
Chapter 3: Boundary-Value Problems     
i El t t ti IIin Electrostatics: II

     We begin this chapter with 3 sections (Secs. 3.2, 3.5, & 3.6) on 

3.2 Legendre Equation and Legendre Polynomials
mathematics.
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0, 1 1 (3.9)1 1d du
d d xx u     

    

Legendre Equation :   

            0,   

     The solutions are: ( ) ( ) ( )
( ) d f i f h fi ki d

1 1             (3.9)1 1dx dx
u x AP x BQ x

xx u

 

   
 

  

 ( ) :  Legendre function of the first kind
       

( ) :  Legendre funct
P x
Q x


 ion of the second kind




: Gradshteyn & Ryzhik, "Table of Integrals, Series, and  
                 Products," Chs. 7 & 8.

Ab it & St "H db k f M th ti l

     Ref. 1

R f 2     : Abramowitz & Stegun, "Handbook of Mathematical 
        

Ref. 2
         Functions," Ch. 8. 1



3.2 Legendre Equation and Legendre Polynomials (continued)

R it th l ti ( ) ( ) ( )AP BQ     Rewrite the solution: ( ) ( ) ( )
     ( ) diverges as 1. Hence, ( ) is not commonly used
i h i

u x AP x BQ x
Q x x Q x

 

 

 
 

in physics.  
     ( ) is finite for 1 and 1, but ( 1) diverges unless 
i i t

P x x x P    
( 105 )is an integer (see p.105.)      

     In many physics problems, boundary conditions require  to be 
i t Si th f f th L d ti i h d if



1

an integer. Since the form of the Legendre equation is unchanged if
1,  we have ( ) ( ). Hence, when  isP x P x        an integer 

(denoted by ) negative is redundant Thus 0 1 2 and ( )l l l P x(denoted by ), negative  is redundant. Thus, 0,  1,  2  and ( )
becomes a polynomial (properties on following pages).

: The range ( is often encountered1 1) considered here

ll l l P x

Note x



 



: The range (  is often encountered
in 

1 1) considered here    Note x  
physics problems. Mathmatically, the range of ( ) and ( ) 

can be extended to the entire complex plane Furthermore can
P x Q x

x iy
 

can be extended to the entire complex  plane. Furthermore,  can 
also be a complex number (See Gradshteyn & Ryzhik).

x iy 
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3.2 Legendre Equation and Legendre Polynomials (continued)

21( ) 1 , 0, 1, 2... (3.16)( )l
l l l

ldP x x l  Legendre Polynomial :

(1)Q

2 !
( ) 1 ,  0,  1,  2... (3.16)( )l l ll dx

P x x lLegendre Polynomial :

( ) ( 1) ( )l
l lP x P x  

(1)lQ 
(1) 1lP 

( 1) ( 1)  l
lP   

Lengendre polynomials P (x) - P (x) Second Lengendre functionsLengendre polynomials P2(x) - P5(x) 
[P0(x) = 1, P1(x) = x]

Second Lengendre functions 
Q0(x), Q1(x), and Q2(x)

3



1
1

2
2 1     The set ( ) is orthogonal: ( ) ( )       (3.21)l l l l llP x P x P x dx    2 1

     It is also complete in index . Hence, any function ( ) can be 

d d ( ) ( )

l
l f x

f A P



(3 23)



3 5 Associated Legendre Functions and the

expanded as      ( ) ( )                           l lf x A P x
0

                (3.23)
      l



3.5 Associated Legendre Functions and the 
Spherical Harmonics

Associated Legendre Equation :

    2
2

2
1

            0 ,  for 1 1 1 1 m
x

dd
dx dx xux u 


       

   

     Associated Legendre Equation :

  1

     The solutions are: ( ) ( ) ( )

i d L d f i f h fi ki d

m m

m

xdx dx

x AP x BQ x

P

u  

  

 
 :  associated Legendre function of the first kind

    
:  asso

m

m
P
Q


 ciated Legendre function of the second kind





            (Refs.: Gradshteyn & Ryzhik; Abramowitz & Stegun)
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3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

Rewrite the solution: ( ) ( ) ( )m mx AP x BQ xu       Rewrite the solution: ( ) ( ) ( )
     ( ) diverges as 1, hence is not commonly used in physics.

( ) i fi it th i t l 1 1 l h

m

m

x AP x BQ x
Q x x
P

u  





 

      ( ) is finite on the interval 1 1 only when 
 is zero or a positive

       

mP x x


  

   
 integer ( 0,  1,  2...) and

[p. 107.]
1 1 0 1 1

l
l l l l

  

     [p ]

,  1 , ,  1,  0,  1, ,  1 ,  
     Under these conditions, we have (for positive or negative )

l

m l l l l
m

        

 2( 1) 2 2
2 !

                        ( ) (1 ) ( 1)
m m

l
l mm l

l l
d
dxP x x x

  
0

       (3.50)

( ) ( )P P 0

( ) ( 1) ( )
( )!

( ) ( )
m l m m

l l

l l
P x P x

l

P x P x





  




( )!with the properties: ( ) ( 1) ( )              (3.51)
( )!

2 ( )!

m m m
l l

l mP x P x
l m

l m

 
  

 1
1

2 ( )!( ) ( )     (3.52)
2 1( )!

m m
l l ll

l mP x P x dx
l l m
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sThe set ( ) i complete in index in the sense any function ( )mP x l f x

3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

s     The set ( ) i  complete in index  in the sense any function ( )
:  a fixed integercan be expanded as  ( ) ( )  

See (A 3) in Appendix A

l

m
l l

l

P x l f x
mf x C P x




    See (A.3) in Appendix A.

      ( , ): 
l m

lmY  
   

Spherical Harmonics

    2 1( )!    ( , ) (cos ) ,                    (3.53)
4 ( )!

m im
lm l

l l mY P e
l m

  

 



z1

where 0 or a positive integer; ,  ( 1), ,  0, ,  ( 1),  

( )

l m l l l l

Y 

      





xz1
0,0 4

3
1 1 8

( , )

( , ) sin i

Y

Y e






 

   









 r

    y

1, 1 8

3
1,0 4

( , )
     :   

( , ) co
Examples

Y







 



 s




 

x3
1,1 8( , ) sin iY e 

  

   6



3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

     :
(i)  Using the orthogonality relation, 

Properties of  spherical harmonics

1
1

2 ( )!     ( ) ( )                         (3.52)
2 1( )!

m m
l l ll

l mP x P x dx
l l m

  



 

we can show that the spherical harmonics are o
*

rthonormal, i.e

     ( , ) ( , ) ,                             (3.55)  l m lm ll mmd Y Y         

xz2 2 1
0 0 0 1

where

sin cosd d d d d           

 r

0 0 0 1     sin cos             d d d d d        


   y


x
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3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

(ii) The set ( ) is complete i e an arbitrary function ( )lY g        (ii) The set ( , ) is complete, i.e. an arbitrary function ( , ) 
can be expanded as   

lm

l

Y g   



0
            ( , ) ( , )                                       (3.58)

Multiplying bo

lm lm
l m l

g A Y   
 
 

*th sides by ( ) integrating over andlY        Multiplying bo

*

th sides by ( , ), integrating over , , and
making use of (3.55), we obtain 

( ) ( )

lm

l l

Y

A d Y g

   

               ( , ) ( , )
     Substitution of  into (3.58) gives the following expression 
for ( )

lm lm

lm

A d Y g
A

g

   

 

 

for ( , ),

     (

g

g

 
*

0
, ) ( , ) ( , ) ( , )

l
lm lm

l m l
d Y Y g       



 
          


0

*

0
( , ) ( , ) ( ) (cos cos )       (3.56)

l m l
l

lm lm
l m l

Y Y         

 


 
 

 

      

     This is the completeness relation of ( , ) [cf. (2.34) & (2.35).]lmY  
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3.5 Associated Legendre Functions and the Spherical Harmonics (continued)

(iii) Oth ti f ( )Y 

*
,

     (iii)  Other properties of ( , ):

( , ) ( 1) ( , )

lm

m
l m lm

Y

Y Y

 

     
 ,

,0

( ) ( ) ( )
            2 1( , ) (cos )

4

l m lm

l l
lY P

 

  



 


 4

     This can be seen from the definition of ( , ) :lmY


 


2 1( )!             ( , )
4 ( )lm
l l mY

l m
 


 




(cos )
!

m im
lP e 

and the relations:
( )!( ) ( 1) ( ) (3 51)m m m

l l
l mP x P x 

 

0

             ( ) ( 1) ( )                            (3.51)
( )!

