Chapter 5: Magnetostatics, Faraday's Law, Quasi-Static Fields

5.1 Introduction and Definitions

We begin with the law of conservation of charge:

$$
\begin{align*}
& \int_{V} \nabla \cdot \mathbf{J} d^{3} x=\oint \mathbf{J} \cdot d \mathbf{a}=-\frac{\partial Q}{\partial t}=-\frac{\partial}{\partial t} \int_{V} \rho d^{3} x \\
& \Rightarrow \nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0\left[\begin{array}{l}
\text { conservation } \\
\text { of charge }
\end{array}\right] \tag{5.2}
\end{align*}
$$

Magnetostatics is applicable under the static condition. Hence, $\frac{\partial \rho}{\partial t}=0$ and (5.2) gives $\quad \nabla \cdot \mathbf{J}=0$ [for magnetoststics]

Assuming a magnetic force \mathbf{F}_{B} is experienced by charge q moving at velocity \mathbf{v}, we define the magnetic induction \mathbf{B} by the relation:

$$
\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}
$$

which is consistent with the definition in (5.1).

5.2 Biot and Savart Law

The Biot-Savart law states that the differential magnetic field $d \mathbf{B}$ at point P (see figure) due to a differential current element $d \ell_{2}$ in loop 2 is given by $d \mathbf{B}=\frac{\mu_{0}}{4 \pi} I_{2} \frac{d \ell_{2} \times \mathbf{x}_{12}}{\left|\mathbf{x}_{12}\right|^{3}}$

Thus, the total field at P due to I_{2} in

Integrating the force on I_{1} in loop 1 due to I_{2} in loop 2, we obtain

$$
\begin{aligned}
& \mathbf{F}_{12}=I_{1} \oint d \ell_{1} \times \mathbf{B}
\end{aligned}
$$

5.3 Differential Equations of Magnetostatics

 and Ampere's Law
Gauss Law of Magnetism :

$$
\text { Rewrite (1): } \mathbf{B}=\frac{\mu_{0}}{4 \pi} I_{2} \oint \frac{d \ell_{2} \times \mathbf{x}_{12}}{\left|\mathbf{x}_{12}\right|^{3}}
$$

Change \mathbf{x}_{1} to $\mathbf{x}, \mathbf{x}_{2}$ to \mathbf{x}^{\prime}, and let $I_{2} d \ell_{2}=\widetilde{\mathbf{J} d a} d \ell_{2}=\mathbf{J} d^{3} x$, we obtain

$$
\begin{align*}
& =\frac{\mu_{0}}{4 \pi} \nabla \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \quad \nabla{ }^{\prime} \quad \stackrel{\uparrow}{\text { operates on } \mathbf{x}} \tag{5.16}
\end{align*}
$$

$\Rightarrow \quad \nabla \cdot \mathbf{B}=0 \quad$ [Gauss law of magnetism]

Ampere's Law : Rewrite (5.16):

$$
\begin{align*}
& \mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \nabla \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \Rightarrow \nabla \times \mathbf{B}(\mathbf{x}) \\
& =\frac{\mu_{0}}{4 \pi} \nabla \times \nabla \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \\
& \begin{array}{l}
=\frac{\mu_{0}}{4 \pi}[\nabla \overbrace{\int \nabla \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}} d^{3} x^{\prime} \\
\nabla \int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \underbrace{\nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}_{-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d^{3} x^{\prime}] \\
\nabla \times(\nabla \times \mathbf{a})=\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a}
\end{array} \\
& \begin{array}{l}
=\frac{\mu_{0}}{4 \pi}[\nabla \int \nabla \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}-\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \underbrace{\nabla^{2} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}_{-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} d^{3} x^{\prime}] \\
\nabla \times(\nabla \times \mathbf{a})=\nabla(\nabla \cdot \mathbf{a})-\nabla^{2} \mathbf{a}
\end{array} \\
& \Rightarrow \nabla \times \mathbf{B}(\mathbf{x})=\mu_{0} \mathbf{J}(\mathbf{x}) \tag{5.22}\\
& \Rightarrow \underbrace{\int \nabla \times \mathbf{B} \cdot \mathbf{n} d a}=\mu_{0} \underbrace{\int \mathbf{J} \cdot \mathbf{n} d a} \\
& \oint \mathbf{B} \cdot d \ell \quad I \text { (through the loop) } \\
& \int \nabla \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\mathbf{x}-\mathbf{x}^{\prime} \mid} d^{3} x^{\prime} \\
& =\int[\mathbf{J}\left(\mathbf{x}^{\prime}\right) \cdot \nabla \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}+\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \overbrace{\nabla \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}^{0}] d^{3} x^{\prime} \\
& =-\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \cdot \nabla^{\prime} \frac{1}{\mid \mathbf{x}-\mathbf{x}^{\prime} d^{3}} x^{\prime} \\
& =\int_{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \underbrace{\nabla^{\prime} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}_{0} d^{3} x^{\prime}-\underbrace{\int \nabla^{\prime} \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}}_{0} \\
& \Rightarrow \oint \mathbf{B} \cdot d \ell=\mu_{0} I\left[\begin{array}{l}
\text { Ampere's law, a much more elaborate } \\
\text { representation of the Biot-Savart law }
\end{array}\right] \tag{5.25}
\end{align*}
$$

