
CHAPTER 2: Boundary-Value Problems 
in Electrostatics: I

Applications of Green’s theorem
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2.6 Green Function for the Sphere; General 
Solution for the Potential

s 2
     The general electrostatic problem (upper figure):
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Use (1 44) to find due to a point charge at:Exampl qe 1  x b

2.6 Green Function for the Sphere… (continued)
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      Use (1.44) to find  due to a point charge  at  
                        in infinite space.
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2     : ( ) 0 with b.c. ( ) ( , , ) 2 r a aExample        x
2.6 Green Function for the Sphere… (continued)

                        Find ( ) in the region  (see left figure).
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2.6 Green Function for the Sphere… (continued)
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2.1 Method of Images

     The method of images is not a general method. It works for some
problems with a simple geometry Consider a point charge locatedqproblems with a simple geometry. Consider a point charge  located 
in front of an infinite and grounded plane conductor (see figure)

q
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region of interest is 0 and  is governed by the Poisson equation:x  
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2.1 Method of Images (continued)
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     Since ( ) satisfies both the Poisson equation and the boundary
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theorem, it is the only solution. Note that the Poisson equation (1) and 
the solution ( ) are irrelevant outside the region of interest. x



2.2 Point Charge in the Presence of a Grounded 
Conducting Sphere nConducting Sphere

     Refer to the conducting sphere of radius 
shown in the figure. Assume a point charge  
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4 4 This is eq i alent to (2 1)q aq   

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)
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: The solution for ( ) can beSurface charge density on the sphere  x

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

: The solution for ( ) can be
expressed in terms of scalars as 
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:Total charge on the sphere

2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

n
x

     : 
     The total surface charge can be obtained
by integrating over the spherical surface.

Total charge on the sphere
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argument: In the region , the electr a
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2.3 Point Charge in the Presence of a Charged, 
Insulated Conducting Sphere (with Total Charge Q)

   
Insulated, Conducting Sphere (with Total Charge Q)

     If the sphere is insulated with total charge 
on its surface, we may obtain in two steps.

Q
on its surface, we may obtain  in two steps.

     : Ground the sphere   
same problem as in Sec. 2.2 
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     : Disconnect the ground wire.
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Hence, the total is

2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (continued)
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sign.




                 sign.

      If there is an excess of electrons on the surface, why 
don't they leave the surface due to mutual repulsion?

:Question


                     don t they leave the surface due to mutual repulsion?
       (See p. 61 for a discussion on the work function of a metal.) 
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2.7 Conducting Spheres with Hemisphere…
(to be discussed in Sec. 3.3)(to be d scussed Sec. 3.3)

2.8 Orthogonal Functions and Expansions
Definition of Orthogonal Functions :     

     Consider a set of real or complex functions ( ) ( 1,2, ) 
which are square integrable on the interval

nU n
a b





 

Definition of Orthogonal Functions :


which are square integrable on the interval .
in
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bU U daU
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m n

  
   
 0,  

orthonormal, if ( ) ( )  
1, n m mn

m nbU U da m n
    

    


G i l l d th l t fGeometrical analogue: ex, ey, and ez are an orthonormal set of
unit vectors, i.e. emen = mn. By comparison, the dot product emen
is similar to the inner product But the algebraic set U () can beis similar to the inner product . But the algebraic set Un() can be
infinite in number. 14



Linearly Independent Functions :

2.8 Orthogonal Functions and Expansions (continued)

    
    The set of ( ) 's are said to be linearly independent if the
only solution of ( ) 0 (for every in the range of

nU
a U


  

Linearly Independent Functions : 

only solution of ( ) 0 (for every  in the range of
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Gram-Schmidt Orthogonalization Procedure:
2.8 Orthogonal Functions and Expansions (continued)

Orthogonality is a sufficient, but not necessary, condition for
linear independence, i.e. linearly independent functions do not
have to be orthogonal. However, they can be reconstructed into an
orthogonal set by the Gram-Schmidt orthogonalization procedure.
     Consider two vectors,  and ( ), as a simple example.
These two vectors are not orthogonal, because ( ) 0,  but

x x y

x x y


  

e e e
e e e

are linearly independent because ( ) 0 0.
     We may form two

x x ya b a b     e e e
 new vectors as linear combinations of the old 

1 2 1 2

1 2 2

vectors,  and + + , and demand 0.
           0 1+ 0 1

x x y x

y


 

   

