CHAPTER 2: Boundary-Value Problems
INn Electrostatics: |

Applications of Green’s theorem




2.6 Green Function for the Sphere; General
Solution for the Potential
The general electrostatic problem (upper figure):
V2D(x) = —EL p(X) with b.c. ® =D,

0
has the formal solution: (see Sec. 1.10)

D(X) = ins, [, PG (%, X)d "

41ﬂ CD(x) G (X, X)da',

where the Green function GD (X,X") is the solution of (lower figure)

V2Gp (X, X') = —478(x—X) with b.c. G, (X,x") =0 for X on S
GD(X, X’) =0

(1.44)

Gp(X,X") can be regarded as the potential
unit point
source

4 Gp(%,X)

due to a unit point source (¢ = 47y, p. 64)

at an arbitrary position X' inside the same

surface S, but with the homogeneous b.c.
Gp(X,X") =0 for X on S.

S
(same S as in

upper figure)

S X



2.6 Green Function for the Sphere... (continued)

in infinite space.

V2D(X) = _5_5()( —b) with b.c. ®(0)=0
0
In order to use (1.44), we first obtain the Green function from
V2Gp (X, X') = —478(x—X") with Gp(x,X') =0 forxonS  (2)
1
| X—X'|

The solution of (2) is G (X, X) =

Sub. go (X" —Db) for p(x') and 1/ | x—X'| for G, (X,X) into (1.44)

1
4o(X-b) XX

p(X) Gp(x, x>d3x'——<ﬁsc1>< )

0Gp (X, x)

on

:@(x)_%j‘}

1 g




2.6 Green Function for the Sphere... (continued)
Example 2: V*®(x) = 0 with b.c. ®(r = a) = O(a, 0, )
Find ®(X) in the region » > a (see left figure).
First, find G (X,X’) from X
the equation (see right figure
V2Gp (X, X') = —4715(X—X') S
with Gp(X,X") =0 on S.

Note: n points outward from the volume of interest.

®(a.0,¢) G (x,X) =0

This equation has the solution (see Sec. 2.2):

Grxx)= @ | VG (xX) =—4mE(X=X)
D\ / 2 . . .
X=X yx—a x in region of interest (7 > a)
er
B 1 1 3)
2 12 ' 1/2 2.2 2 , 1/2
(X +x7 —2xx 0057/) (x;zc +a” —2xx cosy)
a /

Note: G (X, X") = Gp (X', X) angle between X and X’




2.6 Green Function for the Sphere... (continued)

0Gp(xX)  __0Gp(xX)  __ (x* —a*)
on' |_, ox’ Y=g a(x2 +a’ —2axcos 7/)3/ 2
Sub. (3) into (1.44) l
O % N\
oG (X,X")
= O(X) = —— ¢ D(X D227 da
0=, - 1§00 2
P a(x —d ) '
=—¢_ D(a,d,¢) dQ (2.19)
T CJSS (x” + a® —2axcos 7/)3/2
Questions:
1. In (3), we have G (X,X') = X X,| 4 asasolution of

—a>x'x’
Vv GD(x X")=—-4mo(x—X"). But GD(x X') = X— x'|
satisfies the same equation. Does this violate the uniqueness thm.?

2. Can the solution of V? Gp(X,X") =—-4r5(X—X") be written in the
form G, (X,X') = Gp(X—X")? why? 5

apparently also



2.1 Method of Images

The method of 1mages 1s not a general method. It works for some
problems with a simple geometry. Consider a point charge g located
in front of an infinite and grounded plane conductor (see figure). The

region of interest 1s x > 0 and @ 1s governed by the Poisson equation:
«® =0 1mage 1_<-<CI)S_ =0

| charge «
-4 2 J/fq
oINS

V2®(x) = _5%5()( —-VY)

1
, I
subject to the boundary :
condition 70 0 .
4 sregion of iyregionof -
CD(X — 0) — O interest ' intereSt

In order to maintain a zero potential on the conductor, surface
charge will be induced (by ¢) on the conductor. We may simulate
the effects of the surface charge with a hypothetical "image charge",
—q, located symmetrically behind the conductor. Then, 6



2.1 Method of Images (continued)
g | 1 1|
PO = gy | oyl ey

. ‘ ,S ' charge |
and, by symmetry, ®(X) satisfies /5" 4D X/ q
the boundary condition y A4
5 X

