Chapter 3: Boundary-Value Problems
In Electrostatics: Il

We begin this chapter with 3 sections (Secs. 3.2, 3.5, & 3.6) on
mathematics.

3.2 Legendre Equation and Legendre Polynomials
L_egendre Equation:

%[(1—X2)g—ﬂ+v(v+l)u=0, _1<x<1 (3.9)

The solutions are: u(x) = AP, (X)+ BQ,, (X)
P,(X): Legendre function of the first kind
Q, (X): Legendre function of the second kind

Ref.1: Gradshteyn & Ryzhik, "Table of Integrals, Series, and
Products," Chs. 7 & 8.

Ref.2: Abramowitz & Stegun, "Handbook of Mathematical
Functions," Ch. 8.



3.2 Legendre Equation and Legendre Polynomials (continued)
Rewrite the solution: u(x) = AP, (X)+ BQ, (X)
Q, (X) diverges as X — *1. Hence, Q,, (X) 1s not commonly used
in physics.
P,(x) is finite for |X <1 and x =1, but P,(—1) diverges unless v

1s an integer (see p.105.)

In many physics problems, boundary conditions require v to be
an integer. Since the form of the Legendre equation i1s unchanged if
v > —v—1, we have P_,_;(X) =P, (X). Hence, when v is an integer
(denoted by |), negative | is redundant. Thus, | =0, 1, 2--- and B (X)
becomes a polynomial (properties on following pages).

Note: The range (—1< X <1) considered here is often encountered
in physics problems. Mathmatically, the range of P, (X) and Q,, (X)
can be extended to the entire complex X + 1y plane. Furthermore, v can
also be a complex number (See Gradshteyn & Ryzhik). >



3.2 Legendre Equation and Legendre Polynomials (continued)

. |
Legendre Polynomial : B (x)=-L- 4 (x> =1, 1=0, 1, 2... 3.16)

2 raxt
R (—x) = (-1)' R (%)
Po(x) ‘QI (1) = o
$1 R()=1 .

R(=D = (=D -os

Lengendre polynomials P,(X) - Ps(X) Second Lengendre functions

[Po®) =1, P,(X) = X] Qo(X), Q,(X), and Q,(X)



The set R (x) is orthogonal: [1, R, (\)R(x)dx =26  (3.21)
It is also complete in index |. Hence, any function f (X) can be
expandedas  f(X)= 3 AP (X) (3.23)
=0

3.5 Associated Legendre Functions and the
Spherical Harmonics

Associated Legendre Equation :

m?2
(?X(l X )?j—gl(-l-[ (V+1) lxz}u 0, for —1<x<1

The solutions are: U(X) = AP)" (x) + BQ," (X)
{Pvm : associated Legendre function of the first kind

Q‘En . associated Legendre function of the second kind

(Refs.: Gradshteyn & Ryzhik; Abramowitz & Stegun)



3.5 Associated Legendre Functions and the Spherical Harmonics (continued)
Rewrite the solution: U(X) = AP." (x) + BQ, (X)
Q)" (x) diverges as X — %1, hence is not commonly used in physics.
P"(x) is finite on the interval —1< x <1 only when
{v is zero or a positive integer (v=1=0, 1, 2...) and
m=—I, —-(I-1),..., =1, 0, L,..., (I-1), |

Under these conditions, we have (for positive or negative m)

[p. 107.]

AT 0= DR =) (& )™ o2 1) (3.50)
R0 =R((x)
AT (=x) = (=" R"(x)
with the properties: 1 B~ (X) = (=1)" E: ;' M (X) (3.51)
J‘il le(X)PIm(X)dX: 2 (I ‘|‘m)!5"’ (3552)

21+1(1—m)!



3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

The set B (x) is complete in index | in the sense any function f (X)
can be expanded as f(X) = % C,R™(x) [m: 4 ﬁxeq integer , }
1=m| See (A.3) in Appendix A.
Spherical Harmonics Y|, (6, 9):
] :
Vi (0,0) = Jz' 10 o AT (eos0)e™. (3.53)
where | =0 or a positive integer; m=-I, —(I-1),..., 0,..., (I-1),
(v \ Z
YO,O(ea Q)= \/% X
|
Y, 1(6,0) =/ singe™? 0/ |
Examples: < ro
_ /3 |
Yi0(0,0) = \/%COSQ —t Yy
~ |
_ |¢ (0 \\\ |
Y1 1(0,0) = \/7s1n de X J 6




3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

Properties of spherical harmonics:
(1) Using the orthogonality relation,

] m m 2 (I + m)'
B (X)B (x)dx = o’ 3.52

R OORT () 2+ 1(—my " (3.52)
we can show that the spherical harmonics are orthonormal, 1.e

[AdQY iy (0, 0)Yi (6.0) = Sy Grapy (3.55)
where

[dQ =[P d["sin0d0 = [*"dg[' dcosd |

]dQ=|"dg| sinfdf=|"dg|  dcos

0

R D¢

>
/
yal



3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

(1) The set Y, (6, ) 1s complete, 1.e. an arbitrary function (60, ¢)
can be expanded as
9(0,9) = ZO 3 AmYim (0, 9) (3.58)
=0 m=—I
Multiplying both sides by Y,m (6, @), integrating over &, @, and
making use of (3.55), we obtain
n = [dQY) (6. 0)9(6,9)

Substitution of A, 1nto (3.58) gives the following expression
for (0, 9),

00.0)= (40| £ 3 Y1 (0.9 Nin(0.0) |0(06)

o | "
= IZ > IY|m(¢9’,(p’)Y|m(0, P)=0(p—p)o(cos@—cosO)  (3.56)
=0 m=—

This 1s the completeness relation of Y, (6, @) [cf. (2.34) & (2.35).]
8



3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

(111) Other properties of Y|, (8,¢):

Y| 0 (6.0) = (=1)™Ypm (6.0)

<
21 +1
Y|,0(99§0) —

This can be seen from the definition of Y|, (6,¢):

P (cosé
yy | (cosB)

Y, (6.0)= \/2|+1(| miiplm(cosg)eimgo

and the relations:
M(x)=(-1)

R (x) =P ()

m (I=m)! 5
(I+m)!