             ( ) ( )

l l

l l

P x P x
l m

P x P x
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The addition theorem for spherical harmonics is derived on pp
3.6 Addition Theorem for Spherical Harmonics

*

     The addition theorem for spherical harmonics is derived on pp. 
110-111. Here we write the theorem without derivation:

4( ) ( ) ( ) (3 62
l

P Y Y     )
z x

   

        (cos ) ( , ) ( , ),                        (3.62
2 1l lm lm

m l
P Y Y

l
    


  


)

where  is the angle between  and .  x x
x

r
r

*

w e e s t e a g e betwee a d .
     Setting 1 in (3.62) gives

4(cos ) ( ) ( )[
l

P Y Y



    



 
y

r



1 1, 1 1, 1

*
1,0 1,0

     (cos ) ( , ) ( , )
3

                          ( , ) ( , )

[P Y Y

Y Y

    

   

 

 
 x 

*
1,1                          ( , )Y    1,1

3 3

( , )

U i ( ) i

]
i

Y

P Y Y

 

 3 3
1 1, 1 1,08 4

3
11 8

     Using (cos ) cos ,  sin ,  cos ,

 and sin ,  we obtain a useful expression:

i

i

P Y e Y

Y e


 



   



  

 1,1 8 , p

        cos cos cos sin sin cos( ).                       (1)
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2 ( ) 0 

3.1 Laplace Equation in Spherical Coordinates

x   2 2
2 2 2 2 2

2

1 1 1
sin sin

     ( ) 0   
sin 0r r r rr    

    
  

  

    

x

 r
22

( )     Let (x) ( ) ( )
d

U r
r P Q



  


  22

2 2 2 2 2

2 2
sin sin

sin 0

i

UQ d Qd d
d d d

d U UPP
d

PQ r r r   




   

2 2sin     Multiply by 
UPQ

r 

Dividing all terms by sin2, we see that the 

2

( 1)  
2d Q

r-dependence is isolated within this term. So 
this term must be a constant. Let it be ( 1).  

2
2

2 21 1
sinsin  [ d U

U d Prr  


2

2

2

1(sin )] 0              (3.3)Q
d Qd d

d d d

m

P
  

  

2mThe -dependence is isolated within this term, 
so this term must be a constant. Let it be -m2.
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2( 1) m   
3.1 Laplace Equation in Spherical Coordinates (continued)

 


22
2 2

2 121 1

( )

sin     Rewrite (3.3): sin  [ sin ] 0

m

Q
d Qd U d d

U d dd dP
P

rr      


2 2
2     The equation for ( ) is: 0                            (3.4)

im im

d Q
d

Q m Q
 


  

i t b d t i d          ,    
     The equat

im imQ e e  

2
ion for ( ) is     P 

 

is to be determined
from the b.c.
m

  2
2

1
sin sin

       sin ( 1) 0.                        (3.6)

Let cos then the equation takes the form of the associated

d d m
d d

P P

x
   

  



    
 



 2

     Let cos , then the equation takes the form of the associated 
Legendre equation: 

1d d

x

P



  2
01 m P  2       1d d

dx dx
Px   21

0

( ) (cos ) (2)

1

m m

m
x

P

P x PP   

 


    

   
   



is to be determined( ) (cos )                                               (2)
( ) (cos )m m

P x PP
Q x Q
 

 




     
   

 is to be determined
from the b.c.
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2( 1) m   

3.1 Laplace Eq. in Spherical Coordinates (continued)

 


22
2 2

2 121 1

( 1)

sin     Rewrite (3.3): sin  [ sin ] 0

m

Q
d Qd U d d

U d dd dP
P

rr   

 

 

 

  


2
2 2

( 1)     The equation for ( ) is: 0                       (3.7)d
d

UU r Ur r
U


   

Si i d t i d1 1          , ,
     

UU r r r r
r

         

Thus

Since  is determined
from the b.c. for (3.6), 
this is not an eigenvalue



 

1

    Thus,
(cos )           ,
( )

m im

m im
Pr e
Q

 


 

  

    
     

    

this is not an eigenvalue 
problem.

1 (cos )m imr Q e 
     

where each bracket represents a linear combination of the two
functions inside. Because the differential equation is linear, the linear
combination of any number of solutions is also a solution.

Note that  and m are arbitrary constants until we apply boundaryNote that  and m are arbitrary constants until we apply boundary 
conditions. 
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3.3 Boundary-Value Problems with 
Azimuthal Symmetryy y

     : Find  inside 2 hemispheres held at opposite 
                       potentials as shown in the figure.

Problem 1 

a
2 2

2

  ,      0
   0,   ( , )

,     
V

a
V







 

  
        2

1
(cos )   
(co

m

m
Pr

r Q







 


 

   
  s )

im

im
e
e



 

  
  

  (cor Q  s )

(i)  is independent of . 0
(ii) i fi i 0 d (i

e

m






  
  

:Note(ii)  is finite at 0 and  (i.e. at 
     cos 1 and 1).

 


 
 

:
1. ( 1) diverges unless  is
     an integer (p.105.)

Note
P 

1
0,  1,  2,  and drop 

(iii)  is finite at 0. drop 

ml Q
r r





 

  

  



1

g (p )
2. We have set 0,  1,  2,
    because ( ) ( ).l l

l
P x P x 






0
( , ) (cos )l

l l
l

r A r P 


 

 3. ( )  as 1.

l l
Q x x  
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20l V   

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

2

2
1

 ,    0
     The b.c. at  is :  ( , ) (cos )

,   
l

l l
l

V
r a a A a P

V 


 
 


  

      
2

2 1

2

1
1

1

     
                                             Use ( ) ( )   (3.21)l l lll

l

P x P x dx   


1 2l


21
1  (cos ) ( , ) cos (cl

l l lP a d A a P    
2 1

2

1
1

1 0
0 1

2
2 1os ) cos

  [ (cos ) cos (cos ) cos ]l

l
l

V l
l l l

ld A a

A P d P d

 

   







  



 

    
1

2

2

1
2

0 1

2 1 2 !!
for odd

l

l

l l la

l lV l

   


 
(2n+1)!!=(2n+1)(2n1)(2n3)…5×3×1

 1
2

,   for odd            2 !

0                                       ,   for even 

l l l
a

l


 

99-100pp. ,

( , )r 



   31 3
3 7
2 8(cos ) (cos ) ,           (3.36)r r

a aV P P r a      


99 100pp. 

    1
     To find  for ,  replace  in (3.36) by  [see (2.27)]

l lar
a rr a
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     : A conducting sphere of radius  with net charge Proble am 2
3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

0 z on its surface is placed in a uniform electric field . Use the 
method of expansion to find  outside the sphere and  on the 

h

Q E

e

a
r


0E
spher

1

e.

