CHAPTER 2: Boundary-Value Problems in Electrostatics: I

Applications of Green's theorem

2.6 Green Function for the Sphere; General Solution for the Potential

The general electrostatic problem (upper figure):

$$
\nabla^{2} \Phi(\mathbf{x})=-\frac{1}{\varepsilon_{0}} \rho(\mathbf{x}) \text { with b.c. } \Phi=\Phi_{s}
$$

has the formal solution: (see Sec. 1.10)

$$
\begin{aligned}
\Phi(\mathbf{x})= & \frac{1}{4 \pi \varepsilon_{0}} \int_{V} \rho\left(\mathbf{x}^{\prime}\right) G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\
& -\frac{1}{4 \pi} \oint_{S} \Phi\left(\mathbf{x}^{\prime}\right) \frac{\partial}{\partial n^{\prime}} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d a^{\prime}
\end{aligned}
$$

where the Green function $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ is the solution of (lower figure)

$$
\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \text { with b.c. } G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0 \text { for } \mathbf{x} \text { on } S
$$

$G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ can be regarded as the potential due to a unit point source ($q \rightarrow 4 \pi \varepsilon_{0}$, p. 64) at an arbitrary position \mathbf{x}^{\prime} inside the same surface S, but with the homogeneous b.c. $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0$ for \mathbf{x} on S .

Example 1: Use (1.44) to find Φ due to a point charge q at $\mathbf{x}=\mathbf{b}$ in infinite space.

$$
\nabla^{2} \Phi(\mathbf{x})=-\frac{q}{\varepsilon_{0}} \delta(\mathbf{x}-\mathbf{b}) \text { with b.c. } \Phi(\infty)=0
$$

In order to use (1.44), we first obtain the Green function from
$\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ with $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0$ for \mathbf{x} on S
The solution of (2) is $\quad G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}$
Sub. $q \delta\left(\mathbf{x}^{\prime}-\mathbf{b}\right)$ for $\rho\left(\mathbf{x}^{\prime}\right)$ and $1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$ for $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ into (1.44)

$$
\begin{aligned}
\Rightarrow \Phi(\mathbf{x}) & =\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \overbrace{\rho\left(\mathbf{x}^{\prime}\right)}^{q \delta\left(\mathbf{x}^{\prime}-\mathbf{b}\right)} \overbrace{G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}^{\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}} d^{3} x^{\prime}-\frac{1}{4 \pi} \oint_{S} \overbrace{\Phi\left(\mathbf{x}^{\prime}\right)}^{0} \frac{\partial G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}{\partial n} d a^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{|\mathbf{x}-\mathbf{b}|}
\end{aligned}
$$

Example 2: $\nabla^{2} \Phi(\mathbf{x})=0$ with b.c. $\Phi(r=a)=\Phi(a, \theta, \varphi)$
Find $\Phi(\mathbf{x})$ in the region $r \geq a$ (see left figure).
First, find $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ from the equation (see right figure $\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ with $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=0$ on S.

Note: \mathbf{n} points outward from the volume of interest.
This equation has the solution (see Sec. 2.2):

$$
\begin{align*}
G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) & =\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\frac{a}{\left.x^{\prime} \mathbf{x}-\frac{a^{2}}{x^{\prime 2}} \mathbf{x}^{\prime} \right\rvert\,} \\
& =\frac{1}{\left(x^{2}+x^{\prime 2}-2 x x^{\prime} \cos \gamma\right)^{1 / 2}}-\frac{\begin{array}{l}
\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\
\text { in region of interest }(r \geq a)
\end{array}}{\left(\frac{x^{2} x^{\prime 2}}{a^{2}}+a^{2}-2 x x^{\prime} \cos \gamma\right)^{1 / 2}}
\end{align*}
$$

Note: $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=G_{D}\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$
angle between \mathbf{x} and \mathbf{x}^{\prime}

$$
\left.\frac{\partial G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}{\partial n^{\prime}}\right|_{x^{\prime}=a}=-\left.\frac{\partial G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}{\partial x^{\prime}}\right|_{x^{\prime}=a}=-\frac{\left(x^{2}-a^{2}\right)}{a\left(x^{2}+a^{2}-2 a x \cos \gamma\right)^{3 / 2}}
$$