        

e e e e e e e e
e e e e1 2 2

1 2     The new set, ( ) and ( ), are thus orthogonal (as wel
y

x y e e e e l 
as linearly independent).
     The same procedure can be applied to algebraic functions.
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     Completeness of a Set of Functions :
2.8 Orthogonal Functions and Expansions (continued)

     Expand an arbitrary, square integrable function ( ) in terms of
a finite number ( ) of functions in the orthonormal set ( ), n

f
N U




                  ( ) (n nf a U 
1

)                                               (2.30)

d d fi th ( )

N

n
M





2

and define the mean square error ( ) as

( ) ( ) .
N

N
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M

bM f a U d   
If there exists a finite number N0 such that for N > N0 the mean

M b d ll th bit il ll

1
           ( ) ( ) .N n n

n
M f a U da   




square error MN can be made smaller than any arbitrarily small
positive quantity by proper choice of an’s, then the set Un( ) is
said to be complete and the series representationsaid to be complete and the series representation

1
                   ( ) ( )                                               (2.33)n na U f 


 

1
is said to converge in the mean to (  ). 

n
f 
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2.8 Orthogonal Functions and Expansions (continued)

R it (2 33) ( ) ( ) (2 33)f U 



1
     Rewrite (2.33):  ( ) ( )                                  (2.33)

     Using the orthonormal property of ( ) 's, we get 

n n
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f a U

U

 





*                ( ) ( )                                n n
b
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Ch i (2 32) t d b tit t (2 32) i t (2 33)  

*

          Change  in (2.32) to  and substitute (2.32) into (2.33)

             ( ) ( ) ( ) ( )                         (2.34)n n
b
af U U f d

 

    





      
1

*

( ) ( ) ( ) ( ) ( )

       ( ) is arbitrary

n n
n

n

af f

f U

    




  





( ) ( ) ( )               (2.35)nU    

   n

1

                                 (completeness or closure relation)

n
n

      Jackson, p. 68: "All orthonormal sets of functions normally
      occurring in mathematical physics have been proved to be

l " (Thi ill b ill d i S 2 9 )      complete." (This statement will be illustrated in Sec. 2.9.)
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      example of complete set of orthogonal functionsFourier Series :
2.8 Orthogonal Functions and Expansions (continued)

2 2

p p g
     ( )  :

( ) nik x

a aExponential representation of  f x on the interval x

f x a e



  



( )   f x

2

( )
          

2 1; ( )

n

n

n
n

ik x
n n a

a

a a

f x a e

nk a f x e dx






  
 

                                     (4)
2
a 2  a

x

2
; ( )n n aa ak a f x e dx


     In (4), ( ) is in general a complex function and, even when ( )
is real is in general a complex constant

f x f x
is real,  is in general a complex constant. 
     In the case ( ) is , we have the 

na
f x real *

*
realty condition:  

( ) ( ) ( )
n na a

P f f l f f


* *

     : ( ) ( ) ( )

          n n ni i
n n n

k ik kx x x
Proof f x real f x f x

a e a e a e
  


  

  

  

n n

*           (since  is linearly independent)n

n n n
ik x

n na ea
  

 

      1. Why t: "  Questions n   o " instead of " 0 to " ?
                       2. Why 2  instead of  ?n n

n
k n a k n a 
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2.8 Orthogonal Functions and Expansions (continued)

2 2     ( )  :a aSinusoidal representation of  f x on the interval x  

 0
1

2 2

     ( ) n n nik ik ik
n n n

n n

x x xf x a e a a e a e
  


 
    

    0
1

   cos cos sin sinn n n n n n n n
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a a k x a k x i a k x a k x


 



    


   0

1
   cos sinn n n n n n
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a a a k x i a a k


 


    

1

0 2
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A








Same as (2.36) and (2.37) 

 0
1

2( ) cos sin ,                   (5)
2

where
n n n n n

n
n

a
Af x A k x B k x k 


    

( 0 )

( ) ( )

 2 2
2 2

1 2( ) ( ) cosik ikn n
n n n na a

a ax xA a a f x e e dx f x k xdxa a


       


 ( 0 )n  

   2

2cos

2( )

n
ik ikn n

n n n a
a x x

k x

iB i a a f x e e dxa a


     



2 ( )sin na
a

f x k xdx




 

( 1 )n  
   

2
2 sin

( )n n n a

i kn

fa a
x

  2
( ) na f
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2.8 Orthogonal Functions and Expansions (continued)