(cos )m imPr e 
     

     
metal
sphere

a z E01 (cos )

(i)  is independent of . 0

m imr Q e

m

 
 



      
    
  

(ii)  is finite at 0 and  (i.e. at cos 1 and 1).
0,  1,  2,  and drop ml Q

  


   

    Question:
( 1

, , , p

     Hence, ( , ) [ l l
l l

Q

r A r B r



     )

0
] (cos )l

l
P 




 ( 1) as

. Why kee

Q

p 

lr l
r
 


0

external field due to net chrage

     b.c. at :  cos Q

Q

r E r r    

y p
the  terms?l

lA r

1 0 0

external field    due to net chrage                               
,  0 (for 1),  and l

Q
A E A l B Q      16



3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

( 1)
0( , ) cos  (cos ) l

l l
Qr E r B r Pr  

      0
1

( , ) ( )

     b.c. at : ( ) . 

l l
l

B Q

r
r a r a const







   

 2
1 ( 1)

0
2

0 .0
not a not a constconst

( ) ( cos  (cos )) l
l l

l

B Q
a

r a E a B a Pa 
  


       

0
3

1 0

const.

  and 0 for 2

( )
lB E a B l

E

   


3Q aE  0 ( , )r E r    20

                                      due to induced surface charge 

cos cos  Q a
r

Er  


                                         density  on the sphere

As will become clear in Ch. 4 [Eq. (4.56)],



0
3
2the cos  term in a

r
E  

3
0 0is due to an electric dipole of dipole moment 4 . (see p.64)

     The induced surface charge density  is

r
p a E




2
0

0 0 03

g y

         cos Q
r r a

E a
   

 
   17



     :  due to a unit point source at  in infinite spaceProblem 3  x
3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

     First, let's assume the point source is on the -axis (at a distance
 from the origin) and divide the space into two regions: 

z
r

2
 andr r



r
x x

 z2. In each region, we have 0 with the solution

(cos )m im

r r

Pr e 
 

   

    
     rr


    y

1
( )    
(cos )

(i) is indep of 0

m imr Q e

m


 








       
    

    x(i)    is indep. of .  0

(ii)   is finite at 0 and . 0,1, 2,  and dro

m

l



 

  

     
1

p m

l

Q
 1at 0.   drop  in region (iii)  is finite 

as . drop  in region 

l

l
r r r r
r r r r

     
  

0
(cos ),       l

l l
l

A r P r r



 

  
1

0

     
(cos ),   l

l l
l

B r P r r
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3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

The formal method to solve for Al and Bl is to match the b.c. atThe formal method to solve for Al and Bl is to match the b.c. at
r = r’ (as will be done in Sec. 3.9). Here we obtain Al and Bl by
exploiting the fact that we already know Φ = 1 xx’| (for a unit



p g y  | (
point source, q  . So, by the uniqueness theorem, we have

0
(cos )     ,   

1             

l
l l

l
A r P r r




     1

0
(cos ) ,   

F 0 h (1) 1 d H

l
l l

l
B r P r r

P


  




  


 

x x

     For 0, we have (1) 1 and . Hence,

    ,   

l

l
l

P r r

A r r r





     

 

x x

0

1

,
1            

,

l
l

l
l

r r
B r r r



  





 




 

 0

,   l
l

B r r r
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3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

1 2 2 3 3( 1) ( 1)( 2)( )n n n n nn n n n n    

1 1 1 1 ( )
l lrr r r

 
 


    

1 2 2 3 3( ) ( )( )( )
2! 3!

n n n n nn n n n nx y x nx y x y x y     

10 0
,

11    But 
1 1 1 1

( )

( )
l

ll l
l

r
r

r rrr r r r r
r r rr

 

 

 

 


         10 0

,
1

Equating the RHS of this equation to the RHS of the equation on

( ) ll lr
r

r r rrr r r r r  
 

      
    Equating the RHS of this equation to the RHS of the equation on  
the previous pag

1

e, we obtain
(cos ),   

1 1

l

ll
r P r r






  10
1

1

1 1       ,    

(cos ) ,

llll
l ll l

ll

rA B r
r r P r r







       

x x
10

10

(cos ) ,   

1or (cos ), [two equations in one]         (3.38)

llll

lll

P r r
r

r P






 










x x 10

where  ( ) is the sm

ll r
r r

 

 

x x
aller (larger) of  and .r r 20



Rewrite (3.38):
3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)


x x

 z
point
source10

     Rewrite (3.38):

1     (cos )         
l

lll

r P
r


 


x x

rr


source0

     This equation was derived with the 
unit point source located on the axis

l r

z

 x x

 x
   yunit point source located on the -axis 

(upper figure). However, it depends only 
on the magnitudes

z

( , ) of and andr r x x
z x

   
point
source

on the magnitudes ( ,  ) of and  and 
the angle ( ) between and . So we 
expect the expression in (3.38) can be cast

r r
 

x x
x x

x
r

r


p p ( )
into a general form which holds true when 
the unit point charge is at an arbitrary point 

x

y


(lower figure). We may obtain the general
form by way of the addition theorem.

 x
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S b th RHS f th dditi th

3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

z

x

x
   

r

point
source*

     Sub. the RHS of the addition theorem 
4      (cos ) ( , ) ( , )                              (3.62)

2 1
l

l lm lmP Y Y
l
      


y

x
r

r


1

2 1

1for (cos ) in (cos ),

l lm lm
m l

l

l ll

l

rP P 



 




  x

y

 

10
for (cos ) in (cos ),  

1 1t 4

l lll

l

P P
r

r

  




x x

* ( ) ( ) (3 70)
l

YY  

   1we get   4

2 1 ll r
 





 x x 0

( , ) ( , )          (3.70)

So we started with a physics problem (the potential of a point

lm lm
l m l

YY    
 
   

     So, we started with a physics problem (the potential of a point
charge in infinite space), but end up with a mathematical relation 
in (3 70)in (3.70).
     Ques  Why write a simple function  1/ | |  in such

li d f ? (S bl )
:tion   x x

a complicated form? (See next problem.)  
22



     : Potential due to charge  uniformly distributed on a Problem 4 q
3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

g y
                        circular ring of radius . 
     Let ( ) ( ) ( ) in spherical coordinates

q
a

K r c      x
3

( ) ( ) ( ) p

          ( )q d x



  x 3

2
d x

a

        2

2
    ( ) ( ) sin

            2 sin
K r c r drd d

Kc
      

 
  




c
22 sin

    

( ) ( ) ( )

q
c

K
q

 

  

 

2( ) ( ) ( )
2 sin

q r c
c

q

    
 

   x

2            (cos cos ) ( )
2

q r c
c
   


  

( )x a  ( )
( )( ) x a

f af x  
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3.3 Boundary-Value Problems with Azimuthal Symmetry (continued)

( ) (cos cos ) ( )q r c      x

3( )( ) 1
4 v d x 

  
xx

*
10

22
( ) (cos cos ) ( )

1 14 ( , ) ( , )
2 1

ll
lm lmll m l

c
r c

r Y Y
l r


    

    
 

 
 

  

 
 

x

x x

1

0

*
2

( )     

1 ( , ) ( , )

4
l

l
l lm lm

r

v d x

Y Yd d dq    







 




      





x
x x 0 2 1l m l l r  x x

1

0

2
2

0

( )!2 1

( , ) ( , )   cos
2 1 (cos cos ) ( )

( ) ( )

2
l lm lm

l m l

m im

rv

l ml

r dr d d
l r c

q
c



  
   



 
 

  

    
     



( )!2 1, 4 ( )!      ( ) (cos )

     Apparently, only

m im
lm l

l ml
l mY P e      


 the 0 terms survive the  integration.m 

1 1
10

0

2
2

0

(cos ) (cos ) ( ) cos4  
l

l l l

l

r
r

P Pr dr dq
c

 










      
 

x

1

0

0

0

0

(cos cos ) ( )
           (cos ) (cos )

4

4
l

l

l

l l
l

r
r

r c
P P

c
q

   

 












    




0 0
          Jackson u

4 l r 

ses a slightly different method to derive this. See p.103. 
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3.4 Behavior of Fields in a Conical Hole or 
Near a Sharp Point

r
P

     Consider the source-free configurations shown
in the figures.

