
CHAPTER 4: Multipoles, Electrostatics of 
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     In Ch. 3, we developed various methods of expansion for the
solution of the Poisson equation. In this chapter, we continue the 
subject of electrostatics by taking a closer look at the source ( ).  xj y g ( )
By the method of expansion, we first decompose ( ) in (1.17) 
into multipole fields and thereby express the source in


 x

multipole
moments, then show that the atomic/molecular dipole moments 
account for the macroscopic properties of a dielectric medium 

d ll i h t i ti f th di b i land allow a conscise characterization of the medium by a single
number called the dielectric constant. 1



     Multipole Expansion in Spherical Coordinates :
4.1 Multipole Expansion (continued)
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4.1 Multipole Expansion (continued)

Multipole Expansion in Cartesian Coordinates :
     Expansion in Cartesian coordinates is more useful for our purposes.
We first summarize the formulae needed for the expansion.

     Multipole Expansion in Cartesian Coordinates :  

          Taylor ex
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Now apply (1)-(4) to expand 1/ .x x
4.1 Multipole Expansion (continued)
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0:        Multipole moments with respect to x
4.1 Multipole Expansion (continued)
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0 :     Multipole moments with respect to x = x
4.1 Multipole Expansion (continued)
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4.1 Multipole Expansion (continued)

:   Dipole field
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R l ti b t h i l d C t i ti l t

4.1 Multipole Expansion (continued)
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Prove that the lowest non-vanishing multipole moment      : Problem
4.1 Multipole Expansion (continued)optional

is independent of the point of ref
      : Each component of the 

erence (see pp. 147-8).
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f i d i i l f i lb respect t
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of the form ( )( ) ( ) ( )   andi j k

x y zijkI x a y a z a d x   a
a b

x
( ) 3                  ( )( ) ( ) ( )i j k

x y zijkI x b y b z b d x



   


b x

3( )( ) ( ) ( )i j kx a c y a c z a c d x      x

 z c


                         ( )( ) ( ) ( ) ,
where , , and  are zero or positive integers
( ), ( , , ), ( , , ),

x x y y z zx a c y a c z a c d x
i j k

i j k a a a b b b    

 x

a b
        

 y
a

b

 c( ),  ( , , ),  ( , , ),
and  with  given by ( , , ). 
     For example, the monopole moment

x y z x y z

x y z

i j k a a a b b b
c c c

 
  

a b
b a c c c



 has
x     x

p , p
only one term ( 0),  each component 
of the dipole moment consists of one term (  or  or 1), and each 

i j k
i j k

  


component of the quadrupole moment consists of multiple terms (all 
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3     The monopole moment ( ( ) ) is clearly independent  q d xx
4.1 Multipole Expansion (continued)optional
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4.2 Multipole Expansion of the Energy of a 
Charge Distribution in an External Field

31
2    In (1.53), we have   [  energy]( ) ( )W selfd x  x x

Charge Distribution in an External Field

2

    Here, we consider the  energy between ( ) and externalrelat eiv  x

2
0potential due to ( ) in the integrand, ( ) ( )     x x x

3charges:          ( ) (                             )                 (4W xd  xx .21)
     2potential due to external charges, ( ) 0 in region of ( )  x x

2
     Expand the external field ( ) [Use (A.3) in appendix A]:
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4.2 Multipole Expansion of the Energy of a Charge Distribution in an External Field (continued)

  (0)1 jE
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 2 (0)1

( ) (0) (0) 3
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    interacts with  (non-uniform )

q  

  


 

p E







p
moments here are 
not induced by E.
See Sec 4 6 for

 interacts wijQ
  
   

ith non-uniform 


E
See Sec. 4.6 for 
induced moments.

