the boundary value (@) of ® on S. To evaluate (1.44), we
first solve (11) for Gp (X, X), then substitute G (X,X'), p(X'), @, into
(1.44). It is often simpler to solve Gp (X, X') from (11) than solving ®
directly from (10), because (11) has the simple b.c. of Gy (X,X") =0 on
S. Applications of (1.44) can be found in Chs. 2 and 3. The problem
below gives an application without the need to solve (11) for G(x,X"). |,

oK) gar (1.44)



Optional 1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)

Problem: A hollow cube (see figure) has six
square sides. There is no charge inside. Five sides :
are grounded. The sixth side, insulated from the ,)'----
others, 1s held at a constant potential ®,. Find the L - i %

potential at the center of the cube.

Solution: Let the center of the cube be at X = 0 and rewrite (1.44):
D(X) = 47g, IVMGD(X,X’)d X ——cﬁSCD(x )@%GD(X x)yda' (1.44)
If all 6 sides had the potential @, then D(X=0) =D, and by (1.44)
D =4 § Dy LG (0,x)da’ (12)

For the present problem, we have @ = @, on side 1 and @ =0 on
the other 5 sides. By (1.44), the potential at the center is
0 =__1 11 r
d(x =0) __Ejside Dy 8n’GD(O x")da' = f 64 <jSS(I)O 8n’GD(O x)da
= %(Do w Gp(0,X") is symmetric with ~Po by (12)
respect to all six sides. 20




1.1 Coulomb’s Law

Coulomb's law, discovered experimentally, 1s a fundamental law
governing all electrostatic phenomena. It states that the force on
point charge q due to point charge ¢, obeys (see figure)

1.F d L
Ocq, ql,an r2 q /?er

2. F 1salongr. Cllr/‘
F = 4% 5 € = (central force)
dnmegr ] {F 1s attractive 1f  and ¢, have opposite signs.

F 1s repulsive if q and ¢; have the same sign.

Furthermore, 1f there are multiple charges present, the total force
on ( 1s the vector sum of the two-body Coulomb forces between g
and each of its surrounding charges.

Question: What is the principle of linear superposition?

21



1.2 Electric Field

The electric field at point X due to one or more charges is defined
E(x) = lim (1.1)
as = |lim q° .
g—0

where ( 1s a test charge and F 1s the total Coulomb force on q. We let
g be infinistesimal so that 1t will not alter the field configuration.

Thus, E(X) due to a single point charge ¢ 1s

B D P | T !
E(X) N 472'50 r2 er T 472'80 |X_X1|3

rep =X—Xp =(X=X))ey +(y—ypey +(z2-7)e,

r=|x—x; = ()2 (Y~ yp)* +(2- )

For distributed charges, we have by linear

superposition: E(X) = 47;5 jvp
0

Question: Why write "re," as "X —X;"? 0 2



1.3 Gauss’s Law
Consider a point charge ( and a closed surface S and adopt the

following notations:
(da: infinitesimal surface area o

N : unit vector normal to da
4 and pointing outward

e,: unit vector along r
| 0: The angle between n and E

E-nda= g 7€ -Nnda= g 2cos«9da—idﬂ
47250r 472301’ - 47To

r’dQ
Note: dQ carries the sign of cos 6.

dQ >0, if cos@ >0 g inside S N g outside S, n
dQ <0, ifcos@<0 [dQ= 47[ JdQ=0 n@

n lKS ( /QS .'

o, q inside S {Gauss's law for

= ¢ E-ndazijdﬂ =1 %0 :
S
723 0, qoutsideS a single charge

} (1.9)

23




1.3 Gauss’s Law (continued)

By the principle of linear superposition, Gauss's law for a discrete
set of charges inside S is

_ 1
$;E-n da_%§qi (1.10)
and Gauss's law for a distribution of charge 1s

§E-n da:giojvp(x)d?’x (1.11)
Discussion: (1.11) is the integral form of Gauss's law. In the
next section, we will derive the differential form of Gauss's law.
Gauss's law 1s a powerful mathematical representation of Coulomb's
law (see example below). Furthermore, as will be shown in Ch. 6,
the two forms of Gauss's law are also applicable to time - dependent
cases where the original form of Coulomb's law (a static law),