Near a Sharp Point


r


2

1

g
(cos )   0
(cos )

m im

m im
Pr e

r Q e

 


 



  

    
        

    

 P

( )

(i)  The geometry is indep. of  (We also assume
that the b.c. is i

Q


    

ndep. of .) 0m   r


      that the b.c. is indep. of .)  0        
(ii)  (cos ) diverges at 0 or cos 1.

drop (cos )

m

m

m
Q

Q



  





 



1

       drop (cos )

      Hence, (cos )      

Q

r P








 



    
 

1, ( )

: ( ) diverges at 1 unless integer. However, in this
r

Note P x x



 

 
 

  
bl h 1 i th i f          problem, we have   cos 1 in the region of

         interest. Hence,  is not required to be an integer.
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3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

 
1     Rewrite: (cos )

(iii) is finite at 0.

r P
r
r


  

 
   

 
 

1

1

(iii)   is finite at 0. 

(a) demand 0 and drop (cos )
       

(b) d d 1 0 d d ( )

r

r r P
P

 


 
 



 

 



    


1

1

(b) demand 1 0 and drop (cos )

        But (cos ) (cos ),  he

r r P

P P

 


 

 

  

    

 1
1nce (cos )r P

  
  

1 2 3

       Either option (a) or option (b) gives (cos ),  0
(iv) 0 at (cos ) 0 ( 0)

r P
P


  

       
   

       1 2 3(iv)  0 at (cos ) 0  ,  ,  ,  ( 0)
        : In the boundary condition: (cos ) 0,   is fixed a

P
Note P





       
 

   




nd

is the eigenvalue to be solved

1
11

1

 is the eigenvalue to be solved.

  (cos ) (cos ),                           (3.44)k
kk

k
A r P A r P 

 



 

  

0r 

1

1where  is the smallest eigenvalue [the first root of (cos ) 0].
k

P 
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3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

0r  P
1 1

1
1 1

1 1

1 1

(cos )r rE A Pr r 






  




     




r


1 1

1

1 1

1 1
1

1 1

1 sin (cos )

( ) sin (cos )

rE A P

E A P

r r

r r

 
 

 


  

      

 

 




     

    




r

P



1 1
10 1 0

1

( ) sin (cos )

     Behavior of  as a function of  is shown

E A Pr r       

 

      


1

1
in the figure below. Note that



1 if 90 
  2

1

1

1,  if 90

    1,  if 90      

 

 

  


  


90 1800

  1


1 1,  if 90    

o     When  < 90  (conical hole), both  and 0 as 0.E r   
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3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)
oHowever when > 90 (sharp point) both and asE  

4
     However, when  > 90  (sharp point), both  and  as  

0. Large electric field (  > 2.5 10  V/cm) can cause the air to
breakdown and form a conducting path in the air for the sharp point

E
r E

  
 

breakdown and form a conducting path in the air for the sharp point 
to discharge. This is the principle of the lightning rod (pp. 77-78.)
     If the region of interest is bounded by the surface at , the r ag y ,
coefficients  in (3.44) can be determined by the b.c. ( ) ( ) kA r a    
through

1

g

          ( ) (cos )k
kk

k
A a P

 



 

1

     If ( ) ( ) 0,  then all 0. 0 everywhere
In reality, the lightning rod is not perfectly sharp. Hence, is

k

kr a A       

     In reality, the lightning rod is not perfectly sharp. Hence,  is  
finite at the tip, and on a clear d


ay when there is a small potential 

difference between the ground the clouds, the lightning rod will g , g g
not discharge. 
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3.4 Behavior of Fields in a Conical Hole or Near a Sharp Point (continued)

A physical picture of the lightning rod
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3.7 Laplace Equation in Cylindrical Coordinates; 
Bessel Functions

z2 2
2 2 2

2 2
2

1 1     ( ) 0 0z   
     

  
       x

Bessel Functions

z x
P

2

     Let (x) ( ) ( ) ( )
z

k

R Q Z z

   
 

 
 



  y

x2
2

2

2

2

0

0

Z

Q

kz

i

k Z Z ez

Q Q 










   




x

y
2

2 2

2

21

  0

0 ( ) ( )

Q

R R

iQ Q e

R R J k N kk




  




 

    

      2 2

1 0 ( ),  ( )

where  and  are Bessel fun

R R R R J k N k

J N

k  

 

  
   


         

ctions of the first and second kind,   ,
respectively (see following pages).

( )
(3)

i kzJ e ek
        

( )
                                          (3)

( ) i kz
e e

N e ek






  

        
    30



3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

      If we let , the equation for  takes x k RBessel Functions :

 2 2
2 2

1

the standard form of the Bessel equation,

1 0 (3 77)d R dR
d R    2 2            1 0                                      (3.77)

with solutions 
x dxdx x

R 

( ) and ( ), from which we define the Hankel 
f ti

J x N x 

(1)
functions:

( ) ( ) ( )
(3 86)

H x J x iN x    
 (2)

                                                  (3.86)
( ) ( ) ( )

and the modified Bessel functions (Be

H x J x iN x  


 
ssel functions of imaginaryand the modified Bessel functions (Bessel functions of imaginary 

argument)

( ) ( ) (3 100)I x i J ix 
1 (1)

2

( ) ( )                                                 (3.100)
              

( ) ( )                                         (3.101)

I x i J ix

K x i H ix
 


 







S J k 112 116 G d h & R hik d Ab i     See Jackson pp. 112-116, Gradshteyn & Ryzhik, and Abramowitz 

& Stegun for properties of these special functions. 31



3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

Bessel functions J0(x), J1(x), and J2(x)

difi d l

Neumann functions N (x) N (x) and

Modified Bessel 
functions I0(x), I1(x), 
K (x) and K (x)Neumann functions N0(x), N1(x), and

N2(x)
K0(x), and K1(x)
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3.8 Bounday-Value Problems in Cylindrical Coordinates
P t ti l i id h f li d ( fi )E l 1     : Potential inside a charge-free cylinder (see figure)

with the b.c. ( ) ( , ) and 0 on other surfaces. 
( ) i kz

z
Example 1

L V
J k 
     

   2 ( )
      ( ) 0

( )

i kz

i kz

k

J k e e
N k e e








  

   
        

   
x

k

( , )V  
z ( , )V   

(i) ( ) kzZ z A Be 
0 at 0 (0) 0

kz

z Z B A
e

        0  a L0 

 ( ) sinh
(ii) ( ) ( 2 ) i e is single-valued

kz kzZ A A kzz e e
  

    

     0
   y

0

 

(ii) ( ) ( 2 ), i. e.  is single valued.
integer

( ) iim

m

Q C A B

  


 
 

    
  

0 
x

0 

 
0

( ) sin cos

(iii)  is finite at 0. drop ( ) ( )

im
m m m

m m

m m

Q C e A m B m

N k R J k

  

  
 
    

    ( ) p ( ) ( )m m  
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3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

     Rewrite: ( )mR J k ( )
(iv) 0 at  ( ) 0 ,  1,  2,  3
      where  is the -th root of ( ) 0. Thus,

m

m mn

mn m

mnx
aa J ka k k n

x n J x


        




      
0 1

( ) ,

 , , sinh sin cos

mn m

m mn mn mn mn
m n

z J k k z A m B m    
 

 
   

     With  fixed by the boundark y condition to a set of dicrete values 
( ), we may introduce two properties of ( ) :mn m mnk J k 

2 2
10 2

 The set ( ) is orthogonal in index :  [ : a fixed number.]
     ( ) ( ) [ ( )]

m mn

m mn m mn m mn
a a

J k n m
J k J k d J k a


        (3.95)n n 



 10 2( ) ( ) [ ( )]

  
m mn m mn m mn     ( )

The set ( ) is complete in index . Hence, any function
( ) can be expanded as ( ) ( )

n n

m mnJ k x n
f x f x C J k x









1
( ) can be expanded as  (

: 

) ( )  