\_x :
®O(x=0)=0. sTregion gf (-, region of
Operate O (X) with V2 interest ' mterest
= VIO(X) = L[5(x=y) = 5(x-y)] (1)

In the region of interest (x > 0), we have 6(X—Y') =0. Thus,

®(X) obeys the original Poisson equation
2 This shows that we must put the image

Vi) = _8%5()( ~Y) [charge outside the region%f interest : }

Since D (X) satisfies both the Poisson equation and the boundary
condition in the region of interest, it is a solution. By the uniqueness
theorem, 1t 1s the only solution. Note that the Poisson equation (1) and
the solution ®(X) are irrelevant outside the region of interest. 7



2.2 Point Charge In the

1wl Wi W Wil

Refer to the conducting sphere of radius a
shown 1n the figure. Assume a point charge ¢
isatr =y (>a). To find ® for r > a, we put an
image charge ¢’ at » = y' (< a). Then,

Presence of a Grounded

4 /4
D(X) = Q/ _7[50 4 q /_72":"0
X<y Xy
_ Q/47Z'80 q'/47z50
xn—yn’ [ xn—y'n’
Bounday condition requires
O(a) = q/4rs . q'/4re, _
an-Jn' ' dn_n
q/4rsy, aq/dre
= O(X) = /X_ 0_ 99/ 20

y

. a a2
First, set X:—', ory'=—,
a 'y y
so that ‘n—%ﬂ = }i,n—ﬂ
V
' | |

Note: y' < a; hence, ¢' lies outsid
the region of interest.

’

Next, set 9_ _q_' so that RHS = 0.
a Y
This gives q':—y—qz—gq.
a Y

X=47y
32




2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

: _q/4mgy  aq / 47&50 | This is equivalent to (2.1) |
Rewrite $0) ="~y Land (2.4) of Jackson. J
In the region of interest (» > a), we have V CD(X) = ——5 (X—=Y).

Thus, as in the case of the plane conductor, ® satisfies the Poisson
equation and the b.c. It 1s hence the only solution. The E-field lines
are shown in the figure below.




2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

(1411/'1(1/1 Vg roe oncitv nn tho enhoro The ecahitinn for DY) can he
J L/IL C ucro LL/V urL Lric o rnicr C. 11iv OvUliuLlvll 11 \H\I\} vall UV
expressed in terms of scalars as
1 a
D(X) = [ — |
4,,5 1/2 2 44 2 1/2
0 (x* +y* —2xycos¥) y(x® +95 —2X9" cos y)

where y 1s the angle between X and .

By Gauss's law, the surface charge
density at point B 1s

c=&kL.(x=a)=-¢, %()Ic) s

2
a(2a -2 a* cos y)

_q [ 2a—-2ycosy

]

d (a2+y2—2aycosy)3/2 y(a’ +a -24 COS)/)3/2
-4 4
-q ,a
L e s @s
dra” 'y (1+ 2acosy)

y 10



2.2 Point Charge in the Presence of a Grounded Conducting Sphere (continued)

Total charge on the sphere:

The total surface charge can be obtained
by integrating ¢ over the spherical surface.
However, it can be deduced from a simple
argument: In the region » > a, the electric
field due to the surface charge 1s exactly
the same as that due to the image charge ¢'.

Hence, by Gauss's law, the total surface charge must be ¢'(= —%q).

Forceon g:

Since, at the position of charge ¢, the field produced by the image
charge ¢’ is the same as that produced by the surface charge, the force
on ¢ is the Coulomb force betwen ¢’ and g.

3
' 1 %9 12 (“)
F= 1 qq’2nr: 1 y2 n' = 1 412 y22nf (2.6)
drey (y—y") 47e, (y_ay)2 ey @ (1_31/2)
11



2.3 Point Charge in the Presence of a Charged,
Insulated, Conducting Sphere (with Total Charge Q)

[f the sphere is insulated with total charge QO
on its surface, we may obtain @ in two steps.
Step I. Ground the sphere
—> same problem as in Sec. 2.2

q/47rs aq/4re
X=y )/X—612y/y2 O, =0

with total surface charge ¢’ = —agq/ y.
Step 2: Disconnect the ground wire.
Add O+ aq/ y to the sphere so that the

total charge on the sphere is O. Then,

QO+ aq/y will be distributed uniformly
on the surface because the charges were already 1n static equilibrium.