Questions: 
1. Higher order moments can “see” finer structure of Φ(x). Why? 
2 How does a charged rod attract a piece of paper?2. How does a charged rod attract a piece of paper? 
3. How does a microwave oven heat food?  13



Induced Dipole Moment:
4.6 Models for the Molecular Polarizability

Induced Dipole Moment: 
In the presence of an external electric field, the electrons and ions

in a molecule (or atom) will be very slightly displaced in oppositein a molecule (or atom) will be very slightly displaced, in opposite
directions, from their equilibrium positions. The molecule is thus
polarized. The resulting induced dipole moment is calculated below.

0 x
eThe molecular electrons and ions are bound

charges. When a charge is displaced from its 
ilib i i i ( 0) i ill b bj                 

equilibrium position

( )F x t i21( ) ( ) ( ) ( ) 

equilibrium position (x = 0), it will be subject 
to a restoring force F(x), which we expand as

( )F x restoring  
force

x

 
2
0

21
2

0
( ) (0) (0) (0)

m

F x F F x F x
 

    


nonlinear effects,  x,
negligible if x→0because x = 0 is the 

equilibrium position.
ω is the natural frequency of the chargeω0 is the natural frequency of the charge 
if it oscillates as a simple harmonic oscillator.

14



     For small displacements ( 0) and assuming  and  arex F x
4.6 Models for the Molecular Polarizability (continued)

2
0

p ( ) g
along the same line (property of an  medium) but in
opposte directions, we have         ( )                   (4.71) 

isotropic
mF x x

     Under the action of a static , a charge will be displaced to a 
position ,  at which the restoring force equals the electric force,

E
x

2
0                  

     This induces a dipole moment given by
 m ex E Note: e carries a sign.

     
2

2
0

0

2 2

,                                                (4.72)

h /( ) i th l i bilit f i l h F


   e
m

e    p x E E

2

2 2
0 0where /( ) is the polarizability of a single charge. For

all the charges in the molecule, we have
   e m

i d d l l 
2

      j
mol j j

j

e
ep x 2

2

0
induced molecular,  dipole moment

      j j
mol

j m
E E

2

20
1where  (molecular polarizability).              (4.73)

   
  j

j j
mol

j

e
m 15



     :Discussion
4.6 Models for the Molecular Polarizability (continued)

     (1) The dipole mement for a single charge as calculated above
) is with respect to the equilibrium position of the charge.

i diff h h diff ilib i
e(p x

i i hSince different charges have different equilibrium positions, the
dipole mements ( ) of individual charges in the expression

are ith respect to different reference points
j je



x
p  are with respect to different reference points. 

     This will not cause any inconsistency for an equal amount of 

mol j j
j
ep x

 /  charges in the sum, in which case the monopole moment 
vanishes and hence  is independent of the reference point 
(proved in Sec 4 1) For this reason we will assume to be

mol


p

p(proved in Sec. 4.1). For this reason, we will assume  to be 
contributed by a

molp
n equal amount of /  charges in the molecule. 

If there is a net charge in the molecule, the net charge will be
 

If there is a net charge in the molecule, the net charge will be 
treated separately [see (4.29)].
     (ii) The approximation made in (4.71) [ ( ) m F x 2

0 ] has led x     (ii) The approximation made in (4.71) [ ( ) mF x 0

0

] has led
to a linear relation between  and : .mol mol mol


 

x
p E  p E

16



         Electric Polarization , Polarization Charge, and Free Charge :
4.6 Models for the Molecular Polarizability (continued)

     The electric polarization is defined as the total dipole mement per
unit volume and is given by        

di l t t ill f l l 

                 ( ) P x                                                          (4.28)i i
i

N p

dipole moment per type i
molecule averaged over a 
small volume centered at x

sum over all types of molecules

    We now divide the charge density in a medium into two categories:

i
volume density of type i molecules

g y g
polarization charge density ( ) and free charge density (pol  ).

 results from the polarization of (equal amount of) /  charges  
free

pol  
in each molecule.  consists of the net molecular charge (usually
0) and the excess charge (such as free electrons) in the

free
 medium: 

: a erage net charge per : average net charge per
    ( )     (4.29) type  molecule (usually 0)

: We have used the notation to distinguish it from

i
free i i excess

i

e
N e i

Note

 