=1 PX)XX) 43y
00 = g, L 0

no longer applies. >



1.3 Gauss’s Law (continued)
Shell theorems - an application of Gauss’s law:
Halliday, Resnick, and Walker, “Fundamentals of Physics”:

“The two shell theorems that we found so useful in our study of
gravitation hold equally well in electrostatics:

Theorem 1: A uniform spherical shell of charge behaves, for
external points, as if all its charge were concentrated at its center.
Theorem 2: A uniform spherical shell of charge exerts no force on a
charge particle placed inside the shell.”
Proof :

'Symmetry consideration] =

Q .
' =~ r>a |a:
Gauss' law] = 4 12 E, =1%’ > a: radius of shell
' 0, r<a |Q:total charge on shell

Ece,

([ Q
— Er = < 472'50r
0, r<a (Q producesno E) 2

5, F>a (asif Q were atr=0)




1.4 Differential Form of Gauss’s Law

1eorem:
N is a unit vector normal to the

A3y . surface element da and pointing
IVV Ad X = 455 A-nda, away from the volume v enclosed

| by surface S. S |
we obtain from § E-n da:giojvp(x)d& [(1.11)] ﬁ N
§E-nda=[ V-Ed'x=L1 jvp(x)d X
:jV(V-E—ﬁ)d3x:o (1.12)
=V-E= |differential form of Gauss's law | (1.13)

O
Question: If |, f (x)d>x = 0 for an arbitrary volume v, then

f (x) =0 everywhere. This is the basis for obtaining
(1.13) from (1.12). Does gﬁs A -da =0 for an arbitrary

closed surface S imply A = 0 everywhere?



1.5 Another Equation of Electrostatics
and the Scalar Potential
VI x=x]"
n
= %[(X XV +(y-y) +(z- Z’)z]zenx V operates on X.

= V' operates on X'
+a%[(x—x')2+(y—y')2+(2—z’)2]r2]ey V' [X—X'P=—V [x— x|
+ LI =X) +(y=y)? +(2-2) P,

n
n 2 "2 N2 2_1 '
=5[(X=X)"+(y-y)" +(z-2)"] n2(x—x)ex
Ny
FOIX) (Y=Y + (2= 7)1 2y - e,
Ny
I =X) +(y =y +(2-2)] 2z-2)e,

=n|x=X|"? (x=Xx") (1)
Ex-VIix—xl=XX .y 1 _ XX.y 1 _ _3XX
| | |X—X'| > |X—X'| |X_Xr|3 ’ |X_Xr|3 |X—X'|5 27



1.5 Another Equation of Electrostatics and the Scalar Potential (continued)

_ 1 (pX)XX) g3 1 g PX) 43y
E(X)_47z50-' X—xP d°x A V) JIx— X'|d X
_ 1 __ X=X
==-VO(X), V k=x X—XTP
where @ (X) = jp (X) 43y [ scalar potential | (1.17)
47y X=X '
— VxE =0 (1.14)

Question: E=-V® = VxE = 0. Is the reverse also true?

Below we show that g (X) can be interpreted as the potential
energy of charge ( at position X, and V x E = 0 can be derived by
an alternative method using Stokes's theorem:

. A-dL=[(VxA)-n da MIOOPC
d/: a line element on a closed loop C da S (open

S: arbitrary open surface bounded by loop C surface
N: unit vector normal to surface element da in bounded
the direction given by the right-hand rule by loop CZS)




1.7 Poisson and Laplace Equations

V.E=L 1.13
Rewrite < &0 (1.13)
E=-VOD (1.16)
Sub. (1.13) into (1.16), we obtain the Poisson equation
29 - _ P
VO = ~& (1.28)

In a charge-free region, (1.28) reduces to the Laplace eugation

V2D =0 (1.29)