Sub. (3) into (1.44)

$$
\begin{align*}
\Rightarrow \Phi(\mathbf{x}) & =\frac{1}{4 \pi \varepsilon_{0}} \int_{V} \overbrace{\rho\left(\mathbf{x}^{\prime}\right)}^{=0} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) d^{3} x^{\prime}-\frac{1}{4 \pi} \oint_{S} \Phi\left(\mathbf{x}^{\prime}\right) \frac{\overbrace{\partial G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)}^{\partial n^{\prime}}}{} d a^{\prime} \\
& =\frac{1}{4 \pi} \oint_{S} \Phi\left(a, \theta^{\prime}, \varphi^{\prime}\right) \frac{a\left(x^{2}-a^{2}\right)}{\left(x^{2}+a^{2}-2 a x \cos \gamma\right)^{3 / 2}} d \Omega^{\prime} \tag{2.19}
\end{align*}
$$

Questions:

1. In (3), we have $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-\frac{a}{x^{\prime} \mathbf{x}-a^{2} \mathbf{x}^{\prime} / x^{\prime 2} \mid}$ as a solution of $\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$. But $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}$ apparently also satisfies the same equation. Does this violate the uniqueness thm.?
2. Can the solution of $\nabla^{2} G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ be written in the form $G_{D}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=G_{D}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$? why?

2.1 Method of Images

The method of images is not a general method. It works for some problems with a simple geometry. Consider a point charge q located in front of an infinite and grounded plane conductor (see figure). The region of interest is $x \geq 0$ and Φ is governed by the Poisson equation:

$$
\nabla^{2} \Phi(\mathbf{x})=-\frac{q}{\varepsilon_{0}} \delta(\mathbf{x}-\mathbf{y})
$$

subject to the boundary condition

$$
\Phi(x=0)=0 .
$$

In order to maintain a zero potential on the conductor, surface charge will be induced (by q) on the conductor. We may simulate the effects of the surface charge with a hypothetical "image charge", $-q$, located symmetrically behind the conductor. Then,

$$
\Phi(\mathbf{x})=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{|\mathbf{x}-\mathbf{y}|}-\frac{1}{\left|\mathbf{x}-\mathbf{y}^{\prime}\right|}\right]
$$

and, by symmetry, $\Phi(\mathbf{x})$ satisfies the boundary condition

$$
\Phi(x=0)=0 .
$$

Operate $\Phi(\mathbf{x})$ with ∇^{2}

$\Rightarrow \nabla^{2} \Phi(\mathbf{x})=-\frac{q}{\varepsilon_{0}}\left[\delta(\mathbf{x}-\mathbf{y})-\delta\left(\mathbf{x}-\mathbf{y}^{\prime}\right)\right]$
In the region of interest $(x \geq 0)$, we have $\delta\left(\mathbf{x}-\mathbf{y}^{\prime}\right)=0$. Thus, $\Phi(\mathbf{x})$ obeys the original Poisson equation

$$
\nabla^{2} \Phi(\mathbf{x})=-\frac{q}{\varepsilon_{0}} \delta(\mathbf{x}-\mathbf{y})\left[\begin{array}{l}
\text { This shows that we must put the image } \\
\text { charge outside the region of interest }
\end{array}\right]
$$

Since $\Phi(\mathbf{x})$ satisfies both the Poisson equation and the boundary condition in the region of interest, it is a solution. By the uniqueness theorem, it is the only solution. Note that the Poisson equation (1) and the solution $\Phi(\mathbf{x})$ are irrelevant outside the region of interest.

2.2 Point Charge in the Presence of a Grounded Conducting Sphere

Refer to the conducting sphere of radius a shown in the figure. Assume a point charge q is at $r=y(>a)$. To find Φ for $r \geq a$, we put an image charge q^{\prime} at $r=y^{\prime}(<a)$. Then,

$$
\begin{aligned}
\Phi(\mathbf{x}) & =\frac{q / 4 \pi \varepsilon_{0}}{|\mathbf{x}-\mathbf{y}|}+\frac{q^{\prime} / 4 \pi \varepsilon_{0}}{\left|\mathbf{x}-\mathbf{y}^{\prime}\right|} \\
& =\frac{q / 4 \pi \varepsilon_{0}}{\left|x \mathbf{n}-y \mathbf{n}^{\prime}\right|}+\frac{q^{\prime} / 4 \pi \varepsilon_{0}}{\left|x \mathbf{n}-y^{\prime} \mathbf{n}^{\prime}\right|}
\end{aligned}
$$

Bounday condition requires

$$
\Phi(a)=\frac{q / 4 \pi \varepsilon_{0}}{\left.a \mathbf{n}-\frac{y}{a} \mathbf{n}^{\prime} \right\rvert\,}+\frac{q^{\prime} / 4 \pi \varepsilon_{0}}{y^{\prime}\left|\frac{a}{y^{\prime}} \mathbf{n}-\mathbf{n}^{\prime}\right|}=0
$$