 


 

    
x

     : We have used the notation  to distinguish it from .
 here is denoted b

free pol

free

Note  
 y  in Jackson [e.g. in (4.29), (4.35), etc.] 17



4.3 Elementary Treatment of Electrostatics 
with Ponderable Media

      Consider a general medium and 
divide its charge into and . By linear superposition, we mayfree pol 

Macroscopic Poisson Equation :
with Ponderable Media

divide its charge into  and . By linear superposition, we may
write + ,  where  and  are due to  and 

free pol

free pol free pol free po

 
      

31 ( )
, l

f 


x
0

31
4

( )
respectively. Obviously,  

   For , we have the expression for , but not yet for . So we 

( )free

pol pol

freed x



 



 
x

x x
P

x

0

, p , y
approximate  by the dipole term in (6) (with  replaced by ).

pol pol

pol


 x x

1( ) [ q


( ) (6)] p x x polv

0
1

4       ( ) [pol
q

 


x
x x 3

3

( )                                  (6)

where 0 ( contains equal amount of +/ charges);

],

q d x 

 


 

p x x
x x

     

x x
0

where 0 (  contains equal amount of +/  charges); 
hence,  (in the volume ) is independent of the point of reference.

To repr

pol polvq d x
v

   
p

esent by the dipole term in (6) we must have thel x      To represent  by the dipole term in (6), we must have the
dimension of . So we divide  into infinistesimal volumes.

pol

pol
 x

p


18



     Let ( ) be the potential due to  in an infinitesimal volumepol pol x
4.3 Elementary Treatment of Electrostatics with Ponderable Media (continued)

1 ( ) ( )

( ) p
 at . Then, in this volume, we have ( )  and (6) gives 

( )

pol pol

v
v v



   

   

 P x x x
x p P x

30
1

4
( ) ( )     ( )pol

v



 

  P x x x
x x

x

( ) ( )    P x P x  x x

Δv pol

Volume of integration

0
31

4( ) ( )pol d x   x P x

( ) ( )

1( )
  

  



x x x x

x x


 xincludes all the charge.

04( ) ( )pol 

0
31

4
( ) ( )    [

( )

d x das

 

   
     





x x

P x P x
x x x x 0

31
4

( )] d x
  

 
  

P x
x x04 s  x x x x 0

( 0 on )

4

                                                                                                                                                        0 S







P

x x

( ) ( )   x P x
     Thus,

0
31

4
( ) ( )

                                                            

 +

If 0 higher multipole terms are important Can:

free pol
free

Question

d x
    

     




x P x
x x

x x If 0, higher multipole terms are important. Can 
                     we 

:
st

     Question  x x
ill write ( ) and ( ) as above?pol pol x x 19



4.3 Elementary Treatment of Electrostatics with Ponderable Media (continued)

31 ( ) ( )free    


x P x
0

2 3 2

31
4

( ) ( )

1 1

     Rewrite: +
    

( ) [ ( ) ( )]

free pol
free

d x

d x




     

        





 x x

x x P x
( )

4 ( )

0

1

4    ( ) [ ( ) ( )]  freed x



 


 

 
     

E x
x x

x xx x P x


0
1        

    ( ) [ ( ) ( )]                    free    E x x P x              (4.33)

     In electrostatics, only the electric charge can produce . The  E, y g p
equal footing of  and  in (4.33) suggests that 
(due to the electric polarization ) must be the po

free   P P
P larization charge

0
1

density  (see p. 153 and p. 156). Thus, (4.33) can be written

                         ( )
pol

free pol



   E
0

where                                                            
free pol

pol


  P       (7)

(7) is obtained here by inference A direct derivation can be     (7) is obtained here by inference. A direct derivation can be
found in Appendix B [see Eq. (B.2)].