O+aqy
4rey X 12

= ® dueto Q+aq/y is P(X) =



2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (continued)

Hence, the total ® 1s

_I_
D(X) = xq aq Q il(Q/y] (2.8)
47750 VY yx—a?ylh?

q(O+aq/y) Yy | force due to

The force on g 1s the force in (2.6) plus == )3 [a dded harge}
1 a>(2y* —a’
=F= q2 0-1 (2y 22) ! X%
Amey y y(y*-a”)
qQ

Asy —>oo, F—

(Coulomb force between point charges)

A 1)
Ny -r7Z'50_)/

Asy — a, F 1s always attractive even 1f g and Q have the same
sign.

.

Question: If there 1s an excess of electrons on the surface, why
don't they leave the surface due to mutual repulsion?

(See p. 61 for a discussion on the work function of a metal.)
13



2.7 Conducting Spheres with Hemisphere...
(to be discussed in Sec. 3.3)

2.8 Orthogonal Functions and Expansions

Definition of Orthogonal Functions :
Consider a set of real or complex functions U, (§) (n=1,2,---)
which are square integrable on the interval a < & < b.

-

inner product

orthogonal, if jfj UZ(f)Um(f)dr,;{

0, m#n

U, (&)'s are < #0,m=n

 ~

Y, U, m#n
orthonormal, lfja U, (&, (EdE =06,,, = {

,m=n

Geometrical analogue: €, e, and e_ are an orthonormal set of
unit vectors, 1.e. € -6 = o . By comparison, the dot product e _-e
is similar to the mner product . But the algebraic set U (&) can be

infinite in number. 4



2.8 Orthogonal Functions and Expansions (continued)
L_inearly Independent Functions:

The set of U, (&)'s are said to be linearly independent if the

only solution of ¥ a,U, (§) =0 (for every & in the range of

n
a<¢&<b)isa, =0 forany n.

If a set of functions are orthogonal, they are also linearly
independent.

Proof -
2 anUn (5) =0

=0, unless m=n

= [0S a,U (OUL(E)dE =3 a, [PU (U (E)dé

= anJ.f;‘Un(g)‘z ds =0
= a, =0 for any n

15



2.8 Orthogonal Functions and Expansions (continued)
Gram-Schmidt Orthogonalization Procedure:

Orthogonality 1s a sufficient, but not necessary, condition for
linear independence, 1.e. linearly independent functions do not
have to be orthogonal. However, they can be reconstructed into an
orthogonal set by the Gram-Schmidt orthogonalization procedure.

Consider two vectors, e, and (e, +€,), as a simple example.
These two vectors are not orthogonal, because e, - (e, +e,,) # 0, but
are linearly independent because ae, +b(e, +€,)=0=a=5b=0.

We may form two new vectors as linear combinations of the old
vectors, &; =€, and e, =e,+e +qe,,and demand e, -e, = 0.
g8, =0=1lta=0=a=-1=¢, =¢,
The new set, e;(=¢€, ) and e,(=e,,), are thus orthogonal (as well

as linearly independent).

The same procedure can be applied to algebraic functions.
16



2.8 Orthogonal Functions and Expansions (continued)

Completeness of a Set of Functions:
Expand an arbitrary, square integrable function /(&) in terms of
a finite number (V) of functions in the orthonormal set U, (&),

(O 2 a,U,) 230

and define the mean square error (M, ) as

b N ?
My =[, /(&)= X a,U,(&) d&

If there exists a finite number N, such that for N > N, the mean
square error M, can be made smaller than any arbitrarily small
positive quantity by proper choice of a,’s, then the set U (&) 1s
said to be complete and the series representation

S a,U, (&)= f(&) (2.33)

n=1
1s said to converge 1n the mean to /(& ).

17



2.8 Orthogonal Functions and Expansions (continued)

Rewrite (2.33): f(&)= ¥ a U, (&) (2.33)
Using the orthonormal ;:éperty of U,(&)'s, we get
a, = LZZ U, (&) f(&)déE (2.32)
Change & in (2.32) to £’ and substitute (2.32) into (2.33)
1&=11) EUIEW, &) |1&)ds 234)
7€) is abitrary = $ U(§0U, (&) =66~ (2.35)

(completeness or closure relation)

Jackson, p. 68: "All orthonormal sets of functions normally
occurring in mathematical physics have been proved to be
complete." (This statement will be 1llustrated in Sec. 2.9.)