29



Summary of Secs. 1-5 and 7:

_qq E—_ G o
F drsyr Cr A 4rggr? " «—re, =X—X
E=limF| = G (X)) r=X=X|
e 47[50|X_X1|3 < principle of
r_ - ,O(X’)(X X') 43y linear superposition
A X 0 —V|x-x]"
,O(X) ' _ r (n—2 '
0 X 47?50 I|X X’dX n|X X'] '(X X')
— D= J ,O(X r
0 = _V(D 472'50 |X X’
\ — derived in Sec.1.3 using E = Y°r 5
Vx VTt = 47gyr
v §sE-nda =2 [, p(x)d
S N <« divergence thm.
V20 = - p/& .




Questions on Secs. 1-5 and 7:

1. Can one calculate E by using V - E = p/g, alone?
2. Can one calculate ® (hence E) by using V20 = —p /g, ? How?

3. Can one calculate @ (hence E) by using @ (x) = 47;5 ﬁ ();’ ,)| d>x'?
03 [X—
How?

4. Why break one equation, d(X) = 47;50 ﬁ(_); % d>x’, into two
equations: VX E=0and V- E=p/g?

5. Coulomb’s law gives VXE=0and V - E = p/g, . Can it give any
other independent relation for E?

Helmholtz’s Theorem: “A vector 1s uniquely specified by giving its
divergence and its curl within a region and its normal component over

the boundary.” (Arfken, “Math. Meth. for Physicists™, 3rd Ed. p.78)

31



6. Is the integral form of Gauss’s law mathematically equivalent
to the differential form of Gauss’s law?

Answer: Yes. To prove the mathematical equivalence, we need to
show that the integral form of Gauss’s law is both a sufficient and
necessary condition for the differential form of Gauss’s law. This
can be demonstrated as follows:

qSE-nda:;Oij(x)d3x (1.11)

T U <« divergence thm.
(V-E-p/ey)d 3x =0 (for arbitrary volume V)

md
V-E=p/g (1.13)
Downward manipulation () shows that (1.11) 1s a sufficient
condition for (1.13). Upward manipulation (1) shows that (1.11) is a

necessary condition for (1.13). Hence, the two forms of Gauss’s law

are mathematically equivalent. “



7. Is Gauss’s law mathematically equivalent to Coulomb’s law?

Answer: No, because Coulomb’s law 1s a sufficient but not a
necessary condition for Gauss’s law. That 1s, we may derive Gauss’s
law from Coulomb’s law, but not the reverse.

While Coulomb’s law completely specifies the E field, we need
more information to completely specify the E field from Gauss’s law.
This 1s clear when we write Gauss’s law 1n its differential form,
V - E = p/g,. By Helmholtz’s Theorem, we also need the curl of E
to completely specify E. In electrostatics, this 1s given by V x E = 0.
In general, it is given by Faraday’s law, V x E = -0B/ 0 t (Ch. 5).

As will be shown 1n later chapters, while Coulomb’s law [in the
form of (1.5) or (1.17)] deals only with the static E field, Gauss’s
law covers a much broader class of fields than Coulomb’s law, such
as the E field of an electromagnetic wave.

33



8. Is Gauss’s law physically equivalent to Coulomb’s law?

Answer: In the special case of electrostatics, the field
surrounding a point charge i1s symmetric, implying E=EZe.
Choosing a spherical surface of radius r centered at the point charge,
we may obtain Coulomb’s law from Gauss’s law,

$E-nda = glojvp(x)d 3% (Gauss's law)

= $E-da= E 4712 =q/g,
.
drreyr

= E, = 5 (Coulomb's law)

In 1.3, we have also derived Gauss’s law from Coulomb’s law;
hence, the two laws are physically equivalent in electrostatics.
However, as discussed in question 7, the two laws are not
mathematically equivalent, nor are they physically equivalent in

electrodynamics.
34



1.6 Surface Distributions of Charges and Dipoles and
Discontinuities in the Electric Field and Potential

Surface Layer of Charge:

The surface charge density is defined as charge per unit area

on the surface: o(X) = lim ﬁ—g
Aa—0

Note: o and p have different dimensions.