$\Rightarrow \Phi(\mathbf{x})=\frac{q / 4 \pi \varepsilon_{0}}{|\mathbf{x}-\mathbf{y}|}-\frac{a q / 4 \pi \varepsilon_{0}}{y \mathbf{x}-\frac{a^{2}}{y^{2}} \mathbf{y}}$
First, set $\frac{y}{a}=\frac{a}{y^{\prime}}$, or $y^{\prime}=\frac{a^{2}}{y}$,
so that $\left|\mathbf{n}-\frac{y}{a} \mathbf{n}^{\prime}\right|=\left|\frac{a}{y^{\prime}} \mathbf{n}-\mathbf{n}^{\prime}\right|$
Note: $y^{\prime}<a$; hence, q^{\prime} lies outside the region of interest.
Next, set $\frac{q}{a}=-\frac{q^{\prime}}{y^{\prime}}$ so that RHS $=0$.
This gives $q^{\prime}=-\frac{y^{\prime}}{a} q=-\frac{a}{y} q$.

Rewrite $\Phi(\mathbf{x})=\frac{q / 4 \pi \varepsilon_{0}}{|\mathbf{x}-\mathbf{y}|}-\frac{a q / 4 \pi \varepsilon_{0}}{y\left|\mathbf{x}-\frac{a^{2}}{y^{2}} \mathbf{y}\right|}$ $\left[\begin{array}{l}\text { This is equivalent to (2.1) } \\ \text { and (2.4) of Jackson. }\end{array}\right]$

In the region of interest $(r \geq a)$, we have $\nabla^{2} \Phi(\mathbf{x})=-\frac{q}{\varepsilon_{0}} \delta(\mathbf{x}-\mathbf{y})$. Thus, as in the case of the plane conductor, Φ satisfies the Poisson equation and the b.c. It is hence the only solution. The E-field lines are shown in the figure below.

Surface charge density on the sphere: The solution for $\Phi(\mathbf{x})$ can be expressed in terms of scalars as

$$
\Phi(\mathbf{x})=\frac{q}{4 \pi \varepsilon_{0}}\left[\frac{1}{\left(x^{2}+y^{2}-2 x y \cos \gamma\right)^{1 / 2}}-\frac{a}{y\left(x^{2}+\frac{a^{4}}{y^{2}}-2 \frac{x a^{2}}{y} \cos \gamma\right)^{1 / 2}}\right]
$$

where γ is the angle between \mathbf{x} and \mathbf{y}.
By Gauss's law, the surface charge density at point B is

$$
\begin{align*}
\sigma & =\varepsilon_{0} E_{r}(x=a)=-\left.\varepsilon_{0} \frac{\partial \Phi}{\partial x}\right|_{x=a} \\
& =\frac{q}{8 \pi}\left[\frac{2 a-2 y \cos \gamma}{\left(a^{2}+y^{2}-2 a y \cos \gamma\right)^{3 / 2}}-\frac{a\left(2 a-2 \frac{a^{2}}{y} \cos \gamma\right)}{y\left(a^{2}+\frac{a^{4}}{y^{2}}-2 \frac{a^{3}}{y} \cos \gamma\right)^{3 / 2}}\right] \\
& =\frac{-q}{4 \pi a^{2}}\left(\frac{a}{y}\right) \frac{1-\frac{a^{2}}{y^{2}}}{\left(1+\frac{a^{2}}{y^{2}}-2 \frac{a}{y} \cos \gamma\right)^{3 / 2}} \tag{2.5}
\end{align*}
$$

Total charge on the sphere:

The total surface charge can be obtained by integrating σ over the spherical surface. However, it can be deduced from a simple argument: In the region $r \geq a$, the electric field due to the surface charge is exactly the same as that due to the image charge q^{\prime}.
 Hence, by Gauss's law, the total surface charge must be $q^{\prime}\left(=-\frac{a}{y} q\right)$.

Force on q :

Since, at the position of charge q, the field produced by the image charge q^{\prime} is the same as that produced by the surface charge, the force on q is the Coulomb force betwen q^{\prime} and q.

$$
\begin{equation*}
\mathbf{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q q^{\prime}}{\left(y-y^{\prime}\right)^{2}} \mathbf{n}^{\prime}=\frac{-1}{4 \pi \varepsilon_{0}} \frac{q\left(\frac{a}{y} q\right)}{\left(y-\frac{a^{2}}{y}\right)^{2}} \mathbf{n}^{\prime}=\frac{-1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{a^{2}} \frac{\left(\frac{a}{y}\right)^{3}}{\left(1-\frac{a^{2}}{y^{2}}\right)^{2}} \mathbf{n}^{\prime} \tag{2.6}
\end{equation*}
$$

2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (with Total Charge Q)

If the sphere is insulated with total charge Q on its surface, we may obtain Φ in two steps.