      (See last page of Appendix A.)
1 Wh i ( ) h

n m mn
n

f x f x C J k x

Questions
J k


 



l d l i i d i d f ?1. Why is ( ) orhtogm mnJ k x onal and complete in index  instead of ?
2. Why is there a factor  in the integrand of (3.95), but not in (3.52)?    

n m
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3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

     Rewrite:  

      
0 1

  , , sinh sin cosm mn mn mn mn
m n

z J k k z A m B m    
 

 
   

   

      

(v) , , ,      

sinh sin cos

z L V

V k L J k A m B m

   

    

  

       

 2

,
     , sinh sin cos

sinOperating both sides with ( ) and

mn m mn mn mn
m n

a

V k L J k A m B m

md d J k

    

   

  

   00    Operating both sides with ( )  and  cos
ma

m mnd d J k m     

king use of the orthogonal properties of sin  and cos ,  andm m 
2 2

10 2the relation: ( ) ( ) [ ( )]  (3.95)m mn m mn m mn n n
a aJ k J k d J k a     

 
 

2
02 2

1

sin2cosech
( , ) ( )

cos
mn mn

m mn
mn m mn

A mk L
d d V J k

B ma J k a
 

     
 

      
 

 0
a




 
1

02        (for 0,  use )nm B
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     : Potential in the charge-free semi-infinite space 0Example 2 z 
3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

   
 

, , 0 ,
subject to the b.c. 

, , 0
z V

z
   
 

  
    

2

, ,

( )
      ( ) 0

( )

i
i

kz
kz

J e e
N

k
k





 




  


             

     
x

( )

(i)  remains fini t

i kzN e ek
     

 e as . drop ( )kz kzz e Z z Ae   

 

(ii) ( ) ( 2 ) integer

( ) sin cos

m

Q A m B m

   

  



      

   
0

     ( ) sin cos

(iii)  is finite at 0. drop ( ) ( )

m m
m

m m

Q A m B m

N k R J k

  

  

  

    

 

(iv) 0 at  ( ) 0 continuous eigenvalue 

, ,

m
k

J k k

z dke



  

      

   0 ( ) ( )sin ( )cosm m m
z J k A k m B k m  

  , , z dke   00
( ) ( )sin ( )cos  

                                                                                              (3.106)
m m m

m
J k A k m B k m  
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3.8 Bounday-Value Problems in Cylindrical Coordinates (continued)

     Rewrite (3.106) with variable  changed to : k k

   00

( ) g

    , , ( ) ( )sin ( )cos  m m m
m

k zz dk e J k A k m B k m     


      

   

    

(v) , , 0 ,

( ) i ( )

z V

V dk J k A k B k

   
 

  

        00
, ( )sin ( )cos

Operating both sides with

m m m
m

V dk J k A k m B k m

d

    




      

 2 sin( ) andmd J k   
 0Operating both sides with d  0 ( )  andcos

making use of the orthogonal properties of sin  and cos ,  and
1

md J k m
m m

   
 

 

0
1the relation: ( ) ( ) ( )                      (3.108)

( )

m mxJ kx J k x dx k k
k

A k

   

 



 2
0 0

( )
(

( )
m

m

A k k d d V
B k

    


 
  

 
   sin, ) ( )          (3.109)cosm

mJ k m
  

0
1For 0, use ( ) in series (3.106).
2

m B k
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3.9 Expansion of Green Functions in 
S h i l C di t

     The Green function for an electrostatic potential problem satisfies 
Spherical Coordinates

   
 

2      , 4  
with , 0 for  on the boundary surface.

    

 

G
G

x x x x
x x x , y

      Jackson p.120 states the b.c. as " ( , ) 0 f:  Qu Gestion x x or either 
or on the boundary surface " Why?x x

point  1

 or  on the boundary surface.  Why?
     : Green function in infinite space

Th i l f i (S 1 10)

Case 1

G

x x

  xx
r

point 
source



  1     The simplest form is ,  (Sec. 1.10).

     It can be expressed as an expansion in 
 

 G x xx x

r
rp p

spherical co

  *

ordinates as (Sec. 3.7)
1 1   

ll r  *
10

1 1, 4 ( , ) ( , )    (3.70)
2 1

    
  

    
  lm lmll m l

rG Y Y
l r

x x
x x
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i t
     :  Green function outside a conducting sphereCase 2

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

x
x

r

point 
sourceimage

charge
     By the method of images, we have obtained

the Green function in Sec. 2.6,
x r

a 0G 

2
2

a
x

2
2

a
x  2

2

1     ,                                        



  
  

x
a

aG
x

x x
x x x x

         (2.16)
0Gx

2
     The first term in (2.16) is expanded in (3.70).

Th d t b d d i (3 70) Si  a

2
2

2
2

     The second term can be expanded using (3.70). Since ,

we substitute =  and  into (3.70) to obtain  




   
a
x

a
x

ar r r r

x x

x x
x r

a  2

*14 ( ) ( )    

 

  

l
l

l l

a
ra

Y Y


2
2

10

2

4 ( , ) ( , )
2 1

1 1

     
 




 

 

lm lmll m l

l

a
x

Y Y
l r rx

r a

x x
r

  1 *
1,

1 1, 4 ( , ) ( , ), (3.114)
2 1

( )    





 
       

l
lm lmll m

r aG Y Y
l a rrr

x x
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: Green function inside a spherical shell bounded byCase 3
3.9 Expansion of Green Functions in Spherical Coordinates (continued)

   2

     : Green function inside a spherical shell bounded by 
                  grounded conductors (see figure)
                        , 4

Case 3

G     x x x x

r
r

x
x

   ,
with the b.c. ( ) ( ) 0 
     This proble

G r a G r b   
m is difficult to solve by the r

a

b

s p ob e s d cu o so ve by e
method of images. We will solve it by a
systematic method: .method of expansion

b

2
1

     Write ( ) in spherical coordinates, 
  ( ) ( ) ( ) (cos cos )r r


       


       

x x
x x 2( ) ( ) ( ) ( )

    Us
r

 

*

e the completeness relation (3.56) for ( ) (cos cos )
l

     


  

2
*1

0
( ) ( ) ( , ) ( , ) (3.117)

Note that, in (3.117), we have decomposed a point charge into an

l
lm lm

l m lr
r r Y Y     



 
       x x

    Note that, in (3.117), we have decomposed a point charge into an 
infinite number of spherical "charge layers", all of radius .r

40



 2 *1

    

4 ( ) ( ) ( ) (4)     

     

l
G r r Y Yx x

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

  2
0

   , 4 ( ) ( , ) ( , ) (4)

 

     
 
     lm lmr l m l

G r r Y Yx x

variable constant constants variables

 
    The RHS of this equation is an expansion in spherical harmonics, 
which suggests that we expand , similarly. This is possibleG x x

co s a

 which suggests that we expand ,  similarly. This is possible 
sinc

G x x
e ( , ) form a complete set.  


lm

l

Y

   
0

, | , , ( , ),        (3.118)   


 
    

l
lm lm

l m l
G A r r Yx x

variable constants variables

where  is a function of  to be solved from (4).
i

lmA r

variable constants variables

 
       Expressing  as

    | , , ( , ) ( , )          
lm

lm l lm

A

A r r g r r Y     (5)
and sub. (5) into (4), we get the equation for ( , ) (see Sec. 3.1),  lg r r
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3.9 Expansion of Green Functions in Spherical Coordinates (continued)      

 
2

2 2 2
1 ( 1) 4( , ) ( , ) ( )              (3.120)l l

d l lrg r r g r r r r
r dr r r

      

    Divide the space into  and . In each region, (3.120) 
reduces to

dr r r
r r r r  

 
2

2 2

reduces to

1 ( 1)( , ) ( , ) 0l l
d l lrg r r g r r   2 2( , ) ( , )

( )

l l

l

l

g g
r rdr

Ar Br
g r r


 