Apply Gauss's law, $E-nda = 5&0’ to an

infinitesimally thin pillbox, we obtain

Aq

E1 - N, E") ‘N, A —_ v

(Br-ni+By-mp)ha= Ei pillbox \°
n=-n, N (thickness — 0)

:(Ez—El)-nzzg—OA—gzgo (1.22)

The tangential component of E can be shown to be continuous
across the layer by applying CJS E- d/ =0 to the loop drawn in

dashed lines 1n the figure. »



1.6 Surface Distributions of Charges and Dipoles... (continued)

Example: (see figure) o (uniform distribution of
[ Q F<a Q on a layer of radius a)
P = - 4reoa’ -~ = Atr=a ® is continuous.
Q 4\ ~ 7 |E, is discontinuous.
\ A7yl ? F>a / \ rr
. _
Questions::

1. Fields (E and ®) of a point charge diverge as one moves
infinistesimally close to the charge. Explain why fields of the
surface charge do not diverge as one moves infinistesimally close
to the surface.

Answer: A point charge 1s a finite amount of charge concentrated
at a point. However, for the surface charge, one must integrate o over
a finite surface area to obtain a finite amount of charge. Hence, there
1s no finite amount charge at a single point on the layer.

2. Why is @ continuous across the layer? 36



1.11 Electrostatic Potential Energy and Energy
Density; Capacitance
Electric Field Energy: Let ®(X) be the field due to the presence

of p. The work done to add Jp i1s

UsingV-wa=a-Vy +yV-a

SW = [ Sp(X)D(x)d>x we obtain

Sp =&,V -0E |— DV .SE =V - (DSE)—SE -V
=V .(®SE)+E-SE

=¢,[ DV -SE(x)d’ X

=5y [V (PSE)d "X+ £y E-SEd*Xx = £, [ E- SEd’x

By conservation
of energy, this =§ PSE-da=0,as — oo For this 1ntegral to vanish,
must be the total T1 2 the volume of integration
re ! must be infinite.
E-field energy.
= W =g, d*x|JFE-dE = 2 [|EP dx —infinite volume | ~ (1.54)
Ef =E-E=-E-V®=—V.(QPE)+ DV -E=-V - (DE) + 2
—( as r—oo
3 €0 i \ 3
= W =1 p()@x)d°x-2 § DE-da =L [ p()@(x)d’x  (1.53),,




optional 1.5 Another Equation of Electrostatics and the Scalar Potential (continued)

Work done by bringing charge ¢ from B

position A to position B along any path:
W =—[ F-d¢

=—q[,E-d¢

_ 0D 0P 0D, . _
VO =5 e, +oy &yt o & d/ =dxe, +dye, +dze}

B
=q[, VO-d/ oD 4y , OD 4, OD

=q[,dD
=Ua — d® is an infinitesimal change of ® due to an
=q(Pg—®D,)| Iinfinitesimal displacement ds.

Thus, W depends only on the values of ®@ at A and B, and it 1s
independent of the charge's path from A to B. This justifies the
concept of potential energy, which implies that the total work done
on ( in a round trip along any closed path C 1s 0, 1.e.

$.E-dL=0 or, by Stokes's theorem, [ (VxE)-nda=0 (1.21)

Since S is an arbitrary surface, we obtain VxE = 0. 3



1.11 Electrostatic Potential Energy... (continued)

An alternative derivation of (1.53) and (1.54): Consider a state in
which a charge density p (X) has produced an electrostatic potential
® (X),1.e.  p(X) — D (X). |

Then, by the principle of linear superposition, ..
we have gp (X) = ¢ O (X),

[ ATy
where ¢1s a constant.

To find the electric field energy, we consider the energy needed to
build up ® (X) from &= 0 (no charge and no potential) to £ =1 (the
present state). At any stage in the build-up process, the relative
charge density (hence the relative potential) remains the same;
namely, the intermediate state 1s characterized by the charge density
£o(X) and potential & @(X).