Step 1: Ground the sphere
\Rightarrow same problem as in Sec. 2.2
$\Rightarrow \Phi(\mathbf{x})=\frac{q / 4 \pi \varepsilon_{0}}{|\mathbf{x}-\mathbf{y}|}-\frac{a q / 4 \pi \varepsilon_{0}}{y \mathbf{x}-a^{2} \mathbf{y} / y^{2}}$

with total surface charge $q^{\prime}=-a q / y$.
Step 2: Disconnect the ground wire. Add $Q+a q / y$ to the sphere so that the total charge on the sphere is Q. Then, $Q+a q / y$ will be distributed uniformly
 on the surface because the charges were already in static equilibrium.
$\Rightarrow \Phi$ due to $Q+a q / y$ is $\Phi(\mathbf{x})=\frac{Q+a q / y}{4 \pi \varepsilon_{0} \mathbf{x}}$
2.3 Point Charge in the Presence of a Charged, Insulated, Conducting Sphere (continued)

Hence, the total Φ is

$$
\begin{equation*}
\Phi(\mathbf{x})=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{q}{\mathbf{x}-\mathbf{y} \mid}-\frac{a q}{y\left|\mathbf{x}-a^{2} \mathbf{y} / y^{2}\right|}+\frac{Q+a q / y}{|\mathbf{x}|}\right] \tag{2.8}
\end{equation*}
$$

The force on q is the force in (2.6) plus $\frac{q(Q+a q / y)}{4 \pi \varepsilon_{0}} \frac{\mathbf{y}}{y^{3}}\left[\begin{array}{l}\text { force due to } \\ \text { added charge }\end{array}\right]$
$\Rightarrow \mathbf{F}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{y^{2}}\left[Q-\frac{q a^{3}\left(2 y^{2}-a^{2}\right)}{y\left(y^{2}-a^{2}\right)^{2}}\right] \frac{\mathbf{y}}{y}$

$\Rightarrow\left\{\begin{array}{l}\text { As } y \rightarrow \infty, F \rightarrow \frac{q Q}{4 \pi \varepsilon_{0} y^{2}} \text { (Coulomb force between point charges) }\end{array}\right.$
As $y \rightarrow a, F$ is always attractive even if q and Q have the same sign.
Question: If there is an excess of electrons on the surface, why don't they leave the surface due to mutual repulsion?
(See p. 61 for a discussion on the work function of a metal.)

2.7 Conducting Spheres with Hemisphere...

(to be discussed in Sec. 3.3)

2.8 Orthogonal Functions and Expansions

Definition of Orthogonal Functions:

Consider a set of real or complex functions $U_{n}(\xi)(n=1,2, \cdots)$ which are square integrable on the interval $a \leq \xi \leq b$.
$U_{n}\left(\xi\right.$)'s are $\left\{\begin{array}{l}\text { orthogonal, if } \overbrace{\int_{a}^{b} U_{n}^{*}(\xi) U_{m}(\xi) d \xi}^{\text {inner product }}\left\{\begin{array}{l}=0, m \neq n \\ \neq 0, m=n\end{array}\right. \\ \text { orthonormal, if } \int_{a}^{b} U_{n}^{*}(\xi) U_{m}(\xi) d \xi=\delta_{m n}=\left\{\begin{array}{l}0, m \neq n \\ 1, m=n\end{array}\right.\end{array}\right.$
Geometrical analogue: $\mathbf{e}_{x}, \mathbf{e}_{y}$, and \mathbf{e}_{z} are an orthonormal set of unit vectors, i.e. $\mathbf{e}_{m} \cdot \mathbf{e}_{n}=\delta_{m n}$. By comparison, the dot product $\mathbf{e}_{m} \cdot \mathbf{e}_{n}$ is similar to the inner product. But the algebraic set $U_{n}(\xi)$ can be infinite in number.

Linearly Independent Functions :

The set of $U_{n}(\xi)$'s are said to be linearly independent if the only solution of $\sum_{n} a_{n} U_{n}(\xi)=0$ (for every ξ in the range of $a \leq \xi \leq b)$ is $a_{n}=0$ for any n.