1,
(6)

l r r 
( , )lg r r 

1
                                    (6)

,
      The remaining job is to find 4 

l lA r B r r r 
    r rag j

boundary conditions to solve for the 
4 constants ,  ,  ,  and  in (6).A B A B 

a

b, , , ( )
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3.9 Expansion of Green Functions in Spherical Coordinates (continued)

 2 1
       
(i) ( ) 0 ( )

ll a
l lg r a r g r r A r r r


       

r ra

 
 

1

1 2 1
1

(i) ( , ) 0 ( , ) ,  

(ii) ( , ) 0 ( , ) ,  

l

l
l l

l l r
r

l l r b

g r a r g r r A r r r

g r b r g r r B r r



 

    

        

b(iii) ( , ) is continuous at . 
      Physical reason:  is continuous across the charge

lg r r r r


 

layer 

 
0

11

at . (  is finite at  . lim 0). Thus,
ll

r
rr

r r E r r E r

A C


 



       


     

 
1 2 11 2 12 1

1 1 2 1 2 1
1

2 1
1

11
1 l ll ll

l l l l
l

l
l

l
rr

l r br ba r
l lr r b a a

rr

A CAA r B
B r B C r

  
   







 



                 
  2 1

1 2 1
1

( , )

rr

l

ll
l l

l ar
r b r

C
g r r

r 
 






 
  1 ,l r r

 
( , )lg r r

  
2 1

2 1
1 1 2 1

1 ,

ll

l l
l l l

l a r
r r b

C r rr 
  


 

  

  

2 1
1 1 2 1

1 (3.122)
ll

l l l
rl a

r r b
C r  
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21 ( 1) 4d l l 

3.9 Expansion of Green Functions in Spherical Coordinates (continued)

 2 2 2
1 ( 1) 4     Rewrite (3.120): ( , ) ( , ) ( )

(iv) We need one more condition to get the remaining constant  in
l l

d l lrg r r g r r r r
r dr r r

C

      

( ) g g
       (3.122). Physically, this condition is related to the discontinuity
       of ( ) across the charge layer at . Mathematicaly, wed

r ldE g r r ( ) g y y,
       integrate the delta funtion in (3.120) to bring out the discontinuity.
       Multiply (3.120) by  and integrate fr

r ldr g

r om  to   ( 0) r r     p y ( ) y g

   

( )
4( , ) ( , )l lr r

d drg r r rg r r
dr dr r 


  

    


   (solid line)
as a function of    

lrg
r

2 1 2 11 ( 1)

4

( ) ( )l lC
r

a r
r b

dr dr r
l l 





          

2 1 2 1 4( 1) 1

4

( ) ( )l lC
r

a r
r bl l

r
C





 





            

rr2 1
4

(2 1) 1 ( ) la
b

C
l




 
    44



3.9 Expansion of Green Functions in Spherical Coordinates (continued)

 
     Sub.  into (3.122), we get 

,

C

G x x 
* 2 1

1 1 2 12 10

( , ) ( , ) 1
(2 1) 1

(3.125) 
( )

4
lllm lm

l l ll

l l
l l

Y Y ra
r r bl a r     
   




 
 

  
  
  

  
2 10 (2 1) 1

       :  0 & ,  (3.125) (3.70)

( ) ll m l r r bl a
b

Limiting case 1 a b

     
      

  

 

, ( ) ( )
1,

g

G  


x x
x

*
10

14 ( , ) ( , )    (3.70)
2 1

ll
lm lmll m l

r Y Y
l r

    
 

 
   

xx 0 2 1

       : ,  (3.125) (3.114)

l m l l r

Limiting case 2 b

  

 

x

 
2

1 *
1,

1 1, 4 ( , ) ( , ),  (3.114)
2 1

( )
l

l
lm lmll m

r aG Y Y
l a rrr

    





 
      

x x
,  
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3.10 Solution of Potential Problems with the 
Spherical Green Function Expansion

     : Potential inside a charge-free
                        sphere of radius  subject to 

Example 1
b

Spherical Green Function Expansion

( )V  
np j

                        the b.c. ( ) ( , )
    Since we already have the Green function for 

r b V    
( , )V  

b
volume
i

of
this problem, it is convenient to use the formal 
solution derived in Sec. 1.10:



interest 


3

0 0

1 1  ( ) ( ) ( , ) ( ) ( , )     (1.44)
4 4v sG d x G da

n


 


        
 x x x x x x x

1       There is no charge inside. ( ) ( ) ( , )
4

G d
n
     


x x x xs a

 
     : The unit vector  is normal to the surface and pointing 

   outward from volume of interest.  is a differentiation n

Note

 

n

     along   for this example .( )n r
 
   n
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     Rewrite (3.125): 
  

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

  2 1

*

10

2 1
1 1 2 1(2 1)

( , ) ( , )
( )

1  , 4 l
lm lml

l m l

ll
l l lal b

Y Y l ra
r r b

G r   
 

 



 

 
    

 
  

  
  
  

   x x

  *

     For this example, 0,  , and ,  hence
14 ( )l l

a r r r r

G Y Y  
   

  x x 1 2 1
1( ) ( )l l
l l

rr   , 4 ( , )
2 1 lm lmG Y Y
l

  


x x
,

*

1 2 1

2 2 1
11

( , )

14 ( , ) ( , )

( )

( )
l m

l
lm lm

l l

l l
l

b

l l
b

r
r

G rY Y r

 

    

 

 




 



       ,

*
2

2 2 1( , ) ( , )
2 1

4 ( , ) ( , ) (7)( )

( )lm lm
l m

l
lm lm

l l

r b r b

b
r
b

r rl
G G Y Yn r b

 

    

 

 





   
        

   

2 ,
2 2sin             (8)

l mr b r b bn r b
da r d d b d

b V
  



   

       
      (9)   s r b V       x  

1
4

, (9)
      Sub. (7) - (9) into ( ) ( ) ( , ) , we gets G dan


       x x x x

  *

,

4
( , ) ( , ) ( , ) (3.128)( )l

lm lm
l m

r
b

n
V Y d Y


     


        x
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Example 2: Potential due to a uniformly charged ring of radius a and

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

Example 2: Potential due to a uniformly charged ring of radius a and   
total charge Q located on the x-y plane inside a grounded 
conducting sphere of radius b

     In spherical coordinates, the -  plane  
is at 2.The charge density ( ) can

x y
   x

b Q
be written as 

( ) ( ) (cos ) (3 129)Q r a    x a2( ) ( ) (cos )                                                  (3.129)
2

    The potental is g

r a
a

   


x

iven by    


3

0 0

1 1( ) ( ) ( , ) ( ) ( , )     (1.44)
4 4v sG d x G da

n


 


        
 x x x x x x x

 

0

*1 1

     There is no inner conductor in this problem. (3.125) reduces to

4 ( ) ( )
ll

l l
rG Y Y r     


   x x (10)

l
  

   1 2 12 1   , 4 ( , ) ( , ) l llm lml r b
G Y Y r      


 


x x
0

 (10)
l m l 
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     Symmetry in  0. Hence,  m  

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

 
2 1

0 4

Sy e y 0. e ce,

      ( , ) ( , ) (cos )
l

l
lm l l

m

Y Y P



    





 

   1 2 1
1

0
, (cos ) (cos )     (11)

S b (11) d ( ) ( ) ( )

l

l l
rl

l l r bl
Q

G P P r 

  


 







   x x

b Q

a

22
     Sub. (11) and ( ) ( ) (cos )
into (1.44), we obtain

1

Q
a

r a


    x

a

0

1( )
4

 x  3 ( ) ,

( ) ( )

d x G

  

  

  

x x x

 1 2 1

2
12 2

0 0

( ) (cos )
   cos (cos ) (cos )8

l

l l
rl

l l r bl

r aQ r dr d d P P ra

  
     

 




  
        