In such a build-up process, when the potential 1s e®(X), the work
done by adding an incremental charge p(X)de is

dW = [, d°xed(x)p(X)d e 39




1.11 Electrostatic Potential Energy... (continued)
Hence, the total work done from ¢ =0to £ =1 15

W =2 dW = [, d*xp()D(x)], ede

d3x p(x) ®(x) [For this integral to vanish, the | (1.53)
——

> volume of integration must be oo.
—€0V o \L
Green's 1st identity

= L gy [, ®V?Dd> K= 1 5[, VD - VDA x - q;sq)(a da]
A

:ngIv‘E‘ d3x — integration over 1|1 (1.54)
infinite volume ri|= r2

Questions: 1. If we bring g and — toward each other, the work

:ZIV

~I2

done is negative. Why is then W = %OME\z d>x always positive?
2. Give one example to show that the E-field carries energy.
Electric Field Energy Density : (1.54) = wg =%5o \E\2 (1.55)

2
Note: we =529 [E[" =56 (SE)(ZEj) [# 542 (E; €]
J J J

40



1.11 Electrostatic Potential Energy... (continued)

Force on the Surface of a Conductor: Consider  conductor
a conductor with surface charge on it. At any point
on the surface, the total field (E) outside must be | E
normal to the surface and the total field inside must
be 0. Applying Gauss’s law, we find £=0/¢,, where o 1s the local
surface charge density at the observation point (upper figure). But the
local o by itself will produce equal and opposite fields on
both sides of o (call it self field E; ) and by Gauss’s law Elself \Eself

E.. s (outside) + E s (inside) = 5 =S Egp = %, Eext /Eot
which is half of the total E outside. Since the total E inside 1s 0, all the
external surface charge away from the local o must have produced an
external field with E_=F, s =0/2¢,, which cancels E
thus doubles £, (outside). The local o can only experience a force
due to the field (£,,;) produced by the external surface charge. Thus,

(inside) and

force on the surface/unit area = o Egy; = ﬂ (see pp. 42-43)



1.11 Electrostatic Potential Energy... (continued)
Capacitance' Refer to the figure Vi, Q, Vo, Q

( n
e fogen O
J:
L V3, Q3 V4, Q
vefee = Je-fo O 0
: i Invert the : i
_ equations _
V= a I:)anj . Qn = .aCnJVJ A system of
: = : = n conductors
by principle of C,;: capacitance
linear superposition Cij (I # )): coefficient of induction

Rj and C;; depend on the geometrical shape and position of the
conductors. Potential energy of the i-th conductor is [using (1.53)

Wi =3[ A0®i0d X =3QV | @100 =Vis [ (0 x=Q;_

Potential energy | _ 1 & ~ PR
= [Of the system }_ 2 El QVi=52 X CyViV;

J (1.62)
=1 j=1 42



Homework of Chap. 1

Problems: 3, 4, 5, 6, &,
9,12, 14, 16, 17

Quiz: Oct. 05, 2010
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Appendix A: Unit Systems and Dimensions
Unit Systems:

Two systems of electromagnetic units are in common use today:
the SI and Gaussian systems. Regardless of one’s personal

preference, 1t 1s important to be familiar with both systems and, in
particular, the conversion from one system to the other. Conversion
formulae can be divided into two categories: “symbol/equation
conversion [such as E and E = g/(4ngyr?)]” and “unit conversion
(such as coulomb)”.

Conversion formulae for symbols and equations are listed in
Table 3 on p. 782 of Jackson and conversion formulae for units in
Table 4 on p. 783 (both tables attached on next page). These two
tables are all we need to convert between SI and Gaussian systems.