If a set of functions are orthogonal, they are also linearly independent.

$$
\begin{aligned}
& \text { Proof: } \\
& \sum_{n} a_{n} U_{n}(\xi)=0 \\
\Rightarrow & \int_{a}^{b} \sum_{n} a_{n} U_{n}(\xi) U_{m}^{*}(\xi) d \xi=\sum_{n} a_{n} \overbrace{\int_{a}^{b} U_{n}(\xi) U_{m}^{*}(\xi) d \xi}^{=0, \text { unless } m=n} \\
& =a_{n} \int_{a}^{b}\left|U_{n}(\xi)\right|^{2} d \xi=0 \\
\Rightarrow & a_{n}=0 \text { for any } n
\end{aligned}
$$

Gram-Schmidt Orthogonalization Procedure:

Orthogonality is a sufficient, but not necessary, condition for linear independence, i.e. linearly independent functions do not have to be orthogonal. However, they can be reconstructed into an orthogonal set by the Gram-Schmidt orthogonalization procedure.

Consider two vectors, \mathbf{e}_{x} and $\left(\mathbf{e}_{x}+\mathbf{e}_{y}\right)$, as a simple example. These two vectors are not orthogonal, because $\mathbf{e}_{x} \cdot\left(\mathbf{e}_{x}+\mathbf{e}_{y}\right) \neq 0$, but are linearly independent because $a \mathbf{e}_{x}+b\left(\mathbf{e}_{x}+\mathbf{e}_{y}\right)=0 \Rightarrow a=b=0$.

We may form two new vectors as linear combinations of the old vectors, $\mathbf{e}_{1}=\mathbf{e}_{x}$ and $\mathbf{e}_{2}=\mathbf{e}_{x}+\mathbf{e}_{y}+\alpha \mathbf{e}_{x}$, and demand $\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0$.

$$
\mathbf{e}_{1} \cdot \mathbf{e}_{2}=0 \Rightarrow 1+\alpha=0 \Rightarrow \alpha=-1 \Rightarrow \mathbf{e}_{2}=\mathbf{e}_{y}
$$

The new set, $\mathbf{e}_{1}\left(=\mathbf{e}_{x}\right)$ and $\mathbf{e}_{2}\left(=\mathbf{e}_{y}\right)$, are thus orthogonal (as well as linearly independent).

The same procedure can be applied to algebraic functions.

Completeness of a Set of Functions:

Expand an arbitrary, square integrable function $f(\xi)$ in terms of a finite number (N) of functions in the orthonormal set $U_{n}(\xi)$,

$$
\begin{equation*}
f(\xi) \leftrightarrow \sum_{n=1}^{N} a_{n} U_{n}(\xi) \tag{2.30}
\end{equation*}
$$

and define the mean square error $\left(M_{N}\right)$ as

$$
M_{N} \equiv \int_{a}^{b} f(\xi)-\left.\sum_{n=1}^{N} a_{n} U_{n}(\xi)\right|^{2} d \xi
$$

If there exists a finite number N_{0} such that for $N>N_{0}$ the mean square error M_{N} can be made smaller than any arbitrarily small positive quantity by proper choice of a_{n} 's, then the set $U_{n}(\xi)$ is said to be complete and the series representation

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} U_{n}(\xi)=f(\xi) \tag{2.33}
\end{equation*}
$$

is said to converge in the mean to $f(\xi)$.

Rewrite (2.33): $f(\xi)=\sum_{n=1}^{\infty} a_{n} U_{n}(\xi)$
Using the orthonormal property of $U_{n}(\xi)$'s, we get

$$
\begin{equation*}
a_{n}=\int_{a}^{b} U_{n}^{*}(\xi) f(\xi) d \xi \tag{2.32}
\end{equation*}
$$

Change ξ in (2.32) to ξ^{\prime} and substitute (2.32) into (2.33)

$$
\begin{align*}
& f(\xi)=\int_{a}^{b}\left[\sum_{n=1}^{\infty} U_{n}^{*}\left(\xi^{\prime}\right) U_{n}(\xi)\right] f\left(\xi^{\prime}\right) d \xi^{\prime} \tag{2.34}\\
& f(\xi) \text { is arbitrary } \Rightarrow \underbrace{\sum_{n=1}^{\infty} U_{n}^{*}\left(\xi^{\prime}\right) U_{n}(\xi)=\delta\left(\xi-\xi^{\prime}\right)} \tag{2.35}\\
& \text { (completeness or closure relation) }
\end{align*}
$$

Jackson, p. 68: "All orthonormal sets of functions normally occurring in mathematical physics have been proved to be complete." (This statement will be illustrated in Sec. 2.9.)

Fourier Series : example of complete set of orthogonal functions Exponential representation of $f(x)$ on the interval $-\frac{a}{2} \leq x \leq \frac{a}{2}$:

$$
\left\{\begin{array}{l}
f(x)=\sum_{n=-\infty}^{\infty} a_{n} e^{i k_{n} x} \tag{4}\\
k_{n}=\frac{2 \pi n}{a} ; a_{n}=\frac{1}{a} \int_{\frac{-a}{2}}^{\frac{a}{2}} f(x) e^{-i k_{n} x} d x
\end{array}\right.
$$

In (4), $f(x)$ is in general a complex function and, even when $f(x)$ is real, a_{n} is in general a complex constant.