20



4.3 Elementary Treatment of Electrostatics with Ponderable Media (continued)

1     We may also put ( ) [ ( ) ( )] [(4.33)] in thefree    E x x P x
0

0

y p ( ) [ ( ) ( )] [( )]
form:           [macroscopic Poisson equation]       (4.35)
by defining an electric displacement :   (4.34

free

free

 



  

 
D

D E P                 )
In Sec. 4.6, by assuming an isotropic medium and approximating 

the restoring force by                          [(4.71)], we have obtained the 2
0( )x m F x

0y g p ( )

linear relation pmol=0molE for a single molecule. Then, P (the sum 
of pmol per unit volume) must also be a linear function of E: 

P = 0eE, (4.36)
where the proportionality constant e is the electric susceptibility (see 
J k S 4 5 f f th di i )Jackson Sec. 4.5 for further discussion on e .).

Sub. (4.36) into  D = 0E + P, we obtain
D E (4 37)l i i i iD = E                                                                          (4.37)

and     P = ( 0) E,
h (1+ ) (4 38)

: electric permittivity
/0: dielectric constant or relative 

electric permittivitywhere  = 0(1+e)                                                                    (4.38)
Question: Is D a physical quantity? If so, what is its physical meaning?

electric permittivity 

21



4.3 Elementary Treatment of Electrostatics with Ponderable Media (continued)

     : For a uniform medium,  is independent of . Special case  x, p     
Hence, (4.35) gives 

              /   [for uniform media]                (4.39)  
free

free

p
  

 
        

   
D E E

E

Conversion of  to the Gaussian System:
 in the SI system is called the electric permittivity ( is its

[ ] ( )free

 in the SI system is called the electric permittivity (0 is its
value in vacuum). It has no counterpart in the Gaussian system.
However, /0 in the SI system (called dielectric constant or0 y (
relative permittivity, see p.154) has a counterpart denoted by  in
the Gaussian system, According to the table on p.782, we have the

  following conversion formula:
0

SIGaussian    
         

Alth h i th G i t h th t ti thAlthough  in the Gaussian system has the same notation as the
electric permittivity of the SI system, it is really the dielectric
constant which correspond to  / of the SI system Thus  inconstant, which correspond to  /0 of the SI system. Thus,  in
these two systems are not quite the same physical quantity.

22



4.4 Boundary-Value Problems with Dielectrics
Boundary conditions: [f here is denoted by in (4 40)]

free2tE
free2D

Boundary conditions: [free here is denoted by in (4.40)]

(i)   free D (ii) 0  
E E
 E

free
1tEfree

1 D2 1 freeD D     2 1 t tE E 

: Two semi-infinite dielectrics have an interface plane at     Example 1

   
q q1 q

 polar coordinate

p
0 (lower figure). A point charge  is at . Find  everywhere. 

p
z q z d  

                     
                               1 1 2

1
1 4 ( )q q

R R  
2 1

1
2 4

q
R 

12
n

22 22R

2 1

        
pol

q actual charge
z

22
2 ( )d zR     

22
1 ( )d zR   

0
ddq  q image charge

 (for 0)z 
image charge
 (for 0)z 

z

     To find  in the region 0,  we put an image charge  at .
To find  in the region 0,  we put an image charge  at .

z q z d
z q z d

   
   23



   1 ( )q q 1 q


4.4 Boundary-Value Problems with Dielectrics (continued)



                     
                              1 1 2

1
1 4 ( )q q

R R  
2 1

1
2 4

q
R 

12
n

1
2

        
pol

q actual charge

22
2 ( )d zR    22

1 ( )d zR   

0
ddq q

q
image charge
 (for 0)z 

image charge
 (for 0)z 

z0

( )( )

1 2
1 1 2 2 1 2

     Now apply boundary conditions at 0.
b c 1: 0f

z
E E     

 
 



    

1 2 1

1 1 2 2 1 2

1 1 1
0 0

0 0

     b.c. 1: 0free

R R R

z z

z z

z z

z z z

E E

q q q q q q

        
  
   



          1 2 1

1 2
1 2 0 0

0 0

     b.c. 2:  t t z z

z z

E E   

 
 