Di i : It is often more con enient to e press a ph sicalDiscussion: It is often more convenient to express a physical
quantity (a real number) in the exponential representation than in
th i id l t ti b th l ffi i t ( )the sinusoidal representation, because the complex coefficient (an)
of an exponential term carries twice the information of the real

ffi i t (A B ) f i id l t F l ifcoefficient (An or Bn) of a sinusoidal term. For example, if
x(t) = Re[aeiωt]

i h di l f i l h i ill h lis the displacement of a simple harmonic oscillator, the complex a
contains both the magnitude and phase of the displacement. In the
sinusoidal representation, the same quantity will be written

x(t) = Acos(ωt) + Bsin(ωt).
Exponential terms are also easier to manipulate (such as

multiplication and differentiation). This point will be further
discussed in Ch. 7.

21



     Fourier Transform :
2.8 Orthogonal Functions and Expansions (continued)

     If the interval becomes infinite ( ), we obtain the Fourier 
transform (see Jackson p.68). 

1

a

 1( ) ( )                                               (2.44
2      


  ikxf x A k e dk )


 1( ) ( )                                             (2.45)

2
 



 


 ikxA k f x e dx

( )

     Change  to  in (2.45) and sub. (2.45) into (2.44)
1( ) ( )  



    ik x x

x x

f x dx f x e dk

( )
2

         ( ) ( )  


 

 

 


x x

f x dx f x e dk

( )1 k  ( )1 ( )   [completeness relation]     (2.47)
2

Does ( ) contain any more or any less information:







    ik x xe dk x x

A kQuestion 1  Does ( ) contain any more or any less information 
                        than ( )?
     : A kQuestio

f
n

x
 1
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2.8 Orthogonal Functions and Expansions (continued)

Does in ( ) have the same dimension nik xQue a f x a estion 2 :

1
2

Does  in ( )  have the same dimension

                         as ( ) in ( ) ( ) ?





 

n n
n

ikx

     Que a f x a e

A k f x A k e d

sti  on 2 : 

k
2

                         [assuming   is a dimensional quantity.]

Rewri


x

( )1te (2 47): ( )   ik x xe dk x x     Rewri ( )te (2.47): ( ) 
2

     Interchange  and   


    e dk x x

x k
( )1     ( ),   [orthogonality condition]    (2.46)

2






    i k k xe dx k k

     Let  and sub. it into (2.46)
1 ( )

 

  ixy

y k k

e dx y     ( )
2

   


   e dx y

  Since ( ) ( ), we may write more generally,
1
  y y

1         ( )                                                              (6)
2     







  ixye dx y
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There are two useful theorems concerning the Fourier integral:
2.8 Orthogonal Functions and Expansions (continued)

2 2

    There are two useful theorems concerning the Fourier integral:
    (1) Parseval's theorem :

The Parseval's theorem states ( ) ( ) (7)  

  
f x dx A k dkThe Parseval s theorem states   ( ) ( )     (7)

          :
       f x dx A k dk

Proof 1( ) ( ) (2 44)   ikxf x A k e dk
    Rewrite the Fo

( ) ( )    (2.44)
2urier transform:
1( ) ( ) (2 45)










 




 ikx

f x A k e dk

A k f x e dx

2 *

( ) ( )   (2.45)
2

   ( ) ( ) ( )  
 

 
 

 


  

A k f x e dx

f x dx f x f x dx

*

( ) ( ) ( )

1 1        ( ) ( )    
2 2

 


 

 
 

            

 

 ikx ik x

f f f

dx A k e dk A k e dk
2 2

        

       

 dk 2* ( )1( ) ( ) ( )
2




  
       i k k xA k dk A k dxe A k dk

( )

( ) ( ) ( )
2
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2.8 Orthogonal Functions and Expansions (continued)

(2) Convolution theorem :     (2) Convolution theorem :
The convolution theorem states

1 [ ( ) ( ) ] ( ) ( ) (8)    
  ikx

     
f x f d e dx A k A k1 2 1 2

1

1             [ ( ) ( ) ] ( ) ( )          (8)2
          This is called the convolution of ( ) and 

       
f x f d e dx A k A k

f x f2( )x1 2
1where the factor  follows the convention in (2.44) and (2.45).2

1 1


k
2 1

Let  ( )

1 1   : LHS of (8) ( ) ( )
2 2

  

  
 

 
 