  
 1 2 1

0 0

1
00

   (0) (cos )            (3.130)
4

l

l l

r bl

rl
l l r bl

Q P P r





 








 

  
004

where  ( ) is the smaller (

r bl

r r
 

  larger) of  and .r a 49



Example 3: Potential due to a uniformly charged line of length 2b and

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

li
z

Example 3: Potential due to a uniformly charged line of length 2b and 
total charge Q located on the z-axis inside a grounded 
conducting sphere of radius b (see figure)

 
 

b
2

linear
density Q

b

y
    The charge density ( ) can be written in
spherical coordinates as (see problem below.)

 x

g p ( g )

x

y

 2

p ( p )
1( ) (cos 1) (cos 1)         (3.132)

2 2
Q
b r

    


   x

3

     The potential is given by
1 1( ) ( ) ( )G d    x x x x ( ) ( ) (1 44)G d   x x x3

0
( ) ( ) ( , )

4 4v G d x
 

   x x x x 
0

( ) ( , )      (1.44)

Rewrite (11) which is applicable to this problem:

s G da
n


 x x x

   1 2 1
1

0

     Rewrite (11), which is applicable to this problem: 

, (cos ) (cos )                              (11)
l

l l
rl

l l r bl
G P P r  

 






  x x  

0

     Sub. (11) into (1.44), we 
bl 

obtain
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3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

(cos 1) (cos 1)       

1 2 1

22

0 1

(cos 1) (cos 1)
2( ) cos

8 (cos ) (cos )
l

l l
l

l l
r

b

rQ r dr d d
b P P r

   
 

   
 




 


 
             

 
x

 

1 2 1

1 2 1

0

0
1

( ) ( )

       (1) ( 1) (cos )    (3.133)

l l

l

l l

l l
l

l
l l l

r b

rbQ P P P r dr

 



 







    

      
 

  1 2 1000
( ) ( ) ( ) ( )

8 l ll l l
l r bb  





  

 



   1 1l lr bl l       
 

1 2 1 1 2 1
1 1

0

2 1 1[ ]

l l
l l l l

r bl lr r
rr b r b

ll r

r dr r dr   






      

     ( 1) ( 1)  and (1) 1  Odd  terms cancel.l
l lP P l    

 2 1
( 1) 1[ ]l r

l l b

 

2
2

10

( ) ( ) ( )

4 1( ) ln 1 (cos )  (3.136)   
4 2 (2 1)

( ) ( )

l l

j
j

j

Q jb r Pr bb j j








         
x

104 2 (2 1)

     Note that the 0 term in (3.133) is given by ln . See p.124.( )
j

b
r

b j j

l
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li
z     : Show the charge density in (3.132):Problem

3.10 Solution of Potential Problems with the Spherical Green Function Expansion (continued)

 
 

b
2

linear
density Q

b

y
 2

: S ow t e c a ge de s ty (3. 3 ):
1          ( ) (cos 1) (cos 1)2 2

oblem
Q
b r

    


   x

x

y
represents a unifom charge distribution along .
     : The total charge is

z
Solution

3 2
0      ( ) 2 cbQd x r drb d   x 1

1 2
0 2

(cos 1) (cos 1)
2

os
r

Q

d    


 
  



1
1

0
,0, + -axis  -axis

                      [ (cos 1) (cos 1)]2 cosb

z z

Q drb d
 

   

 

      

                      uniform distribution from  to 2 b
bQ z b zb dz     .

: The above integration over cos starts from cos 1 and
b

Note    : The above integration over cos  starts from cos 1 and
and ends at cos 1. It does not cross 1 or 1. This issue can be            
resolved by a limiting procedure; namely, we write

     Note  



 

y g p ; y,
      

0
(cos 1) (cos 1) lim[ (cos 1 ) (cos 1 )]
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3.11 Expansion of Green Functions in 
Cylindrical Coordinates

optional

     2
     Consider the Green equation:  

, 4 , with , 0 as G G       x x x x x x x

y

z

     , , ,
     An obvious solution is 1/ . We have also
solved this equation by the method of expansion in

x x

z x
P

solved this equation by the method of expansion in
spherical coordinates [(3.70)]. Here, by the same
method, we solve it again in cylindrical coordinates. 

   y


 
       1

g y
     Write  as 
     z z


       



       

x x
x x

x
       

  ( )1
2with

im

m
e  





   

  
 


  


      0

11
2

with        
cos

m
ik z zz z dke dk k z z  




 


       

       0
2 ( )2, cos       (12)im

m
G dke k z z   


  




     x x
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3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

 Since and are complete sets we may expand inim ikze e G x x

optional

 

   ( )1 1

    Since  and  are complete sets, we may expand ,  in 
variables  and    

( ) cos[ ] (3 140)im

e e G
z

G dkg k e k z z 



 
     

x x

x x   02 , ( , , ) cos[ ]    (3.140)
                                                   

m
m

G dkg k e k z z   

 x x

    
where the coefficient ( , , ) is a function of , ,   and .mg k m k    

2 2 21 1 1

     Sub. (3.140) into (12) we get

( )dk
         2 2 2 2 202

( )

     

, ,                         ( ) cos[

( )
zm

im
m k

dk

g e

    
  

  


 



  

 ( )]k z z

 
0

( )2                     (13)cos[ ( )]im

m
dke k z z   


 




    

2 2 2
2 2 2

2 2 1 1     In (13), . Hence,, , 
m

z
m k      




     

    

 

    

 2
2

2 41 , ,            (3.1( )( ) m
mk kg 

   


     
 

     
   41)
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3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

See (3 98) (3 101) in Jackson

optional

( ) ( ),
( , , ) m m

m
AI k BK k

g k
   

 
 

  

See (3.98)-(3.101) in Jackson.

( , , )
( ) ( ),

(i)  is finite at 0. 0 

m
m m

m

g
A I k B K k

g B

 
   



    
  

(ii)  remains finite as . 0
(iii)  is continuous at .

m

m

g A
g


 

  
( )

( ) ( )
( )( )

m

m m

g
AI k B K k

A CK kK kA

 
 



   
  ( )( )

( )
mm

m

A CK kK kA
B I k





  

   ( )mB CI k

 

( ) ( ),
( , , )

( ) ( ),
m m

m
m m

CK k I k
g k

CI k K k
   

 
   

 
    

( ) ( )                              (14)m mCI k K k  
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3.11 Expansion of Green Functions in Cylindrical Coordinates (continued)

    (iv) To obtain the coefficient  in ( , , ) ( ) ( ),m m mC g k CI k K k     

optional

4

( v) o obta t e coe c e t ( , , ) ( ) ( ),
           mutiply (3.141) by  and integrate form  to  ( 0)

m m m

m mdg dg

C g k C k k



   
     

 
   

     

( ) ( ) ( ) ([ m m m m

d d

Ck I k K k K k I
     

  
     

      4)]k 
   ( ) ( ) ( ) ([ m m m m  

41

)

         Use the relation: ( ) ( ) ( ) ( ) 1/            (3.147)
4 ( ) 4 ( ) ( )

]

( )
m m m mI x K x I x K x x

Ck C g k I k K k



     
   

  41 4 ( , , ) 4 ( ) ( )

         Sub. the above expression for ( , , ) into (3.140)

( ) m m m

m

kCk C g k I k K k

g k


      

 
       



G     0
( )

1

2, cos ( ) ( )m m
m

im k z z I k K kdke    
 

 


  x x

  ( )

1         Since ( , ) ,  we have by the uniqueness theorem

1 2 im

G

dk    

 
 



x xx x

  0
( )1 2  cos ( ) ( ) (3.148)m m

m

im k z z I k K kdke    


 


  
 x x
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3.12 Eigenfunction Expansion for Green Functions
Eigenfunction Expansion of Green Function in 3 Dimensions :     

     We have obtained the Green function for the Poisson equation by
the method of eigenfunction expansion in 2 dimensions [e g (3 118)

Eigenfunction Expansion of Green Function in 3 Dimensions :

the method of eigenfunction expansion in 2 dimensions [e.g. (3.118),
in , ]. Here, we develop a general technique to obtain the Green
function by eigenfunction expansion in 3 dimensions. Consider the
 

y g p
Green function for a more general equation (with homogeneous b.c.):

          2       , ( ) , 4               (3.156)G f G        x x x x x x x       

   

( ) ( )

     
We shall solve (3 156) by expanding and in

f

G  x x x x
a given constanta given real function

        We shall solve (3.156) by expanding ,  and  in
eigenfunctions of a related problem formulated as follows. 