18



2.8 Orthogonal Functions and Expansions (continued)

Fourier Series : example of complete set of orthogonal functions
Exponential representation of f(x) on the interval —% <x< % ;

-

T 17
= 2 o M s
) 5 12 L _a N—"g4 (4)
ky =220 a, = [2, f()e e 2

L 2

In (4), f (x) 1s 1n general a complex function and, even when £ (x)
is real, a,, 1s 1n general a complex constant.

In the case f'(x) is real, we have the realty condition: a, =a”
. A N 4 PN PR AN
rroof: f(x)=real = f(x)=] (X) Jn—-n

ik, x % —ik,x * thk,x
= 2 a.e "= 2 a,e "= 2 a_e"
N=—00 N=—00 N=—00

n

—a, =a*, (since ¢ is linearly independent)

Questions: 1. Why "n = —oo to c0" instead of "n =0 to 0" ?
2. Why k, =27zn/a instead of k, = zn/a ? 19



2.8 Orthogonal Functions and Expansions (continued)

. o o o a a .
Sinusoidal representation of f(x)ontheinterval —5<x<7:

f(x)= X anelk”x =ay+ Y (anelk”x +a_,e ’k”x)

Nn=—00 n=1
=ay + > [(a, cosk,x+a_, cosk,x)+i(a,sink,x—a_, sink,x)]
n=1
=ag + § (a,+a_,)cosk,x+ % i(a,—a_,)sink,x
n=1 n=1
= f(x)= %jL > |4, cosk,x+ B, sink,x|, k,= %% (5)
n=1
where ~{Same as (2.36) and (2.37)
( a . . a
An _ an n a_n _ %J‘_Za f(x)(e—lknx + elknx)dx = %J.ga f(.X) COS knxdx
2 . . y 2
(n=0— o) 2cosk,x

3

- : : d
Bn :i(an _a_n) :éjga f(x)(e—zknx _elknx)dx :%j—za f(x)sinknxdx
2 N Y 2

(n=1— )

—2isinkyXx 20



2.8 Orthogonal Functions and Expansions (continued)

Discussion: It 1s often more convenient to express a physical
quantity (a real number) in the exponential representation than in
the sinusoidal representation, because the complex coefficient (a,)
of an exponential term carries twice the information of the real
coefficient (4, or B,) of a sinusoidal term. For example, 1f

x(f) = Re[ae'’]
1s the displacement of a simple harmonic oscillator, the complex a
contains both the magnitude and phase of the displacement. In the
sinusoidal representation, the same quantity will be written
x(t) = Acos(wt) + Bsin(m?).

Exponential terms are also easier to manipulate (such as
multiplication and differentiation). This point will be further
discussed in Ch. 7.

21



2.8 Orthogonal Functions and Expansions (continued)
Fourier Transform:
If the interval becomes infinite (¢ — o), we obtain the Fourier
transform (see Jackson p.68).

; f(x)= ﬁ [ ACkye™ dk (2.44)
\A(k) = ﬁ [Z fx)e™ax (2.45)

Change x to x' in (2.45) and sub. (2.45) into (2.44)
fx)=[" dx'f(x )—j K= gk

J/

5(x x")

2 I— H g = o(x—x") [completeness relation] (2.47)
T

Question I: Does A(k) contain any more or any less information
than f (x)?

22



2.8 Orthogonal Functions and Expansions (continued)

Ouestion 2 - Does a, in f(x) =Y a, e"* have the same dimension
= n J \""J n
n

as A(k) in f(x) = ﬁ [ Alk)e™dk?

[assuming x is a dimensional quantity.]
Rewrite (2.47): i jiooo F D e = 5(x — x)
Interchange x and &
= i [© e *F)Xgx = §(k k"), [orthogonality condition] ~ (2.46)
Let y =k —k" and sub. it into (2.46)
= i[ﬁo eV dx = 5(y)
Since 0(y) = o0(— y), we may write more generally,

Lo i gy 5(y) (6)

2 ® 23



2.8 Orthogonal Functions and Expansions (continued)

To are fxnn 'F]f]'\ r
A4 111 alv J &

[aVa\N ofal Q YN 1 r
LYV U UDULUL Livuliviliio \/Ull\/\/llllllé

(1) Parseval’ theorem :

The Parseval's theorem states |~ |f (x)\ dx=[" \A(k)\ dk  (7)

Proof - 0 "
f(x) = ELO@ A(k)e™"dk (2.44)

A(k) = J;_ﬂ [Z f(x)e™dx (2.45)