   

  
ikx

x dx d

Proof f d f x e dx

2 1

( )
1 1                                ( )
2 2

  

 
 

 f d f ( )( )     
   ike d

2 1
1 1                                ( ) ( )
2 2

    
 

  
   ik ikf d f e d

1 2

2 2 
                                ( ) ( )

 
 A k A k
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2.9 Separation of Variables, Laplace Equation in 
Rectangular CoordinatesRectangular Coordinates

2 2 2
2

2 2 2
Laplace equation in     0           (2.48)C t i di t

               2 2 2 ( )Cartesian coordinates

     Let ( , , )= ( ) ( ) ( )                                                (2.49)
x y z

x y z X x Y y Z z

    


2 2

2 2
1 1 1d X d Y
X Ydx dy

  
2

2 0                                                 (2.50)d Z
Z dz


dx dy

     Since this equation holds for arbitrary values of , , and , each 
of the three terms must be separately constant.

dz
x y z

2
2

2

of the three terms must be separately constant.

;  d X dX
dx

  
2 2

2 2 2 2 2
2 2;   subject to Y d ZY Z

dy d
        

dx
2 2( ) ; ( ) ; ( )  with 

i x i y z
zi x i y

dy dz

X x Y y Z ze e e
ee

 
 


   

 
       

   
zi x i y ee e   
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2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

: Find inside a charge-free rectangular box (see figure)Example 

( ) i ix xX x Ae Be  

:  Find  inside a charge free rectangular box (see figure)
        with the b.c.  ( ,  ,  ) = ( ,  ) and 0 on other sides.
Example

x y z c V x y

   

       
z

       ( )    
(0) 0 ( ) 'sin    
( ) 0 1 2

i ix x

n

X x Ae Be
X B A X A e e A x
X a n

 




 


 

        
        z

1

( ) 0 ,   1, 2,

 ( ) sin
n

n n
n

n
aX a n

X x A x

 







    
 



y

1

     Similarly,  ( ) .
(0) 0 and ( ) 0 give

n
i iy yY y Ae Be

Y Y b

 


 
      y

1

     (0) 0 and ( ) 0 give  
     ( ) sinm m

m

Y Y b
Y y A y




 ,    m

m
b
 

        x     Solution for : ( )
     (0) 0 ( ) ( ) ''sinh  

z z

z z
Z Z z Ae Be

Z B A Z z A e e A z

 

  




 

       

      22

, 1
sin sin sinh ,    (2.56)n mnmnm n m nm

n m
A x y z    
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2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

To find we apply the b c on the plane:A z c     To find , we apply the b.c. on the plane:
            ( , , ) ( , )

nmA z c
x y z c V x y





  

     
, 1

 ( , ) sin sin sinh                  (2.57)

4

nm n m nm
n m

b

V x y A x y c  



 

     0 0
4     (2.58)

sinh
( , )sin sinnm

nm

a b
n mA

ab c
dx dyV x y x y


    

Q tiQuestions:
1. The method of images is not a general method, but the method of

i i th l f ti i Wh ?expansion in orthogonal functions is. Why?
2. In electrostatics, only charges can produce Φ. In this problem,

0 h th b Φ ? = 0, how can there be Φ ?
3. Can we find the surface charge distribution ( ) on the walls from

h k l d f Φ i id h b ? If d h di i ?the knowledge of Φ inside the box? If so, under what condition?
28



:Discussion

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

     
1

     :  

     Rewrite (2.57): ( , ) sin sin sinh ,nm n m nm
n m

Discussion

V x y A x y c  





       
  z

, 1

where  and .
This is a good example to substantiate

n m

n m
m
b

n
a

 


 

    y

     This is a good example to substantiate
the following statement on physics ground:
"All orthonormal sets of functions normally

       x
occurring in mathematical physics have been
proved to be complete."  (p. 68)

( ) i ( ) d i ( ) h l f i     In (2.57), sin( ) and sin ( ) are orthogonal functions
generated in a physics problem. P

n mx y 
hysically, we expect the problem

to have a solution for any boundary condition on the surface z cto have a solution for any boundary condition on the surface , 
i.e. for any function ( , ) specified in (2.57). Thus, sin( ) and 
and sin ( ) must each form a co

n

m

z c
V x y x

y






mplete set in order to represent ( )m y p p
an arbitrary ( , ).V x y
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Homework of Chap. 2  

Problems:  1,   2,   3,   4,   5,, , , , ,

9,  23, 26
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