G  x x x x

an eigenvalue to be determined by the

 2
     

f x    ( ) 0 (3 153)  x x

an eigenvalue to be determined by the 
b.c., not the same λ as in (3.156)same f (x) as in (3.156)

           f x    ( ) 0                                         (3.153)
with the same boundary surface and homogeneous b.c. as for (3.156).

  x x
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3.12 Eigenfunction Expansion for Green Functions (continued)

     Assume the (3-dimensional) eigenfunctions for 
     2

2

( ) g
                   ( ) 0
are ( ). Since the operator [ ( )] is Hermitian, we haven

f
f

  


   
 

x x x
x x

3
( ) p [ ( )]

     ( ) ( )     
and form a complete se

n

m n mnv

f
d x


  



  x x
t with eigenvalue [see Apendix A]real and  form a complete sen t with  eigenvalue  [see Apendix A].

     Write     ( , ) ( ) ( )                                     (3.157)

S b (3 157) d ( ) ( ) ( ) [ (2 35)] i

n

n n
n

real
G a




 

 

 

x x x x

   2

     Sub. (3.157) and ( ) ( ) ( ) [see (2.35)] into

, ( )
n n

n
G f G

  



  

  

x x x x

x x x    , 4 , we obtain    x x x x
 2

2

    ( ) ( ) ( ) ( ) 4 ( ) ( )

Since satisfies ( ) [ ( ) ] ( ) 0 we have

{ }n n n n n
n n

a f

f

     

   

      

   

x x x x x x

x x x     Since  satisfies ( ) [ ( ) ] ( ) 0,  we have
     ( )( ) ( ) 4 ( ) ( )

n n n n

n n n n n
n n

f
a
   

      

   

   

x x x
x x x x

( )( ) 4 (n
n
n

a G  
   

xx x ( ) ( ), ) 4            (3.160)
n

n n
n

   



  

x xx
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     We now specialize to the Green function for the Poisson equation 
3.12 Eigenfunction Expansion for Green Functions (continued)

c

z
p q

i.e. (3.156) with  ( ) 0.
: Green function for a rectangular box 

f
     Example 1

 x

y

   2             , 4  G     x x x x
0 and x a

a
b

x

y
             with G  , 0 at 0 and 

0 and 
C id th di i l bl [(3 153) ith ( )

y b
z c

f

  


x x

2 2 2

2

    Consider the corresponding eigenvalue problem [(3.153) with ( )
0 and ]: ( ) ( ) 0 with the same b.c. 

f
k k      

x
x x

2 2

2

2
2

1    Let ( ) ( ) ( ) ( )

k

d X
X dx

X x Y y Z z  x


2

22

2 2
2 2

1 1 0 

kk

d Y d Z
Y Zdy dz

k   


2
lk 22

2 2 2 2with
( )
( )

nm

l m n

l l

l l

kkik x ik x
ik y ik y k k k k

X x Ae Be
Y x Be Ce






   





    with ( )

( )
l m nl

l lik z ik z
k k k kY x Be Ce

Z x De Ee
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3.12 Eigenfunction Expansion for Green Functions (continued)

sin( ) 0 at 0 and l xl XkX x x a     sin ,( ) 0 at 0 and 

      b.c. ( ) 0 at 0 and  and sin ,
l

m

l
aa

m ym
b b

XkX x x a

Y x y b k Y





   
       

  

 2 2 22 2 2

sin ,( ) 0 at 0 and n
n zn

cc

l m n

ZZ x z c k

k k





       

   2 2 2

8

           

     ( ) sin si

lmn
l m n
a b c

l x
b

k k







  

 

 

x n sinm y n z
b
 ( ) aabc

( ) ( )
     Sub. ( ) into (3.160): ( , ) 4 , we obtainj j

j

cb

G
 

 
 






 
x x

x x x

( )

j j

G

 

x x
2; ;  0j lmn

j l m n
k    

2 2 2

    ( , )

32      (3.167)
sin sin sin sin sin sinm y m yl x l x n z n z

a a c cb b

G
    



 


x x , ,j l m n

2 2 2
2 2 2

, , 1
( )

l m n l m n
a b c

abc
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     : Green function for infinite spaceExample 2
3.12 Eigenfunction Expansion for Green Functions (continued)

     2
p

   , 4  with , 0 as 
Consider the corresponding eigenvalue problem

p

G G       x x x x x x x

2 2
    Consider the corresponding eigenvalue problem 

   ( ) ( ) 0   in infinite space
Th l ti i

k   x x
The solution is

         
   3 2 3 2

1 1( )  (3.162)
2 2

x y zi ik x ik y ik ze e    k x
k x

   3 2 3 22 2
where x x y y z zk k k

 
  k e e e

 3 22
    Since the region of interest is infinite space, we have continuous 
engenvalue  and the factor 1/ 2  gives the normalizationk 
con

 3

dition for ( ) :  

   ( ) ( )                                     (3.163)d x



  
  

k

k k

x

x x k k 
     [see p.69 for a one dimensional example.]
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3.12 Eigenfunction Expansion for Green Functions (continued)

( ) ( )S h i i ( ) 4 [(3 160)]n nG   
 x x( ) ( )    So the series expansion: ( , ) 4  [(3.160)]

becomes
( ) ( )

n n
n n

G  
 



 




x xx x

3( ) ( )        ( , ) 4

1

G d k 
 


 
 k k

k

x xx x

2
3 2

( )

1     With , 0,  and , we have
(2 )

i

i

k e  






   k x
k k

k ( )
3

2 2
1  ( , )

2

ieG d k
k

 
  

k x x
x x

     Sin 1

1

ce ( , ) ,  we get another mathematical expression 

for by the uniquess theorem

G  
  x xx x

( )
3

1for  by the uniquess theorem

1 1 (3 164)
ied k

 

 


k x x

x x

2 2      (3.164)
2

d k
k


 x x
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3.12 Eigenfunction Expansion for Green Functions (continued)

     Solution of Inhomogeneous Differential Equation by the Green

                   To show the usefulness of the 3-dimensional Green function just
b i d id i h

Function Method : 

diff i l iobtained, we consider an inhomogeneo
 2

us differential equation:
                    ( ) ( ) ( ) 4 ( )                      (15)u f u S     x x x x
wth homogeneous b.c. In (15), ( ) is a distributed source. We have
shown that the solution for the same

S x

       2
equation with a point source:

( ) 4 (3 156)G f G           2        , ( ) , 4              (3.156)
is                 ( , ) 4 ( ) ( ) /( ),                 (3.160)n n n

n

G f G
G

 
    

       
  

x x x x x x x
x x x x

2where ( ) is the eigenfunction of 
n

n x  
3

( ) ( ) ( ) 0.
     Then, the solution of (15) is  ( ) ( , ) ( ) ,     (16)

n n n

v

f
u G S d x

    

   

x x x
x x x x

2
, ( ) ( ) ( , ) ( ) , ( )

which can be verified if we operate both sides with ( )  and
apply (3 156) to the RHS

v
f   


x

apply (3.156) to the RHS.
 : If , n    Note   3there is no solution unless ( ) ( ) 0.nv u S d x  x x
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Homework of Chap. 3  

Problems:  1,    2,   3,   6,   7,  , , , , ,

9,  17,  20, 22
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