Correct use of the tables requires practices. y



Table 3 Conversion Table for Symbols and Formulas

Appendix A: Unit Systems and Dimensions (continued)

lable 4 Conversion Table for Given Amounts of a Physical Quantity

The symbols for mass, length, time, force, and other not specifically electromagnetic
quantities are unchanged. To convert any equation in SI variables to the corresponding
equation in Gaussian quantities, on both sides of the equation replace the relevant
symbols listed below under “SI” by the corresponding ““Gaussian” symbols listed on
the left. The reverse transformation is also allowed. Residual powers of uqe, should be
eliminated in favor of the speed of light (c’uo€, = 1). Since the length and time symbols
are unchanged, quantities that differ dimensionally from one another only by powers of
length and/or time are grouped together where possible.

The table is arranged so that a given amount of some physical quantity, expressed as so
many SI or Gaussian units of that quantity, can be expressed as an equivalent number
of units in the other system. Thus the entries in each row stand for the same amount,
expressed in different units. All factors of 3 (apart from exponents) should, for accurate
work, be replaced by (2.997 924 58), arising from the numerical value of the velocity of
light. For example, in the row for displacement (D), the entry (127 X 10°) is actually
(2.997 924 58 X 47 X 10°) and ““9” is actually 107"° ¢ = 8.987 55 . ... Where a name
for a unit has been agreed on or is in common usage, that name is given. Otherwise,
one merely reads so many Gaussian units, or SI units.

Quantity Gaussian SI Physical Quantity  Symbol SI Gaussian
Velocity of light c (o)™ "?  Length l 1 meter (m) 1Ui centim?t;.rs (cm)
. : Mass m 1 kilogram (kg) 10° grams (g
Electric field (potential, voltage) E(®, V)/Vire, E(®, V) Time : 1 second (s) ) second (5)
Displacement Ve/dm D D Frequency v 1 hertz (Hz) 1 hertz (Hz)
Charge density (charge, current density, Vire, p(q,d, I, P) p(g,¥,1,p) Force F 1newton (N) 10° dynes
current, polarization) Work w 1 joule (J) 107 ergs
.. . Energy U
Magnetic induction VuoldT B B Power P 1 watt (W) 107 ergs s~
Magnetic field H/V 47y, H Charge q 1 coulomb (C) 3x10° stati::oulombs3
ot Ny Charge density p 1Cm™3 3 x10° statcoul cm™
Vagne(ization i M M Current I 1 ampere (A) 3 x 10° statamperes
Conductivity 4meyo o Current density J 1Am™ 3% 10°  statamp cm2
Dielectric constant €o€ € Electric field E lvoltm™ (Vm™) 3x10™* statvoltcm™'
. - Potential &,V 1volt (V) = statvolt
Magnetic permeability Hop s Polarization P 1Cm™ 3 % 10° dipole moment cm 3
Resistance (impedance) R(Z)/4 e, R(Z) Displacement D 1Cm™ 127 X 10° statvolt cm™ .
Inductance Lldme, L » B . _l(statcoul cm™)
. Conductivity o 1 mho m 9 x 10 s
Capacitance 4me,C c Resistance R 1 ohm (€) Fx10°"  sem™
Capacitance c 1 farad (F) 9x10" cm
c = 2.997 924 58 % 10% m/s Magnetic flux ¢, F 1 weber (Wb) 103 gauss cm’ or maxwells
12 Magnetic induction B 1 tesla (T) 10 gauss (G)
% =88541878... X 107 F/m Magnetic field H 1Am™ 47 x 107 oersted (Oe)
Mo = 1256637 0... X 107° H/m Magnetization M 1Am™ 1073 magnetic moment cm >
Inductance* L 1 henry (H) §x 107"

ﬁ= 3767303 ... Q
€

Jackson, p. 782, Table 3

Jackson, p. 783, Table 4



Appendix A: Unit Systems and Dimensions (continued)

Conversion of symbols and equations:
Consider, for example, the conversion of the SI equation

S Al
47zgor2 ( )

into the Gaussian system.
This involves the conversion of symbols and equations. So we use

Table 3. First, we note from Table 3 (top) that mechanical symbols

(e.g. time, length, mass, force, energy, and frequency) are unchanged

in the conversion. Thus, we only need to deal with electromagnetic
symbols on both sides of (A.1).