 

 

  

11
1 11
R Rq q 

 
 

   
2 12 1 2

1 1 1 1
0 0Rz z

q q q q  

 

         24



  
1 q q


4.4 Boundary-Value Problems with Dielectrics (continued)

                              
 

1 1 2
1

1 4 ( )q q
R R  

2 1
1

2 4
q
R 

12
n


2 1

                     

       
pol

q actual charge

22
2 ( )d zR    22

1 ( )d zR   

0
ddq q

q actual charge

image charge
(for 0)z 

image charge
(for 0)z 

z0

 (for 0)z  (for 0)z 

 
2 1 2

11
2  &      (4.45)

q q q
q q q q              

1 1 0 1 1 0 1( ) ( )        P E

  2 1 2 121
11 ( )q q q qq q q           

  0 2 1

     

( ) (4 47)



  

   


pol

q d

P

P P

2 2 0 2 2 0 2( ) ( )        P E

  0 2 1
2 1 2 2 3 2

1 2 1

( )    (4.47)
2 ( ) ( )


    

      
 

pol
q

d
P P n

25



: A dielectric sphere is placed in a uniform electric field.     Example 2
4.4 Boundary-Value Problems with Dielectrics (continued)

a 
r

0E

0EFind  everywhere.  


0 z

W h th h i l di t d di id th i t t     We choose the spherical coordinates and divide the space into two
regions:  and . In both regionr a r a  2s, we have 0 with the

ml im

  

    
1

(cos )solution:  [Sec. 3.1 of lecture notes]
(cos )

ml im
l

l m im
l

Pr e
r Q e





  

    
     

    

 is independent of .
b c is finite at cos 1

i


  
      0

(cos )l
n l l

l
A r P 




 

b.c.  is finite at cos 1.
 is finite at 0.in r

    
   

1

0
(cos )

If 0 Wh h k h 0

l l
out l l l

l
B r C r P

lQ l


  





    

 If 0,  as . Why then keep the 0 
                

:
     terms in ?

out

out

l    r Question l    
 26



1Rewrite: (cos ) (cos )l l l
i l l l l lA r P B r C r P 

           

4.4 Boundary-Value Problems with Dielectrics (continued)

0 0

0 0

Rewrite: (cos ),  (cos )

b.c. (i):  ( ) . cos .

in l l out l l l
l l

out

A r P B r C r P

E z const E r const

 


 
        

       
( )P 

0 1 0        .;  ;  ( 1) 0

b.c. (ii): ( ) ( ) [ ( ) ( )]
l

in out
in out t t

B const B E B l

a a E a E a

     

    

1(cos )
cos

P 


( ) ( ) ( ) [ ( ) ( )]

      

in out t t

0 0 0
3

1 0 11

      (8)
        (9)l l l

l l l

A B C a
CA a B a A E C a

 
       1 0 11

2 1
(9)

,  1       (10)

b c (iii): ( ) ( )

l l l
l

l l
in out

a a C a
a A C a l

E a E a   




 

  
  

  0 0

1 1 2
0

b.c. (iii): ( ) ( )

( 1) /

r r in outr rr a r a
l l l

l l l

E a E a

lA a lB a l C a

   

 

 
  

  

      

     
2

0 00 / ,  0  C a l
 

  
 3

                                   (11)
[ 2 / ] 1 (12)A E C a l 




   1 0 0 1
2 1

0

[ 2 / ],  1                                     (12)
( 1) / , 1                                     (13)l

l l

A E C a l
lA l C a l
 
  

   
     27



0 0(7), (11) . (let it be 0.)A B const  

4.4 Boundary-Value Problems with Dielectrics (continued)

0 0
3

1 1 0
0 0

0 0

3 / 1
2 / / 2

      (7), (11) . (let it be 0.)

      (9), (12) ;  E
A B const

A C a E 
   


 


      
 

0

     (10), (13) 0  for 1 
3 cos

l lA C l

E r 

   

  


This is the only way (3) & 
(6) can both be satisfied. 