A" (x) (3.51)



3.6 Addition Theorem for Spherical Harmonics

a ) S I VLIRSS ISR o AU IS B AU S S [N RS
1 1C 4adiuon tCOICiIl 101 Spcricdal narimonics 1s acrived o1l pp.

110-111. Here we write the theorem without derivation:

Ao L«
P,(cosy/):r > Yim(@,0)Yim(60, ), (3.62)

4

+1 m=I
where 7 is the angle between X and X'
Setting | =1 in (3.62) gives
A7 -\, * P
R (cosy) = ?[Yl,—l (&, )Y1,—1(9, ®)
+Y10(8',0)Y1,0(0,0)
+ Y1>f1 (0", 9" )V11(0,9)]

Using P(cosy)=cosy, Y| _| = \/g sin He_iq’, Yio = \/% cos &,

and Y| = -,/ sin#e'”, we obtain a useful expression:

cos ¥ =cos @ cos ' +sin @sin 8’ cos(p — @"). (110



3.1 Laplace Equation in Spherical Coordinates

[\

V2D(x) =0
:%%(@)Jrrzsline So(sin0%5)+ s11n eg;q) 0 X
Let o(x) = 2 P(6)Q(p) 0/
|
= PQ %I?rL2J r2L:§16’ So(sin05)+ lsJuF; 20 dz(pQ 0 ; f
Multiply by ' Usli:’nQ 0 : v

Dividing all terms by sin?6, we see that the
r-dependence is 1solated within this term. So

—v(v+l) ~—| this term must be a constant. Let it be v(v +1).

(2 d?
— sin” 0 [U ((jerZJ + Bgin edg(smé’ )]+ L q)Q 0 (3.3)
—m?2

The ¢-dependence is isolated within this term, /:
so this term must be a constant. Let it be —m?

11



3.1 Laplace Equation in Spherical Coordinates (continued)

—v(v+l) ——m?
(2 d? : o
Rewrite (3.3): sin 20 [ %rsz + Ps}né’ ddg(sm 9%)]+%ﬁ =0
42
The equation for Q(e) 1s: x Q +m Q 0 (3.4)
. _ C”
= Q=¢M? 7'M m 1s to be determined
The equation for P(8) is from the b.c.
1 d dP _m? |p_
L8 (sinoP)+ [v(v 1) sinzé’} p—0. (3.6)

Let X = cos &, then the equation takes the form of the associated
Legendre equation:

.
g (1-x2)P + [(v+1)—1r_"7_P 0

= P = me (X) — PVm (cos?) v 1s to be determined (2)
Q(x) QM (cos 0) from the b.c.

12



3.1 Laplace Eq. in Spherical Coordinates (continued)

—1/(/1\/4_1\ =—i"|;|2
2 2 - d
Rewrite (3.3): sin” @ [ ((jjrg + Psi1n<9 ddg(sm 9%)]+%ﬁ -0
The equation for U (r) is: %2'}2) V(:;L Du =0 (3.7)
N
_ U _y— Since v 1s determined
U:rv+1rv _:rvrvl
= = r ’ from the b.c. for (3.6),
Thus, this 1s not an eigenvalue
i blem.
1% Pm Im(p p1ro
(D:Jr_ 1L (cos0) J o l
r"7 ) 1Q) (cos )| (&7

where each bracket represents a linear combination of the two
functions inside. Because the differential equation is linear, the linear
combination of any number of solutions is also a solution.

Note that vand m are arbitrary constants until we apply boundary

conditions.

13



3.3 Boundary-Value Problems with
Azimuthal Symmetry

Problem 1: Find @ inside 2 hemispheres held at opposite
potentials as shown 1n the figure.

VD =0, O(a,0)= {

{r‘/ }{Pvm(cos 6’)}{eim¢ }
b= —v—1 m —im
r Q, (cos@)| e

(1) @ 1s independent of . > m=0
(11) @ 1s finite at =0 and 7 (1.e. at
cosd=1and —1).
= v=I1=0, 1, 2,... and drop QLn

(111) ® i1s finiteatr =0. = drop r_V_l

— ®(r,0)= ¥ Ar'R(cosb)
=0

V, O£9<§
-V, Z<60<rx

-

1. B, (1) diverges unless v 1s
an integer (p.105.)

2. We haveset| =0, 1, 2,---
because P _(X) = B (X).
3.Q,(X) >0 as X — 1.

14




3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

IN
N

V,
-V ,

N N

<
The b.c.atr =a is: q)(a,@):ZAiaIlDI(COS‘g):{ <
| <

N o
I\
(WA

Use |1 ROOR (x)dx =528 (3.21)

:>j_ R (cos O)¢(a, &)d cos & = Aa' j_ R%(cosO)d cos@ Aa'

2I+1
= A =52 [y R (cos §)d cos @ —[°| B (cos 8)d cos ]
( -1 11=(2n+1)(2n-1)(2n-3)...5x3x]1
B ”/(2n+1) (
Vu( 2 (2I|+11)(| 2).., e
= +
f L@ 2<2)!
pp. 99-100(( 0 , forevenl

:>CD(r,6’):V[ Pl(cosﬁ)——(%fP3(cos6’)+--}, r<a  (3.36)

I I
To find @ for r > a, replace ( ) in (3.36) by (%) " [see (2.27);|5

Q=



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 2: A conducting sphere of radius a with net charge
Q on its surface 1s placed in a uniform electric field Eye,. Use the

method of expansion to find ® outside the sphere and o on the
sphere.

rY P™(cosd)| |e™

r 1 1 QM (cos 6) Sl

(1) @ is independent of . => m=0
(11) @ 1s finite at /=0 and 7 (i.e. atcos@ =1and —1).