In the case $f(x)$ is real, we have the realty condition: $a_{n}=a_{-n}^{*}$

$$
\begin{aligned}
& \text { Proof: } f(x)=\text { real } \Rightarrow f(x)=f^{*}(x)=n \rightarrow-n \\
& \quad \Rightarrow \sum_{n=-\infty}^{\infty} a_{n} e^{i k_{n} x}=\sum_{n=-\infty}^{\infty} a_{n}^{*} e^{-i k_{n} x}=\sum_{n=-\infty}^{\infty} a_{-n}^{*} e^{i k_{n} x} \\
& \quad \Rightarrow a_{n}=a_{-n}^{*}\left(\text { since } e^{i k_{n} x} \text { is linearly independent }\right)
\end{aligned}
$$

Questions: 1. Why " $n=-\infty$ to ∞ " instead of " $n=0$ to ∞ "?
2. Why $k_{n}=2 \pi n / a$ instead of $k_{n}=\pi n / a$?

Sinusoidal representation of $f(x)$ on the interval $-\frac{a}{2} \leq x \leq \frac{a}{2}$:

$$
\begin{aligned}
& f(x)=\sum_{n=-\infty}^{\infty} a_{n} e^{i k_{n} x}=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} e^{i k_{n} x}+a_{-n} e^{-i k_{n} x}\right) \\
& =a_{0}+\sum_{n=1}^{\infty}\left[\left(a_{n} \cos k_{n} x+a_{-n} \cos k_{n} x\right)+i\left(a_{n} \sin k_{n} x-a_{-n} \sin k_{n} x\right)\right] \\
& =a_{0}+\sum_{n=1}^{\infty}\left(a_{n}+a_{-n}\right) \cos k_{n} x+\sum_{n=1}^{\infty} i\left(a_{n}-a_{-n}\right) \sin k_{n} x
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow f(x)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos k_{n} x+B_{n} \sin k_{n} x\right], \quad k_{n}=\frac{2 \pi n}{a} \tag{5}
\end{equation*}
$$

where
$>$ Same as (2.36) and (2.37)

$$
\left\{\begin{array}{l}
A_{n}=a_{n}+a_{-n}=\frac{1}{a} \int_{\frac{-a}{2}}^{\frac{a}{2}} f(x) \underbrace{(n=0 \rightarrow \infty)}_{2 \cos k_{n} x}\left(e^{-i k_{n} x}+e^{i k_{n} x}\right) \\
\quad \\
B_{n}=i\left(a_{n}-a_{-n}\right)=\frac{i}{a} \int_{\frac{-a}{2}}^{\frac{a}{2}} f(x) \underbrace{\left(e^{-i k_{n} x}-e^{i k_{n} x}\right)}_{-2 i \sin k_{n} x} d x=\frac{2}{a} \int_{\frac{-a}{2}}^{\frac{a}{2}} f(x) \cos k_{n} x d x \\
\left.B_{n}=1 \rightarrow \infty\right)
\end{array}\right.
$$

Discussion: It is often more convenient to express a physical quantity (a real number) in the exponential representation than in the sinusoidal representation, because the complex coefficient $\left(a_{\mathrm{n}}\right)$ of an exponential term carries twice the information of the real coefficient $\left(A_{\mathrm{n}}\right.$ or $\left.B_{\mathrm{n}}\right)$ of a sinusoidal term. For example, if

$$
x(t)=\operatorname{Re}\left[a \mathrm{e}^{i \omega t}\right]
$$

is the displacement of a simple harmonic oscillator, the complex a contains both the magnitude and phase of the displacement. In the sinusoidal representation, the same quantity will be written

$$
x(t)=A \cos (\omega t)+B \sin (\omega t) .
$$

Exponential terms are also easier to manipulate (such as multiplication and differentiation). This point will be further discussed in Ch. 7.

Fourier Transform :

If the interval becomes infinite $(a \rightarrow \infty)$, we obtain the Fourier transform (see Jackson p.68).

$$
\left\{\begin{array}{l}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k \tag{2.44}\\
A(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x
\end{array}\right.
$$

Change x to x^{\prime} in (2.45) and sub. (2.45) into (2.44)

$$
\begin{gather*}
f(x)=\int_{-\infty}^{\infty} d x^{\prime} f\left(x^{\prime}\right) \underbrace{\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} d k}_{\delta\left(x-x^{\prime}\right)} \\
\Rightarrow \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} d k=\delta\left(x-x^{\prime}\right) \quad[\text { completeness relation }] \tag{2.47}
\end{gather*}
$$

Question 1: Does $A(k)$ contain any more or any less information than $f(x)$?