0
0

0
0 0

cos  
2 /

 / 1cos

in

t

E r

E r E


 

 

  


 
   

3                         (4.54)        
cosa 






( )

0 0
0applied field

cos
/ 2out E r E

 
 

 2 cos
r






03

0 0
0

/ 1dipole field with 4   [cf. (4.10)]
/ 2

ap E  
 






[see (4.58)]

0/ 2  
polarization 
charge [see (4.58)] 

0E

total electric fielddue to polarization charge    E 28



4.7 Electrostatic Energy in Dielectric Media
Let ( ) be the field due to charge density already present x

3

     Let ( ) be the field due to charge density  already present
in a dielectric medium. The work done to add  is

( ) ( )

free

free
W d x




 





x

x x

3

            ( ) ( )

( )

freeW d x

d x

 



 

 





x x

D x
free    D

Using 
we obtain 

( )

  

  

    

     

a a a

D D D                  ( )

             

d x D x

3 3     ( )d x d x      D E D 

( )
            ( )

  
 

   
   

D D D
D E D



 
1 21

0, as s d
r

r    D a For this integral to vanish, 
the volume of integration 

t b i fi it

 
 
  

3                                                                        (4.86)d x E D
2 rrr must be infinite.  

Note: (1) free(x) here is denoted by (x) in Jackson (4.84).
(2) In a dielectric medium, the addition of free(x) will induce 

 ( ) H Φ( ) i h b i i d b hpol(x). Hence, Φ(x) in the above equation is due to both 
free and pol. The effect of pol is implicit in D (=E). 29



3 3[(4 86)] (4 87)DW d x W d x      E D E D

4.7 Electrostatic Energy in Dielectric Media (continued)

0

1 1

    [(4.86)]                   (4.87)
For linear and isotropic media ( ;  indep. of : 

( ) ( ) ( )
 

W d x W d x  
 

    

    


  E D E D

D E E)
 1 1

2 2   ( ) ( ) ( )
         

For linear and anisotropic media (
              E D E E E E E E E D

;  indep. of :  



  


D E E)ε ε 

3 3

1 1
2 2

1 1
2 2

   ( ) ( ) ( )

( ) [for linear media] (4.89)DW d x d x

    



            

      

E D E E E E E E E D

E D E D

ε ε ε  

0

3

2 2

1 1
0 as 

( )    [for linear media]      (4.89)

r

W d x d x

 

   

 

E D E D


( )

   
  

E D D
D D  

1 2
2

3

1

1 1
2 2( ) ( )freeW d x ds

rrr
      x x D a

3

( )
( ) free

   
    

D D
D

       3

3

1
2

1
2

( ) ( )     [for linear media]

Here, is due to and . In (1.53), ( ) ( )

free

free pol

d x

W d x



  

 

  





x x

x x2     Here,  is due to  and . In (1.53), ( ) ( )  

(valid for a vacuum medium),  is due entirely to  in the integrand.
free pol W d x  



 


 x x

30



: Refer to the mechanism of dipole formation discussed       Problem 1
4.7 Electrostatic Energy in Dielectric Media (continued)

( )F x restoring  
f

in Sec. 4.6. Find the energy required to induce a dipole on an atomic
or molecular charge  by an electric field .   e E

force
x

     Solution
2
0

: Under the restoring force: 

                     ,                                                             (4.71)m F x0

the energy required to displace  by a distance  ise x

w 2 21( )x F x dx m x   e

        
        

               dipolew 0

2

02( )

     Using the relations:

F x dx m x  





equilibrium position
0 x

                
      

2
02

0Force balance:      
Induced dipole moment:                                           (4.72)

mm e e
e

   

 

xx E E
p x

2 2
0

1 1
2 2

p ( )

we obtain    dipole
mm xw 



 

p

 
2
0 1

2                     (14)e e  
pE

x x p E
pE

internal energy of a single dipole
31



31
2:  From  [(4.89)], we deduce that, in a     Problem 2 W d x E D

4.7 Electrostatic Energy in Dielectric Media (continued)

1
2

2: o [( .89)], we deduce t at, a
dielectric, the energy density due to the presence of is . 
Derive this relation using the result in problem 1.