D =

= v=1=0, 1, 2,... and drop Q,En Question:
0 |
Hence, ®(r,0) = ¥ [Ar' +Br "R (cosg) ' =@ (121 as
1=0 r — oo. Why keep
b.c.atr > o: ®=-Ejrcosd % theAil’I terms?

o J/

V" -
external field due to net chrage Q

= A =-E;, A=0(orl#1), and B, =Q 16




3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

= O(r,0)=—E,r cos@+% + § B,r_(IH)P, (cos0)
|=1

b.c.atr =a: ®(r =a) =const.

= O(r=a)= ( Eja+ 2)COSH+Q + Z B a (I+D) P|(cosé’)

, |=2—~
~ not a 0

0 const.

= BleOa3 and B, =0 for | > 2

= O(r,0) :—Eorcosﬁ+$+ E, ?—;cosﬁ

not a const.

. J/

due to induced surface charge
density o on the sphere

3
As will become clear in Ch. 4 [Eq. (4.56)], the E, ?—2cos @ term 1n O

is due to an electric dipole of dipole moment p = 47zgoa3 E,. (see p.64)
The induced surface charge density o is

O ==8) 5 a=3<90E0cos<9+‘9§—§g 17



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 3: @ due to a unit point source at X' in infinite space

First, let's assume the point source 1s on the z-axis (at a distance
r' from the origin) and divide the space into two regions: r <r' and
r > r'. In each region, we have V2® = 0 with the solution Z

(D:{r‘: alvm(COS}/)HeW } ol
r7 ) 1Q (cosy)] e 7

(1) ®i1sindep.of . = Mm=0 X

(i) @ is finiteat y =0 and 7.= v =1=0,1,2,... and drop Q"

—1-1 - . '

: : atr=0. =dropr mmregionr <r
(i11) @ 1s finite P | .g

asr —oo. = drop I’ inregiont > r’

r

§ A,r'P,(cos7), r<r’
— @O =<170

§ B,r_I_IH(cosy), r>r'

=0 18



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

The formal method to solve for A, and B, 1s to match the b.c. at
r=r" (as will be done in Sec. 3.9). Here we obtain A, and B, by
exploiting the fact that we already know ® = 1/|x—x’| (for a unit
point source, g <> 47¢,). So, by the uniqueness theorem, we have

1
Cx=x|

E A1r|P|(cosy) , r<r’
O —0

é} B r_|_1P| (cosy), r>r

For y =0, we have B (1) =1 and [x—X'|=|r —r’|. Hence,

(2 :
>Ar ., r<r
1 1=0
- s
SBr T, r>r
1=0

19



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

n_ N n1,, N(N=1) no > NN-1)(N-2) n3 3
(X+Yy) =X"+nx""y+ o X'y T+ T XUy 4
1 1 1 *1 | |

1 r'—r r'l—rr, r'=o ' I=or
= <
r-r'f 1 11 1=
T AN
\ r - -

But

Equating the RHS of this equation to the RHS of the equation on

the previous page, we obtain (o !
4 4 (cosy),
| I =0 r
= , B, = il = =
A (o x—x| | o
>~ 7 R(cosy),
| I =0T
or Z < - RA(cosy),  [two equations in one] (3.38)
x=x| 1=or'*

where I_ () is the smaller (larger) of r and r". 20



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Rewrite (3.38):

L

|
1 © T point—A y’

X X
X— x\ E  F(cos7) source | ,

>

This equation was derived with the
unit point source located on the z-axis
(upper figure). However, 1t depends only
on the magnitudes (r, r') of Xxand X" and
the angle () between X and X'. So we
expect the expression in (3.38) can be cast
into a general form which holds true when
the unit point charge is at an arbitrary point
(lower figure). We may obtain the general
form by way of the addition theorem.




3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

h g

Sub. the RHS of the addition theorem
4

Source

/2

P(cosy)=—— Yim (6,0 )Y (0O, 3.62
(cosy) = 2 Ym(&0)im(0,0) , . (3.62)

: 1 o ! |

for P (cos y) in =X 57 R(cosy), -y
‘X_X‘ =0T, X \Z.j\\\j -
1 R N I

we get =4dry ¥ = Yim(@',0);n (6, 3.70

So, we started with a physics problem (the potential of a point
charge in infinite space), but end up with a mathematical relation

in (3.70).
Question: Why write a simple function ® = 1/|X—X"| in such

a complicated form? (See next problem.)
22
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3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

Problem 4: Potential due to charge ¢ uniformly distributed on a
circular ring of radius a.

Let p(X) = Ko(60 —a)o(r —c¢) in spherical coordinates

27CTsina

g =I,O(X)d3x d3X
=K[5(6—a)s(r—c)r’sinfdrddde
= 27Kc* sina ~a |
g D
27Clsina N\ o
= p(X) = ———— (0 -a)5(r -c)

__ 1 5 0(cosf—cosa)o(r—c)
T 27C

23



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

p(X) = —cosa)d(r' —c)
1 1 r' *

X ’ = < Y r, rY :
(D(X) 47}_ _[Vp( )d X| [(x=x 7Z-|Zom§_| 2] +1 r>|+1 |m(9 (0) |m(9 ¢)

=5 q > Z -[V '2dr’d cos @' d(ﬂ I+1 Y|m(9,§D)Y|m(9,(D)
TS 1=om= _I 2+ 5(COSH'—COSO€)§(I’ —C) |

4 ! I_m ! ' i
Yim(0',¢") = \/24{;;1 El+mg!P|m (cos 8")e'™?

Apparently, only the m =0 terms survive the @' integration.

:>(D(X)—4 d 5 ZIO r'2dr’ f d cos @’ r'“P'(COSQ)H(COSQ)
e | *d(cos@ —cosa)o(r'—c)

a4 OO R (cosa)R (cos 0)

|1
472'6‘|0>+

Jackson uses a slightly different method to derive this. See p.103. |



3.4 Behavior of Fields in a Conical Hole or
Near a Sharp Point

Consider the source-free configurations shown
in the figures.

ViD=0=d= {:L_IHP‘/:(COS H)H(ei_r?rigp}
Q, (cosd)| |e

(1) The geometry 1s indep. of @ (We also assume
that the b.c. 1s indep. of @.) = M =0

(11) QL“ (cos#) diverges at @ =0 or cosf =1. p ( |
— drop Q," (cos®)

| 24
Hence, @ = {r_v_l} P,(cos @) /

r

Note: P, (X) diverges at X = —1 unless v =integer. However, 1n this

problem, we have 8 < f <7 = coséd #—1 1n the region of
interest. Hence, v 1s not required to be an integer.