From Table 3, we find E> — W and q°' —> \/47z50q (A.2)

Sub. E®/ J47ey and «/477qu , respectively, for E and ¢ 1n (A.1),
we obtain the corresponding equation in the Gaussian system:

_ J47E qC qC (A3)

47z5 47zgor2 r2

ﬂ

47



Appendix A: Unit Systems and Dimensions (continued)

Conversion of units and evaluation of physical quantities:

Consider again the SI equation: E = g 5 (A.1)
472'50r

Given I =0.01 m, q =1 statcoulomb, we may evaluate E 1n 3 steps:
Step 1: Express r, ¢, and g, in SI units. From Table 3 (bottom)
and Table 4, we find

(50 =8.854x107"% Farad/m = —1 5 Farad/m
. 367rx10
1 r=0.01 m (same as given) (A.4)
g(=1 statcoulomb) = ; 1109 coulomb
g X

Step 2: Sub. the numbers (but not the units) from (A.4) into (A.1).
1

. 9
This gives E= 1 5 = 10 > =3x10"
Ayl 4rx—~5x(0.01)
36710

Step 3: Look up Table 4 for the SI unit of E. As shown in Table 4,
the ST unit of E is V/m. Thus, E =3x10* V/im  (A.5)



Appendix A: Unit Systems and Dimensions (continued)

A.1) 1n the Gaussian system :

£ ) L tL

E = r% (A.3)

and evaluate E for the same r (=0.01 m) and g ( =1 statcoulomb).
Step 1: Express I and  in Gaussian units. From Table 4, we find
r(=0.01m)=1cm | (A.6)
g =1 statcoulomb (same as given)

Step 2: Sub. the numbers (but not the units) from (A.6) into (A.3).

is o 4 _1_
This gives E = WA

/-\

As another exercise, we write

Step 3: Look up Table 4 for the Gaussian unit of E. We find the
unit to be statvolt/cm. Thus, E =1 statvolt/cm (A.7)

Table 4 shows 1 statvolt/cm = 3x10% V/m. Hence, the 2 results

_ 4
in (A.5) and (A.7): E =3x107 V/im are 1dentical as expected.
E =1 statvolt/cm 49



Appendix A: Unit Systems and Dimensions (continued)

Units and Dimensions::

In the Gaussian system, the basic units are length (£), mass (m), and
time (t). In the SI system, they are the above plus the current (1).[See
Table 1 (top) on p. 779 of Jackson.] All other units are derived units.

If a physical quantity is expressed in term of the basic units, we
have the dimension of this quantity.

A mechanical quantity has the same d1mens10n in both systems.
For example the acceleration a (= d?x/ dt? ) has the dlmensmn of

/t™%.From f = ma, we obtain the dimension of force :m/t >, which
in turn gives the dimension of work (f - /) or energy: m/ 2t 2

An electromagnetic quantity has different dimensions in dlfferent
systems. For example, the charge g has the SI dimension of It. From
the Gaussian equation f = ¢,q, / r* and the dimensions of force and
length, we find the Gaussian dimension of g to be m'2¢32t7! Since
J¢ has the dimension of energy (m/ 2 ), the potential ¢ has the SI

—3|—1 1/251/21:_1. 50

dimension of m¢=t and the Gaussian dimension of m



Appendix A: Unit Systems and Dimensions (continued)
he

same unit system and all terms must have the same dimension. For
example, by Stokes's theorem, we have

$.E-de=[ (VxE)-nda (A.8)

where both terms have the dimension of /- (the dimension of E).

o]
o=

All physical quantities in an equation must be expressed 1

In the definition of the delta function:
jjf S(x—a)dx =1, (A.9)
the RHS 1s dimensionless. Thus, 1f X has the dimension of /, 6(X—a)

must have the dimension of #~'. However, "0" is not to be regarded
as a dimensionless quantity. This 1s clear 1f we write (A.8) as

$.E-dL—[ (VXE)-nda=0.