[2 1 f dx= [, f(x)f (x)dx

= dx[\/;—ﬂ [~ A(k)eikxdk} L/;_ﬂ [~ A*(k')e‘”"xdk'}
1 kA dleA () [ e % 1 a0 dk
= [ kA%, dk'A” (k) [ dxe = [, |A(K)

Rewrite the Fourier transform:-

U

v

5 (k—k") 2



2.8 Orthogonal Functions and Expansions (continued)

volition theorem
J L J AL A N/

4y WAL A V3IAWU ALL o

The convolution theorem states
2 o iG= 9 /2(9dEle ™ de = 4 () A (k) - (8)

This 1s called the convolution of f;(x) and f, (x)

where the factor 21 follows the convention in (2.44) and (2.45).

Proof: LHS of (8) = J_ [ f(&)dE—— J_ [ filx- c_f)e_lkxdx

Let n=x—¢& (=>dx= di])

- J;—ﬁji‘;o f (5)%;_” [ fie ™ Enay

i J;_Ai‘; f&) e dg J;_Hiﬁ(f?)e‘”‘”d 7
= 4 (k) Ay (k)

25



2.9 Separation of Variables, Laplace Equation in

Rectangular Coordinates
V2 — O°D N O°D N O°D 0 Laplace equation in (2.48)
 ox2 o’ 67 - Cartesian coordinates '
Let ®(x,y,2)=X(x)Y(y)Z(2) (2.49)
2 2 2
:>1dX 1d7Y le:() (2.50)

ot 2
X dx? Ydy Z dz

Since this equation holds for arbitrary values of x, y, and z, each
of the three terms must be separately constant.

2
X __ oy ﬂ:_ﬁy d*z

dx* dy? dz*
plax eiby ez .
:>X(x)={e_iax» Y(y)= { _iBy} Z(z)={e_7z with y =+/a® + B2

—

=y Zsubjecttoy = +,B

26



2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

mp i e
with the b.c. ® (x V, Z= c) V(x y) and @ = 0 on other sides.
X (x) = Ae'* + Be ¥

{X(O) 0= B=—A= X = A" —¢ ™) = A'sinax

X(a)=O:>a=an=%, n=12,... z
00 . ¢ = Vizy)
= X(x)= X 4,sina,x z=c f[
n=lI
Similarly, Y(y)=4e”Y + Be Y. s=0—{_ T—e=0
Y(0)=0and Y(b)=0 give =ty
Y(y)= § A, sin : = &l z=a 41
X =0

Solution for Z: Z(z) = Ae’* + Be™’*
Z(0)=0=B=-A4=Z(z)=A(e’" —¢7*) = A"sinh yz

== 3 A,,sin(0,x)sin(,)si0h(7,,2), 7um=rai+ B2 (2.56)

n,m=1




2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

To find 4,,,, we apply the b.c. on the z = ¢ plane:
Q(x,y,z=c)=V(x,y)

=V(x,y)= > A, sin(a,x)sin( S,y )sinh(y,,,c) (2.57)
n,m=l
4 a b : :
= A4, = absinh(ynmc)jo dx[, dyV(x,y)sin(a,x)sin(f5,y) (2.58)
Questions:

1. The method of images is not a general method, but the method of
expansion in orthogonal functions is. Why?

2. In electrostatics, only charges can produce ®. In this problem,
o =0, how can there be ® ?

3. Can we find the surface charge distribution (o ) on the walls from
the knowledge of ® 1nside the box? If so, under what condition?

28



2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

Discussion:
Rewrite (2.57): V(x,y) = > A, sin(a,x)sin(S,,y)sinh(y,,c)
n,m=1
— 7Z' n z

where «,, and f,, =", o

This is a good example to substantiate o
the following statement on physics ground: #=o—. i o
"All orthonormal sets of functions normally r=b_y

occurring in mathematical physics have been =5 {["’
proved to be complete." (p. 68) 2=0

In (2.57), sin(er,,x) and sin (f3,,y) are orthogonal functions
generated 1n a physics problem. Physically, we expect the problem
to have a solution for any boundary condition on the surface z =c,
1.e. for any function V' (x, y) specified in (2.57). Thus, sin(«,x) and
and sin (f,, ) must each form a complete set in order to represent
an arbitrary V(x, y).

29



Homework of Chap. 2

Problems: 1, 2, 3, 4, 5,
9, 23,26

30