25



3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

Rewrite: @ = ::V_V_l P,(cos )
(iii) @ is finite at r = 0.
:> {(a) demand v >0 and drop r V' = ® =r"P, (cos 0)

(b) demand —v —1>0 and drop r¥ = ® =r"""'P, (cos 0)
But P, (cos@) = P_,_,(cosd), hence ® =r™""'P_ _,(cos 6)
= Either option (a) or option (b) gives ® =r"P,(cos8), v >0
(iv) ®=0atf0=LF=P,(cosf)=0 = v=v;, vy, V3,... (¥v>0)

Note: In the boundary condition: P, (cos ) =0, S 1s fixed and
v 1s the eigenvalue to be solved.

r—-0

= O = kzl AP, (cosd) = Ar'tP, (cos0), (3.44)

where v, 1s the smallest eigenvalue [the first root of P, (cos ) = 0].



3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

r—-0

-

/
E, = —g—? ~ -y, Ar P, (cos @) oc !

<

= Eg=—155~ Ar""sin6PR; (cos #) oc "~

.

o A"
Behavior of v; as a function of £ 1s shown Vi (: '
in the figure below. Note that )
(v, >1, if f<90° r /
v =1, 1f f=90° 2T
vy <1, if B> 90° o ;'
0 oc°  180°

When 8 <90° (conical hole), both E and o — 0 asr — 0.

27



3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)
However, when 8 > 90° (sharp point), both E and o — o as
. 4 .
r — 0. Large electric field (E > 2.5x10" V/cm) can cause the air to

breakdown and form a conducting path in the air for the sharp point
to discharge. This is the principle of the lightning rod (pp. 77-78.)

If the region of interest 1s bounded by the surface at r = a, the
coefficients A, in (3.44) can be determined by the b.c. ®(r =a) = O(0)

through
D(0) = 5 A@a"™ P, (cos0)
k=1

IfO(r=a)=d(@)=0, then all A, =0.= O =0 everywhere

In reality, the lightning rod 1s not perfectly sharp. Hence, @ 1s
finite at the tip, and on a clear day when there 1s a small potential
difference between the ground the clouds, the lightning rod will

not discharge.
28



3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

A physical picture of the lightning rod

Equal-

potential
lines

29



3.7 Laplace Equation in Cylindrical Coordinates;
Bessel Functions
0“0, 100, 1 &0 0% _( 2
VO(X)=0= ,02+108,0+p2 (,9(02+(322 0
Let D(x) =R(p)Q(p)Z(2)
gzg 2z =0= 7 =X
) .
=1992,,2Q-0=Q=¢" Y
oQ “
PR_1R_ [2_v2
kap”p@p (k ,O)R 0=>R=J,(kp), N,(kp)

where J,, and N, are Bessel functions of the first and second kind,
respectively (see following pages).

‘]v(kp) ei‘“” ekz
:{kam}{e“w}{e‘kz} )

30



3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

Bessel Functions : If we let X = K p, the equation for R takes
the standard form of the Bessel equation,

d?R_ 1dR 2\p_
d7+yﬁ+(1—‘;(—2)R—O (3.77)

with solutions J,, (X) and N, (X), from which we define the Hankel
functions:

JHP00=3,(0+iN, ()
\ngZ)(X) =J,(X)—IN,, (x)

and the modified Bessel functions (Bessel functions of imaginary
argument)

1,(x)=i"J,,(ix) (3.100)
3
K, (x)=Zi"H P (ix) (3.101)

See Jackson pp. 112-116, Gradshteyn & Ryzhik, and Abramowitz
& Stegun for properties of these special functions. 31

(3.86)




3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

I Jo(x)

Ji(x)

Bessel functions Jy(X), J,(X), and J,(X)

Ne(x) Niy(x)
Na(x)

LS
/\xx/o\

04 +

-1.0

Neumann functions Ny(x), N,(x), and

N,(X)

'.KQ Kl lo I‘

Modified Bessel
functions I (x), 1,(X),
Ko(X), and K,(X)




3.8 Bounday-Value Problems in Cylindrical Coordinates
Example 1: Potential inside a charge-free cylinder (see figure)
with the b.c. ®(z =L) =V (p,9) and ® =0 on other surfaces.

Jo(kp) | [ele | [
V2c1)(x):0:>cD={Nv(kp)}{2_w}{ Z O =V (p,p)

L
TN
(i) Z(z)=Ae +Be ™ - [
®=0atz=0 =Z(0)=0=>B=-A P=07~ 15| |
0

= 7(2) = A(ekz _e K ) — A'sinh kz

—
- ~w,

(1) O(p) =D(p+2x),1. e. O 1s single-valu = D= y
= v = M = integer X |
= Q(p) = § Cmeimq) = § (A, sinmg+ B, cosmg)
M=—00 m=0

(1i1) @ s finite at p =0. = drop N,,(kp) = R=J,,(kp)

33



3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)
Rewrite: R = J,,(Kp)
(V®=0atp=a = J,(ka)=0=k =kp, =700, n=1, 2, 3...
where X, 18 the n-th root of J,,,(X) = 0. Thus,
D(p,p,2)= Z Z Jin (K 2)sinh (K2 ) ( Ay sin mg + By, cos me)
With Kk ﬁxed by the boundary condition to a set of dicrete values
(K ), we may introduce two properties of J ., (Kn0)

(The set J ., (K, 0) is orthogonal in index n: [m:a fixed number.]
IGaJm(kmn’p)Jm(kmnp)Pdp bl [Jmﬂ(kmna)] o (3.95)
The set J ., (K,n X) 1s complete in 1ndex n. Hence, any function
f (X) can be expanded as f(X)= Z CnJm (K X)

" Questions: (See last page of Append1x A))

1. Why 1s J, (K,n X) orhtogonal and complete in index n instead of m?
2. Why 1s there a factor p 1n the integrand of (3.95), but not in (3.52)?