Well known equations need not be checked for dimensional
consistency. However, for newly derived equations, a dimensional
check can be a convenient way to find mistakes. 51



optional 1.6 Surface Distributions of Charges and Dipoles... (continued)

Dipole Layer : “o(X) : n _|§:§:|
D(X)= lim o(x)d(x) ~°X) N points
d(x)—0 : from —o
X to +o

Assume that, at any given point, the two layers have equal and
opposite surface charge densities (see figure).

- 1 p(x ) U(X’) r G(X’)
(D(X)_47zgo | X — X| 47280 ISIX—X’lda IS'|X—(X'—”d)|

da'=da”
L LN da’
47, I X=X"| |x—(X"—nd)|

da”]

52



optional 1.6 Surface Distributions of Charges and Dipoles... (continued)

Using the binomial expansion: What is the Taylor expansion?
1, n(n=1) n-
X+ y)" =x"+nx"y + (2' Jyn 2yE e,

we obtain

) ~1/2
| | | a a-
b+al (p2, .2 1/2:b[1+bz+2bz]
| | (b +a +2a-b)

1[ a’ a-b ] 1 a-b
- — 1— _|_... ~ -

b~ 2p> b2 y bbb’
a/b—0
1 | X—X' . ,
' nd ~ ——dn- — [valid for d <[ x—-X'[]
| X—=(X'=n )ITIX—XI X —X']

b—ox—-X
a— nd 53




optlonal 1.6 Surface Distributions of Charges and Dipoles... (continued)

1 1 X=X
Sub. ; ~ ——dan- 3
[ X—(X'=nd)| |x-=X| | X—X'|
. 1 N 1 , .
into O(X) = a(x") - ; da’, we obtain
47z [ X=X"| [ X=(X"-nd)|
_ 1 r 1
R
x=x ] - ,
CD(x)_—jSa(x)d(x)n ;da’ = JD(X)n-V —da
U x-x P s x|
D(x) \
: : (1.24)
cand d appear as a product here, so it’s meaningful
to define the product as the dipole layer strength.
orcp(x)zLj D(x)n. X=X 1 _da’ = - 1 [, D(X)dQ
472'80 |X X' ||x X' | 4re, (1.26)

{dQ >0, if cosd >0 —cosé 1/;2 «|{See figure two

dQ <0, ifcos@ <0 ° 30 - |pages back. |s4




optlonal 1.6 Surface Distributions of Charges and Dipoles... (continued)

1 £ =~ N 0 4 o~ N
— D(X)dL2 .20
| 47z, Jg P(X) (1.20)
Rewrite : D(X) = < 1
[<D(X)n —da’ (1.24)
47e | X —X'|

Note: (1) The direction of n and sign of dQ are shown below with
respect to the polarity of the dipole layer:

o . . See derivation
direction r(])f n: s1gn of dQ: [ f (1. 26) }
S 3
N X, ‘Y \ dQA<0
— dQ>0

(2) The RHS of (1.24) is an explicit function of X (the position
of observation). The RHS of (1.26) is an implicit function
of X, because the total solid angle depends on X.

Question: Under what condition will (1.24) and (1.26) be invalid? >



optional 1.6 Surface Distributions of Charges and Dipoles... (continued)

Special case 1: A flat-disc shaped double layer with D = const.

__ 1 / d
CD——%jSD(X)dQ (1.26) 5 o _ D
> ol-D _(D,_D "2 =2z,
T 2g, 2607 & —0 0
electric field between layers: E| = Ld
= &0
® is discontinuous across the dipole layer. D
Special case 2: Point dipole % " 99
p = lim [,,nDda’ g
— Aa—0 ,1%1, —GG Aa,% d
point dipole oAa=Q . . .
dipole layer ] dipole layer point dipole
= lim |,,n(cd)da’=nocdAa=nqd
Aa—0 IAa (o€) |
_ 1 An.v' 1 da’— 1 PX=X)
:>CD(X)T 47, Aléfo [,g DX)N-V XX da’ = A5y o (1.25)
"
(1.24) = X=X 56

x=x7P