oblem W d x
w  


E E D

Derive this relation using the result in problem 1.
: Pro     Solution

1
2

blem 1 gives the internal energy of a single dipole:
                                                                             (14)dipolew  p E2 ( )
           Hence, the internal energy of all dipoles p

dipole p

2
0

1 1 1
er unit volume is

( )i ii Nw       p E P E E02 2 2        ( )i iint
i

Nw    p

P

E P E E


 0
          (4.37)  ( )(4 34)

  
   

D E P ED E P

21

     
     From Ch. 1, we have the electric field energy per unit volume: 

E (1 55)

 0
0

( ) (4.34)   D E P

2
0

1
2                                                         Ew  E

2 2 2

                   (1.55)
     Hence, the total energy per unit volume is 

2 2 2
0 0

1 1 1 1
2 2 2 2        ( )int Ew ww           E E E E D

32



                 
0   

4.7 Electrostatic Energy in Dielectric Media (continued)

We now apply (4 89) to find the energy change due to a dielectric                                                  
0 0 0( ),  ( ),  ( )E x D x x



1 0

     We now apply (4.89) to find the energy change due to a dielectric
object with linear ( ) in the field  of a fixed external source.

Without the object:
 x E

                 
0                      

1( ) x
0   

31
0 0 02

     Without the object:   
       

With the
W d x E D

object:                                                   
0 0 0( ),  ( ),  ( )E x D x x

         
0

                                  
                                         ( ),  ( ),  ( )E x D x x

     With the 

 

31
1 2

31

object: 
             W d x

W W W d x
 

       




E D
E D E D

( ) x0 ( ) x

   ( ) ( ) ( )E D

         
1( ) x

0    
     
 

1 0 0 02
3 31 1

0 0 0 02 2
31

           
W W W d x

d x d x
      

       


 



E D E D
E D D E E E D D                                      ( ),  ( ),  ( )E x D x x

3 3
0 0 0 0( ) ( ) ( ) ( ) 0d x d x          D D D D
i i b

  31
0 02           d x    E D D E

0free free   


integration by parts

0     Reason for :  A dielectric object contains freeρ  D = D = nof
 and the external source is fixed.  is unchanged before  

and after the introduction of the object.
free free 

33



4.7 Electrostatic Energy in Dielectric Media (continued)

O id h bj D E0 0 0D E

  3 01
0 02

1

Outside the object: 
       

Inside the object:  
(outside the object) 0

W d x
W




      
  


D E

E D D E
D E

i h l

0 0 0

1

31
1 0 02

(outside the object) 0
( )                      (4.92)

The dielectric object tends to move toward (a
v

W
W d x 

 
     


 E E

way from) the

v1 is the volume
of the object.

The dielectric object tends to move toward (a

0 1 0 1 0

1 0 1 0

way from) the
     region of increasing  if >  ( < ). 

& ( )
   

        
E

D E D E P P E

1

1 0 1 0
31

02

       &     ( )

                                      (4.93)vW d x

       

    

D E D E P P E

P E induced polarization
of the object

The energy density of a dielectric object  0placed in the field 
     of a fixed external source is

E
j

1
02

1
2

                                    (4.94)
 Explain the factor  which is in (4.94) but not in the 2nd:Question

w   P E

2

                term of: 1
6

(0)
 (0) (0)    (4.24)ij

ij

j
i

E
xW q Q


     p E 
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Homework of Chap. 4  

Problems:  1,   2,  7,  8,  10, , , ,

Q i : No 9 2010Quiz:  Nov. 9, 2010
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Appendix A. Taylor Expansion
a translational operator which translates 

 
0

a translational operator, which translates 
the argument of the function it operates on
to a distance  away from the argument.