3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

Rewrite:

D(p,p,7)= > §Jm(kmnp)sinh(kmnz)(ﬁmn sin Mg + B, cosme)

m=0 n=1
V) @(p,0,2=L)=V(p,0)

=V (p,¢)= T sinh(KpL) I (Kmn2 ) (Agn sin Mg + By, cos me)

m,n
sin Mg

Operating both sides with jg “d (DL? £d pd (Knnp) {cos Mo

} and
making use of the orthogonal properties of sin mg and cos me, and

. 2
the relation: j(? I (K 2)Im (K 0) pd p = a7[*]m+1(kmna)]2 Onn (3.95)

_ {Amn} _ 2cosech (KyL) 127

Brnn ”az‘]r%wl (kmna) ’

(form =0, use % Bon)

ﬁnmw}

do[” pd pV (p. co)Jm(kmnp){COS o

35



3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

Example 2: Potential in the charge-free semi-infinite space z >0

D(p,p,2=0)=V (p,p)
D(p—>0,¢,2)=0

2 _ _ J, (kp) " ekz
VO(X)=0=>¢= {Nv(kp)}{eiw}{ekz}

kz

subject to the b.c. {

~kz

(1) @ remains finiteasz —>o. = drope™™ = Z(z) = Ae

(1) O(@)=D(p+27) = v =m=I1nteger
= Q(p)= ¥ (A, sinme+ B, cosmg)
m=0

(1i1) @ is finite at p =0. = drop N,,(kp) = R =J,,(kp)
(iv)yd=0at p >0 = J,(k-0)=0 = continuous eigenvalue K

= DO(p,0,7)= m%iojgodke_szm(kp)[Am(k)sin Mg + By, (K) cos mg]
) (3.106),,



3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

Rewrite (3.106) with variable k changed to k"
O(p,p.2)= > [7dke ™ 23, (K p)[ An(K')sin Mp+ By (k") cos mg]
m=0

V) ®(p,0,2=0)=V (p,p)

= V(p,p)= mgojgodk’\]m (k' 0)[ Ay (k") sinme + By, (k") cosmg |

sin Mg

Operating both sides with | g Tdo|, pdpdn,kp) {cos o

} and
making use of the orthogonal properties of sin mg and cos me, and

the relation: jgo XJ i (KX)o (KX)dX = %ﬁ(k —k" (3.108)

Am(k) . k T 00 sinmgo
= {Bm(k)}—ﬂj dol, pde(p,co)Jm(kp){COSm@} (3.109)
1

For m=0, use 5 B, (K) in series (3.106).
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3.9 Expansion of Green Functions in
Spherical Coordinates
The Green function for an electrostatic potential problem satisfies
VG (X,X')=—470 (X —X')
with G (X,x") =0 for X on the boundary surface.

Question: Jackson p.120 states the b.c. as "G(X, X") = 0 for either
X or X' on the boundary surface." Why?

Case 1. Green function 1n infinite space

The simplest form is G(X,X') = x—lx’ (Sec. 1.10). ffu;;e

N x!

It can be expressed as an expansion in r' X

spherical coordinates as (Sec. 3.7) r

Yim (0,0 )i (6,0)  (3.70)

38
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3.9 Expansion of Green Functions in Spherical Coordinates (continued)

Case 2: Green function outside a conducting sphere

: : : 7 point
By the method of images, we have obtained image X e
the Green function in Sec. 2.6, X
]
G(x,X')= 1 (2.16)
X=X| ylx—ay
X2 «~G=0

2
ax!
X'

The second term can be expanded using (3 70) Since || >

b

we substitute I, = X/ =T and I = %X' = ar—? into (3.70) to obtain
3\
2 iy s la(a)Y(H, e (6.0
=45 , ,
x—éx’ 1—om=—1I 21 +1 ! Im > @ M im > @
X
rl

r.

1 | [+1
= G(X,X 4722 —— Y (8,0 (6, 0), (3.114
( ) = 90| Il{ [+1 a(rr) } Im( ) Im( ) ( 39)




3.9 Expansion of Green Functions in Spherical Coordinates (continued)

Case 3: Green function inside a spherical shell bounded by
grounded conductors (see figure)
VG (X,X') = 475 (X —X')
with the b.c. G(r=a)=G(r=b)=0
This problem 1s difficult to solve by the

method of images. We will solve 1t by a
systematic method: method of expansion.

Write 0(X —X") in spherical coordinates,
S(X—X") = #5(r —1"S(p—¢")S(cos @ —cos )
Use the completeness relation (3.56) for 6(@—@')o(cos@ —cos ')
o | «
= S(x-X)=Lor-rT T Yn@.0Wim@.0)  G.117)
=0 m=—

Note that, in (3.117), we have decomposed a point charge into an

infinite number of spherical "charge layers", all of radius r’.
40



3.9 Expansion of Green Functions in Spherical Coordinates (continued)

= V26 (xX) =47 L 5(r-1) S V(0.9 Vin(@.0) (4

f T =0 m=—|

variable| |constant constants variables

The RHS of this equation 1s an expansion in spherical harmonics,
which suggests that we expand G (X,X') similarly. This is possible

since Y|, (6, p) form a complete set.