Question 2 : Does a_{n} in $f(x)=\sum_{n} a_{n} e^{i k_{n} x}$ have the same dimension

$$
\text { as } A(k) \text { in } f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k ?
$$

[assuming x is a dimensional quantity.]
Rewrite (2.47): $\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i k\left(x-x^{\prime}\right)} d k=\delta\left(x-x^{\prime}\right)$
Interchange x and k
$\Rightarrow \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i\left(k-k^{\prime}\right) x} d x=\delta\left(k-k^{\prime}\right), \quad$ [orthogonality condition]
Let $y=k-k^{\prime}$ and sub. it into (2.46)
$\Rightarrow \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{i x y} d x=\delta(y)$
Since $\delta(y)=\delta(-y)$, we may write more generally,

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{ \pm i x y} d x=\delta(y) \tag{6}
\end{equation*}
$$

There are two useful theorems concerning the Fourier integral:
(1) Parseval's theorem :

The Parseval's theorem states $\int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty}|A(k)|^{2} d k$

$$
\text { Proof: } \text { Rewrite the Fourier transform: }\left\{\begin{array}{l}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k \tag{7}\\
A(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(x) e^{-i k x} d x
\end{array}\right.
$$

$$
\Rightarrow \int_{-\infty}^{\infty}|f(x)|^{2} d x=\int_{-\infty}^{\infty} f(x) f^{*}(x) d x
$$

$$
=\int_{-\infty}^{\infty} d x\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A(k) e^{i k x} d k\right]\left[\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} A^{*}\left(k^{\prime}\right) e^{-i k^{\prime} x} d k^{\prime}\right]
$$

$$
=\int_{-\infty}^{\infty} d k A(k) \int_{-\infty}^{\infty} d k^{\prime} A^{*}\left(k^{\prime}\right) \underbrace{\frac{1}{2 \pi} \int_{-\infty}^{\infty} d x e^{i\left(k-k^{\prime}\right) x}}_{\delta\left(k-k^{\prime}\right)}=\int_{-\infty}^{\infty}|A(k)|^{2} d k
$$

(2) Convolution theorem :

The convolution theorem states

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{-\infty}^{\infty}[\underbrace{\int_{-\infty}^{\infty} f_{1}(x-\xi) f_{2}(\xi) d \xi}] e^{-i k x} d x=A_{1}(k) A_{2}(k) \tag{8}
\end{equation*}
$$

This is called the convolution of $f_{1}(x)$ and $f_{2}(x)$
where the factor $\frac{1}{2 \pi}$ follows the convention in (2.44) and (2.45).

$$
\begin{aligned}
\text { Proof }: \text { LHS of }(8) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(\xi) d \xi \frac{1}{\sqrt{2 \pi}} \underbrace{\int_{-\infty}^{\infty} f_{1}(x-\xi) e^{-i k x} d x}_{\text {Let } \eta=x-\xi}(\Rightarrow d x=d \eta) \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(\xi) d \xi \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{1}(\eta) e^{-i k(\xi+\eta)} d \eta \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{2}(\xi)^{-i k \xi} d \xi \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f_{1}(\eta) e^{-i k \eta} d \eta \\
& =A_{1}(k) A_{2}(k)
\end{aligned}
$$

2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates

$$
\begin{align*}
& \nabla^{2} \Phi=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}+\frac{\partial^{2} \Phi}{\partial z^{2}}=0 \quad\left[\begin{array}{l}
\text { Laplace equation in } \\
\text { Cartesian coordinates }
\end{array}\right] \tag{2.48}\\
& \text { Let } \Phi(x, y, z)=X(x) Y(y) Z(z) \tag{2.49}\\
& \Rightarrow \frac{1}{X} \frac{d^{2} X}{d x^{2}}+\frac{1}{Y} \frac{d^{2} Y}{d y^{2}}+\frac{1}{Z} \frac{d^{2} Z}{d z^{2}}=0 \tag{2.50}
\end{align*}
$$