1     Define 
!

n

n
e

n





 
   

  

a

a
a

     Taylor expansion of  ( ) and f x a A

 1
!

( ) about point :

( )  ( ) ( )n
nf e f f

 


    

a
x a x

x a x a x 

    
!0

1
2

( ) ( ) ( )

( ) ( ) ( )              (A.1)

nn
f f f

f f f



      


x a x a a x 

 

    

1
!0

1

( )  ( ) ( )

( ) ( ) ( ) ( )

n
nn

e






    



aA x a A x a A x

    1
2( ) ( ) ( )             (A.2)

      Simila

        A x a A x a a A x 

at at
( )rly, operating ( )  and ( )  with , we f e 

 


x a x a
x ax A x

  1
2

at at 

( ) ( ) ( ) ( ) [( ) ][( ) ] ( )  (A.3)
obtain the Taylor expansion of ( ) and ( ) about point :

f f f f
f

         

x a x a

x a x a a x a x a a
x A x a

  
 

2
1
2

( ) ( ) ( ) ( ) [( ) ][( ) ] ( ) ( )

( ) ( ) ( ) ( ) [(

f f f f

     A x A a x a A a x a) ][( ) ] ( ) (A.4)   



 x a A a  37



Appendix A. Taylor Expansion (continued)

In (A 1) and (A 2) we have [in Cartesian coordinates]

1 2 3

3
1 2 3

1

       In (A.1) and (A.2), we have [in Cartesian coordinates]

                                  (A.5)   
   

    
iix x x xi

a a a aa

   2
1

                       (A


  
        

i j i j

i

i j i jx x x xi j ij
a a a aa a .6)

 

 

                   (A.7)( ) ( ) ( )               

( ) ( ) 


   

ii xi
f a f fa x x a x

 

  

   ( )                (A.8)

: [ ( )]

( ) ( ) 
 



   

  

  

    

i ii j j i j j
i j j ix xa A a A

Example a x x a

a A x e e

a x x e e a            : [ ( )]




       
i

ij

i j j j j j
j i jxExample a x x aa x x e e a

21
2

     For scalar functions with a scalar argument, (A.1) & (A.3) reduce to

          ( ) ( ) ( ) ( )                            (A.9)     f x a f x af x a f x2
21

2          ( ) ( ) ( ) ( ) ( ) ( )             f x f a x a f a x a f a           (A.10)
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Appendix B. Polarization Current Density and 
Polarization Charge Density in Dielectric Media
We divide the bound charges (electrons and ions) in a dielectric

into different groups. The i-th group has Ni identical charged

g y

particles per unit volume. Each particle in the group carries a charge
ei and has a dipole moment given by pi = eixi, where xi is the
particle’s displacement from its eq ilibri m position nder theparticle’s displacement from its equilibrium position under the
influence of a static or time-dependent electric field. We assume
that all particles in the group have the same xi at all times and thatthat all particles in the group have the same xi at all times and that
the variation of xi is so small that it will not change Ni . Then, the
electric polarization P as a function of position and time can be
written as                                                    charge density of the -th group
       ( , ) ( ) ( ) ( ) ( ) ( ) ( )i i i i i i i

i i i

i
t N t N e t t    P x x p x x x x

and the polarization current density is the time derivative of
i i i

( , )
                                                            polarization current density

tP x

  
p y

      ( , ) ( ) ( ) ( ) ( ) ( , )        (B.1)i i i i pol
i i

d
t dtt t t t  
   P x x x x v J x


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Appendix B. Polarization Current Density and Polarization Charge Density… (continued)

Let be the polarization charge density of the medium then     Let  be the polarization charge density of the medium, then 

              0        (conservation of charge)
pol

pol polt




  J

          0 0
         

pol pol

pol

t t t
K

 


  
       

  

P P
P

      If 
pol

0,we have 0. Hence, 0.
(B 2)

pol

l

K


  

  

P
P                                                                         (B.2)

      is due to the  of bound charges, whereas  is due 
to the

pol

pol polmotion
displ




  P
J
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