G (X s 3 A (r|r,0,0)Y, (6.0), (3.118)
()= 2 Al 1090 tn G0

variable| [constants| [variables

where A, 1s a function of r to be solved from (4).
Expressing A, as

Aim (r | r,9 9,9 gp’) — gl (ra r’)Yl;kn (ela (0’) (5)
and sub. (5) into (4), we get the equation for g, (r,r") (see Sec. 3.1),
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3.9 Expansion of Green Functions in Spherical Coordinates (continued)

1 d? 1(1+1) 47

———[rgy(r,r")|- rry=——o(r-r’ 3.120
P2 (Ml =7 5 e ) == 5(r-r) (3.120)
Divide the space into r <r" and r > r’. In each region, (3.120)

reduces to

1d? 1(1+1)

———rg,(r,r’|— r.,r'y=0

rdr2[9|( )] % g,(r,r’)

4

 air e _{ArI +Br 7, r<r
R NP -V R
The remaining job i1s to find 4

boundary conditions to solve for the

4 constants A, B, A’, and B" in (6).
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3.9 Expansion of Green Functions in Spherical Coordinates (continued)

1) g(r=a,r)=0 :>9i(r,r')=A(rl_arzll++11)» r<r’
11 f ' ' |
(i) gi(r=b,r)=0 = g/(r,r")=B'( ;- Ji), 1>

r

(iii) g, (r,r") is continuous at r =",

Physical reason: ¢ 1s continuous across the charge

layeratr=r'. (E is finite at r=r". = A¢ = lim EAr =0). Thus,
Ar—0

| ( |
1 _r A:C( 1 r )
A(r,|_a2|+1) B'(l r") A T I P T 214

= — = —
l+1 l+1 21+1 ' 21+1 21+1
r I b rl r__ rl
B r g B_C(r —?,m)
( 1 . rII I . a2|+1 ’
C(r,m bzm)(r A+ ) r<r
= g, (r,r')=-
| rr|+1 I’|+1 b2l+1 ’
B | g2l | r)
=C I — 1+ 1+ o b2|>+1 (3.122)
< > 43



3.9 Expansion of Green Functions in Spherical Coordinates (continued)

2 o, _
Rewrite (3.120): %C?—z[rgl (r,r)]- I(l 2 1) g,(r,r')= _4_’2“5(r —r")
I I r

(iv) We need one more condition to get the remaining constant C in
(3.122). Physically, this condition 1s related to the discontinuity

of E, (oc % g,) across the charge layer at r = r’. Mathematicaly, we
integrate the delta funtion in (3.120) to bring out the discontinuity.
Multiply (3.120) by r and integrate fromr'—stor'+& (& - 0)

d ’ d , 4r
—1r r,r , ——|r r,r ' —
= o], - e, =-— i
) e oLl rg, (solid line
— _%_1—(%) - ][H—(H—l)(%) " ] as a function of r

N ] -
C 45Z X AN -7
— 7

[ 21+1 AVIES N
c[asn i@ -y ]=- =
4r ’ N\

= C= i
2| 1 ', —_—
21+ 1= (@) ] ror



3.9 Expansion of Green Functions in Spherical Coordinates (continued)

Sub. C 1nto (3.122), we get
G(X,x')

o2 LY@ Yim@e) (0 g2+ ;o
_47z|§()m§_| (2|+1)[1—(g)2'+1} TR T g2 (3.125)

Limiting case 1. a—>0 & b— o, (3.125) = (3.70)

Yim (0,0 Win(0,0)  (3.70)

] © | 1
G(x,X')= =4 <
( ) !x—x’! ﬂ|§0m§| 21 +1 r>|+1

Limiting case 2: b — oo, (3.125) = (3.114)

, 1 | 1,8 “
G (x,X ):47T|Zm2| +1L|<+1 —a(rr,)m}(lm(@ 9 Wim(0,9), (3.114)
’ >
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3.10 Solution of Potential Problems with the
Spherical Green Function Expansion

Example 1. Potential inside a charge-free ,
sphere of radius b subject to V(6.0)
the b.c. D(r =b) =V (6, )

Since we already have the Green function for

this problem, it 1s convenient to use the formal
solution derived in Sec. 1.10:

volume of
interest

@(X)—Kfv o(X)G(X, x)d3x’——qSSCD(x)—G(x x)yda' (1.44)
=0

There is no charge inside. = ®(X) = — 4— Pq CI)(X’) per G(x,x")da’
T n

Note: The unit vector n" is normal to the surface and pointing

outward from volume of interest. gn’ 1s a differentiation

along n' (£ S = 8r’ for this example).
46



3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Rewrite (3.125): , w

N2 L Y@@ (1 a2 d
G(x.x'\=4 Im Im r! —a _ >
(%.X) G @ ST e e g2t

I
For this example,a=0, r, =r',and r_ =r, hence

' 1 * ro | 1 r’l
oG _ VAR PN I S I [
— or' 4ﬂl§anlm(9 1 )Y|m(9, ¢)r (_ r,|_|j|_2 o b2|_|_1)
4z NEIPPN
= s = oy =2 2 (0 Yim@.0in @) (7
da’' =r"?sin@'dd'de’ =b*dQY’ (8)
O(X), =D (r'=b)=V (8¢ 9)
Sub. (7)-(9) into ®(x) =— L § D(X) gn, G(x,x)da’, we get

P00= |ZmU V(0,0 )Wim(0',9")d Q’] () Yim(0.0)  (3.128) _



3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Example 2: Potential due to a uniformly charged ring of radius a and
total charge Q located on the X-y plane inside a grounded
conducting sphere of radius b

In spherical coordinates, the X-y plane

is at @ = 7/2.The charge density p(X) can '
be written as L%
b | Q ¢
Q A =

p(X)= = 5(r —a)d(cos ) = < (3.129)

2mra

=7 =

The potental is given by l
1 3 1 0
O(X)=—— XNG(X,xHd "X —— ’ G(x,x"da'" (1.44
(X) iz, Jy PXDG(X,X) 47[%153 v (X,X) (1.44)

There is no inner conductor in this problem. = (3.125) reduces to

|
G(xX) =475 ¥ ol Vi@ @ i | 10)
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3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)
Symmetry in ¢ = m =0. Hence

Yim(0,9) = Y|o(0,9) = MP (cos )
= G(x,X')= Z P (cos @")P, (cos O)r_ ( 1 b2r|>|+l) (11)
Sub. (11) and p(X) = L