Since this equation holds for arbitrary values of x, y, and z, each of the three terms must be separately constant.
$\Rightarrow \frac{d^{2} X}{d x^{2}}=-\alpha^{2} X ; \frac{d^{2} Y}{d y^{2}}=-\beta^{2} Y ; \frac{d^{2} Z}{d z^{2}}=\gamma^{2} Z$ subject to $\gamma^{2}=\alpha^{2}+\beta^{2}$
$\Rightarrow X(x)=\left\{\begin{array}{l}e^{i \alpha x} \\ e^{-i \alpha x}\end{array} ; Y(y)=\left\{\begin{array}{l}e^{i \beta y} \\ e^{-i \beta y}\end{array} ; Z(z)=\left\{\begin{array}{l}e^{\gamma z} \\ e^{-\gamma z}\end{array}\right.\right.\right.$ with $\gamma=\sqrt{\alpha^{2}+\beta^{2}}$
2.9 Separation of Variables, Laplace Equation in Rectangular Coordinates (continued)

Example: Find Φ inside a charge-free rectangular box (see figure) with the b.c. $\Phi(x, y, z=c)=V(x, y)$ and $\Phi=0$ on other sides.

$$
\begin{aligned}
& X(x)=A e^{i \alpha x}+B e^{-i \alpha x} \\
& \left\{\begin{array}{l}
X(0)=0 \Rightarrow B=-A \Rightarrow X=A\left(e^{i \alpha x}-e^{-i \alpha x}\right)=A^{\prime} \sin \alpha x \\
X(a)=0 \Rightarrow \alpha=\alpha_{n}=\frac{\pi n}{a}, n=1,2, \ldots \\
\Rightarrow X(x)=\sum_{n=1}^{\infty} A_{n} \sin \alpha_{n} x
\end{array}\right. \\
& \text { Similarly, } Y(y)=A e^{i \beta y}+B e^{-i \beta y} \\
& Y(0)=0 \text { and } Y(b)=0 \text { give } \\
& Y(y)=\sum_{m=1}^{\infty} A_{m} \sin \beta_{m} y, \beta_{m}=\frac{\pi m}{b} \\
& \text { Solution for } Z: Z(z)=A e^{\gamma z}+B e^{-\gamma z}
\end{aligned}
$$

$Z(0)=0 \Rightarrow B=-A \Rightarrow Z(z)=A\left(e^{\gamma z}-e^{-\gamma z}\right)=A^{\prime \prime} \sinh \gamma z$
$\Rightarrow \Phi=\sum_{n, m=1}^{\infty} A_{n m} \sin \left(\alpha_{n} x\right) \sin \left(\beta_{m} y\right) \sinh \left(\gamma_{n m} z\right), \gamma_{n m}=\sqrt{\alpha_{n}^{2}+\beta_{m}^{2}}$

To find $A_{n m}$, we apply the b.c. on the $z=c$ plane:

$$
\begin{align*}
& \Phi(x, y, z=c)=V(x, y) \\
\Rightarrow & V(x, y)=\sum_{n, m=1}^{\infty} A_{n m} \sin \left(\alpha_{n} x\right) \sin \left(\beta_{m} y\right) \sinh \left(\gamma_{n m} c\right) \tag{2.57}\\
\Rightarrow & A_{n m}=\frac{4}{a b \sinh \left(\gamma_{n m} c\right)} \int_{0}^{a} d x \int_{0}^{b} d y V(x, y) \sin \left(\alpha_{n} x\right) \sin \left(\beta_{m} y\right) \tag{2.58}
\end{align*}
$$

Questions:

1. The method of images is not a general method, but the method of expansion in orthogonal functions is. Why?
2. In electrostatics, only charges can produce Φ. In this problem, $\rho=0$, how can there be Φ ?
3. Can we find the surface charge distribution (σ) on the walls from the knowledge of Φ inside the box? If so, under what condition?

Discussion:

Rewrite (2.57): $V(x, y)=\sum_{n, m=1}^{\infty} A_{n m} \sin \left(\alpha_{n} x\right) \sin \left(\beta_{m} y\right) \sinh \left(\gamma_{n m} c\right)$,
where $\alpha_{n}=\frac{\pi n}{a}$ and $\beta_{m}=\frac{\pi m}{b}$.
This is a good example to substantiate the following statement on physics ground: "All orthonormal sets of functions normally occurring in mathematical physics have been proved to be complete." (p. 68)

In (2.57), $\sin \left(\alpha_{n} x\right)$ and $\sin \left(\beta_{m} y\right)$ are orthogonal functions generated in a physics problem. Physically, we expect the problem to have a solution for any boundary condition on the surface $z=c$, i.e. for any function $V(x, y)$ specified in (2.57). Thus, $\sin \left(\alpha_{n} x\right)$ and and $\sin \left(\beta_{m} y\right)$ must each form a complete set in order to represent an arbitrary $V(x, y)$.

Homework of Chap. 2

Problems: 1, 2, 3, 4, 5,
9, 23, 26