5ol o(r—a)o(cosb)
into (1.44), we obtain

D(X) = i}d%p(x’)G (%, %)
0

O
» ~—
R

0 , _5(r’—a)5(cos6”) |
r'“dr'd cos 8'd !
87[2808.2I ¢ Z PI(COSH)PI(COSQ)r ( 141 b2r|>+1)
Q r!
S ROR cosO (1 — 5, (3.130)
472'80| =0 IS

where r_ (r.) 1s the smaller (larger) of r and a

49



3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

IQ ,2‘ D f10] A] fn 2 11N "? 1"1’1’1]‘7 f‘]’\f) f‘ ]11"\Cl f\'F] not ]’1 h an A
iIv J. 1 UL\/l.lLlCl«l Ul LU a ui 11LU11111)’ UlluLS\/U 1111V V1l 1V lstll AIJ ali\

total charge Q located on the z-axis nside a grounded

conducting sphere of radius b (see figure) z ,
e, linear

The charge density p(X) can be written in density sz
spherical coordinates as (see problem below.)

o(X) —2% " [0(cos@—1)+S5(cos@+1)] //f@ 132)

The potential 1s given by

RPN GINA s oINS S 1 N
)=, |, PG X)dX ——45S<DU<)8 :

Rewrite (11), which 1s applicable to this problem:
|
G(xX)= % R(cosd)R o[ - i )

>

Sub. (1 1) into (1.44), we obtain
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3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

[ 5(cos@'—1)+5(cosB'+1) |
12
D(X) = jr’2dr’d cosA'de’| o i | |
87enb 'IZ R (cos &) R (cos O)r (r'lﬂ - b2'>+1j
| 1=0 _
8 Q Z [P|(1)+P|( 1)]P|(C059)I ( . 2|+1jdr (3.133)
ﬂgob =0 b

J/

<

[ortdr’+r! f( 1 _ o )dr’

r,I+1 b2|+1

R(-1)= (—1)I and B (I)=1 = 0Odd | terms cancel.

b OO 4j-|—1 (r 2j _
{1 (@) + z 21(2”1)[ ) ]sz(cosé?)} (3.136)

Note that the | =0 term in (3.133) 1s given by ln(?). See p.124.

= D(X) =




3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Problem: Show the charge density in (3.132): L inear
p(X) = §3 27;r2 [6(cos@—1)+S5(cosO+1)] b density o
represents a unifom charge distribution along z. %(4‘(5 Y
Solution: The total charge is X T

IP(X)CPX = %IS rzdrﬁ d cos 67[2” d¢5(COS<9—;);f2(cos9+1)

bjO drj d cos 6’[5(c0s6’ D)+ 5(0059+1)]

6=0, +Z -axis O=r, —Z ~axis

— % fb dz = uniform distribution from z =-b to z = b.

Note: The above integration over cosé starts from coséd =—1 and

and ends at cos@ =1. It does not cross 1 or —1. This 1ssue can be
resolved by a limiting procedure; namely, we write

o(cos@—1)+0(cos@+1)=1lm[o(cosO—1+&)+(cos@+1— g)]

&—0



optional 3,11 Expansion of Green Functions in
Cylindrical Coordinates

Consider the Green equation:
VG (X, X') =475 (x—x'), with G (x,x') = 0 as [X| = o

An obvious solution is 1/x —X'|. We have also i
solved this equation by the method of expansion in 4 p~_
spherical coordinates [(3.70)]. Here, by the same P
method, we solve 1t again 1n cylindrical coordinates. X 5
Write 6 (x—X') as I | y
S(x~xX)=L5(p-p)o(p—9)3(2-2) T pd
) | | X
§(¢_ ¢') — L Z elm((p_(a)
with < 27 = es
] |k 2-7') _ _1
5(z-7")=5_]"d L, dkcos|k(z-2")]
= V3G (x,x)=-2 2~ ( F) 5 X jo dke™ @) cos[k (z-2)]  (12)
53




optlonal 3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)
Since e™? and '
variables ¢ and z

G(x,x)=5-1 s jgodkgm(k,p,p’)eim(gp_gp’)cos[k(z—z’)] (3.140)
M=—o00

are complete sets, we may expand G(X,X') in

2w

where the coefficient g, (K, o, p') is a function of m, k, p and p".
Sub. (3.140) into (12) we get

0 2 2 2

T2 Mo op>  POP pog? a2
O (K, p, p")™@) cos[k(z —2')]
=-2%2°7) 3 dke™ ) cos[k(z - 2) (13)
M=—00
ﬁ_zi_zylalii
In (13), 6402_) m=, ~»— K o 7t 8 pappép.Hence,

2 m? , . ,
|:,L1)£0 pap— (K + 2)}gm(k,p,p)=—%5(p—p) (3.141)



optional

CLan 202 INTY 117 Tarnrl-ann

(O \ 70} \.) lUljllJabl\bUll
‘ Alm<kp>+ BKn(kp),  p<p
= (K, p,p") = ,
I (kp)+B'Kpy (kp), p>p

(1) g,y 1s finite atp:0.:> B=0
(ii) g,, remains finite as p —> 0. = A'=0
(iii) g,, is continuous at p = p.

= Al (kp")=B'K, (ko

LA _Kn(kp) {A-CKm<kp')

B" 1,(kp) B'=Cl (ko)
CKn(ko)n(kp),  p<p
Cly(kpYKnkp), p>p'
=Clpy(kpI)Kp(kp,)

— gm(k,p,p') :{

3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

(14) _



optlonal 3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

(iv) To obtain the coefficient C in g,,(k, o, o) =Cl (ko )K, (kp.),
mutiply (3.141) by p and integrate form p'—¢ to p'+ & (& — 0)

dgm _dgm _4r
Aplpre Py P
= Ck[ Iy (koYK (ko) = Ky (ko) i (ko) = ;”
Use the relation: I, ()K" (X) = 1 (X)K,, (X) = =1/ X (3.147)
= Ck(iy) == = C=47= gy (K. p. p) =471 1y (k p ) Ky (k)

Sub. the above expression for g, (K, p, o) into (3.140)

= G(x,X)= % § NS dke™ (@) cos[k (z—2')] 1 (kp) K (Kps)

Since G(X,X) = x—x’ , we have by the uniqueness theorem

| X0 i ' ,
\x_x'\:%mz Jy dke™ ") cos[k (2= 2) I (kp) K (kp, ) (3.148)
7 56



3.12 Eigenfunction Expansion for Green Functions
Eigenfunction Expansion of Green Function in 3 Dimensions :

We have obtained the Green function for the Poisson equation by
the method of eigenfunction expansion in 2 dimensions [e.g. (3.118),
in 6, ¢]. Here, we develop a general technique to obtain the Green
function by eigenfunction expansion in 3 dimensions. Consider the
Green function for a more general equation (with homogeneous b.c.):

VG (X,X )+[f(x)+ﬂ,]G(x X') = 475 (X —X') (3.156)

a given real functlon a given constant

We shall solve (3.156) by expanding G (X,X’) and §(x—X') in
eigenfunctions of a related problem formulated as follows.

. an eigenvalue to be determined by the
same f (X) as in (3 156) / b.c., not the same A as in (3.156)

Vi (X)+ [f(x)+/1] (x)=0 (3.153)
with the same boundary surface and homogeneous b.c. as for (3.156),




3.12 Eigenfunction Expansion for Green Functions (continued)

Assume the (3-dimensional) eigenfunctions for
vV (X)+[ f () +A]w (x)=0
are ¥, (X). Since the operator [V2 + f(X)] is Hermitian, we have

-[V Wr? Xy, (x)d X = Omn
and y,, form a complete set with real eigenvalue A, [see Apendix Al
Write  G(X,X) =X a,(X)w,(X) (3.157)
n

Sub. (3.157) and S(X—X") = Zw, (X, (X) [see (2.35)] into
V2G (x,X) +] F () + A]G (X, X') = 478 (X—X'), we obtain
X2 (X) V2 () +[ £ 00+ 4w ()} = 4wy (X ()
Since v, satisfies Vzwn X)+[ T (X)+ A, v, (X) =0, we have
%an (XA = Ay, (X) = _47;% W (X (X)

— a () =47 Y0%) o G(x,x') = 47y YW (X) (3.160)
0 - 58
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3.12 Eigenfunction Expansion for Green Functions (continued)
We now specialize to the Green function for the Poisson equation
i.e. (3.156) with f(X)=4=0. /A
Example 1: Green function for a rectangular box TC

VzG(x,x’) =475 (X—X') ﬁ

(x=0and a i__-____ Ly
with G(X,x')=0at {y=0andb i b
z=0andcC x¢ @

Consider the corresponding eigenvalue problem [(3.153) with f (X)

=0and 4 — k2]° Vzw(x) +k?  (X) = 0 with the same b.c.

2 2
Let y(X) = X(X)Y (V)Z(2) = « ddX2 + %yY 1 %Zg +k? =

— ) M~

—k|2 —k? K

X (x)=Ae'KIX + ek
Y (x)=BeMY +ce kY with k2 =k + k2 + k2
Z(x)=De'KZ 4 pe—ikiZ

—

.
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3.12 Eigenfunction Expansion for Green Functions (continued)

r f

(X(X)=0atx=0and a Hz% X—sm"g",

\

b.c. 4Y(X)=0aty=0and b =k, ="% and <Y =sin "7,
Z(X)=0atz=0andcC kn Tﬂ \Z_smngzj
2 2 2 (12 2 2
=k =k =7 (L o+ )
=¥ (X) =13pc smlﬁ—xsm mb y sin "4
(X (X
Sub. w(X) into (3.160): G(X,X'):47ZZ_LWJ(/1 )l///;( ), we obtain
J j
2> X5 A kit A=0
G(X,X") i lmn
32 0 Sinhgx'sinlgx sin mgy sin mézy sin ”752 sin 72
= 2 S (3.167)
zabC |,m,n=1 |2_|_rtr)12 _|_n2
a C
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3.12 Eigenfunction Expansion for Green Functions (continued)
Example 2: Green function for infinite space
VG (x,X') = —478 (x—X') with G(x,Xx')=0 as x| - oo
Consider the corresponding eigenvalue problem
V2 (X)+k?w(x)=0 in infinite space

The solution 1s
1 ik-x | eikxx+ikyy+ikzz

e =
(272_)3/2 (272_)3/2
where k =k,e, +kye, +k.e;

Wi (X) = (3.162)

Since the region of interest is infinite space, we have continuous

engenvalue k? and the factor 1/ (27[)3/ * gives the normalization
condition for y (X):

[y O (0d°x =5 (k -K') (3.163)

[see p.69 for a one dimensional example.]
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3.12 Eigenfunction Expansion for Green Functions (continued)

. . v (X (X)
So the series expansion: G(X,X)=47xY. VnlX) l’//i‘x [(3.160)]

n —

becomes

G(X, X’) _ 47Z_J‘ l//li (X’)W;(X) d3k

With 4, = k2, A =0, and y = 1 eik'x, we have

(27[)3/2
|k(x—x’)
G(x,xX)=——-[d’ K
27z2 I k2
mmce G(X, X , we get another mathematical expression
Since G(X,X') = X h h l
for
=
1 |k(x—x')
‘X X‘ by 2jd k 2 (3.164)
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3.12 Eigenfunction Expansion for Green Functions (continued)

Solution of Inhomogeneous Differential Equation by the Green
Function Method :

To show the usefulness of the 3-dimensional Green function just
obtained, we consider an inhomogeneous differential equation:

VAUX) +[ f (X)+ A]u(xX) = —47S(X) (15)

wth homogeneous b.c. In (15), S(X) 1s a distributed source. We have
shown that the solution for the same equation with a point source:

VG (X, X)+[f(X)+ ]G (X,X) = —475 (x—X) (3.156)
is G(x.X) =47 Yy (X (X) (g = 2 (3.160)
where w,,(X) is the eigenflimction of V2, (X) +[ F (X) + A, |y (X) = 0.
Then, the solution of (15) is u(x) = [, G(x,x)S(x)d"x’,  (16)
which can be verified if we operate both sides with VZ+ f (X)+ A and

apply (3.156) to the RHS.

Note: If 4 = A, there is no solution unless Iv u- (X)S(x)d 3x = 0. o



Homework of Chap. 3

Problems: 1, 2, 3, 6, 7,
9, 17, 20, 22
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