5.4 Vector Potential

Vector Potential : Rewrite (5.16): $\mathbf{B}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \nabla \times \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$

$$
\begin{equation*}
\Rightarrow \mathbf{B}=\nabla \times \mathbf{A} \tag{5.27}
\end{equation*}
$$

where the vector potential \mathbf{A} is given by

$$
\begin{equation*}
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}+\nabla \psi \tag{5.28}
\end{equation*}
$$

which shows that \mathbf{A} may be freely transformed (without changing \mathbf{B}) according to $\quad \mathbf{A} \rightarrow \mathbf{A}+\nabla \psi \quad$ (gauge transformation)

We may exploit this freedom by choosing a ψ so that

$$
\begin{gather*}
\nabla \cdot \mathbf{A}=0 \quad \text { (Coulomb gauge) } \tag{5.31}\\
\nabla \cdot(5.28) \Rightarrow \nabla \cdot \mathbf{A}=\frac{\mu_{0}}{4 \pi} \overbrace{\int \nabla \cdot \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}+\nabla^{2} \psi=\nabla^{2} \psi,}^{\text {See proof on previous page. }}
\end{gather*}
$$

\Rightarrow Coulomb gauge requires $\nabla^{2} \psi=0$ everywhere and hence $\psi=$ const.

Rewrite: $\left\{\begin{array}{l}\nabla \times \mathbf{B}=\mu_{0} \mathbf{J} \\ \mathbf{B}=\nabla \times \mathbf{A}\end{array}\right.$

$$
\begin{aligned}
& \Rightarrow \nabla \times \nabla \times \mathbf{A}=\mu_{0} \mathbf{J} \\
& \Rightarrow \nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J}
\end{aligned}
$$

Choose the Coulomb gauge $(\nabla \cdot \mathbf{A}=0)$

$$
\begin{equation*}
\Rightarrow \nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J} \tag{5.31}
\end{equation*}
$$

$$
\begin{equation*}
\Rightarrow \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{5.32}
\end{equation*}
$$

Note:
(5.32) is valid in unbounded (infinite) space, i.e. the volume of integration must include all currents. If there is a boundary surface, the currents on the boundary must be accounted for by application of boundary conditions (See example in Sec. 5.12.)

A Comparison of Electrostatics and Magnetostatics:

Electrostatics

Definition of \mathbf{E} :

$$
\mathbf{F}_{E}=q \mathbf{E}
$$

Coulomb's law:

$$
\begin{aligned}
& \mathbf{E (x) = \frac { 1 } { 4 \pi \varepsilon _ { 0 } } \int \frac { \rho (\mathbf { x } ^ { \prime }) (\mathbf { x } - \mathbf { x } ^ { \prime }) } { | \mathbf { x } - \mathbf { x } ^ { \prime } | ^ { 3 } } d ^ { 3 } x ^ { \prime }} \begin{array}{cc}
\Downarrow \mathbf{\nabla \cdot \mathbf { E } = \rho / \varepsilon _ { 0 }} & \nabla \times \mathbf{E}=0 \\
\Downarrow
\end{array} \\
& \Downarrow \begin{array}{cc}
\Downarrow
\end{array} \\
& \begin{array}{c}
\oint \mathbf{E} \cdot d \mathbf{a}=q / \varepsilon_{0} \\
\text { Gauss's law } \\
\text { of electrostatics }
\end{array} \\
& \oint \mathbf{E} \cdot d \ell=0
\end{aligned}
$$

Magnetostatics
Definition of \mathbf{B} :

$$
\mathbf{F}_{B}=q \mathbf{v} \times \mathbf{B}
$$

Biot-Savart law:

$\oint \mathbf{B} \cdot d \mathbf{a}=0 \quad \oint \mathbf{B} \cdot d \ell=\mu_{0} I$
Gauss's Law Ampere's law
of magnetism

5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment

Magnetic (Dipole) Moment : $\quad \mathbf{A \times (B \times C) = B (A \cdot C) - C (A \cdot B)}$

$$
\begin{align*}
& \mathbf{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \quad \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=\frac{1}{|\mathbf{x}|}+\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{|\mathbf{x}|^{3}}+\cdots \text { [Eq. (5), Ch. 4] } \\
& \begin{array}{c}
=\frac{\mu_{0}}{4 \pi}[\frac{1}{|\mathbf{x}|} \underbrace{\int J}_{=0} \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}
\end{array}+\frac{1}{|\mathbf{x}|^{3}} \mathbf{x} \underbrace{\mathbf{x} \cdot \int \mathbf{x}^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}_{=-\frac{1}{2} \int \mathbf{x} \times\left[\mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right.} \\
& =-\frac{\mu_{0}}{8 \pi} \frac{\int \mathbf{x} \times\left[\mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right] d^{3} x^{\prime}}{|\mathbf{x}|^{3}}+\cdots \\
& \approx \frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^{3}}\left[\begin{array}{l}
\text { If } \mathbf{x} \text { is far } \\
\text { from source. }
\end{array}\right] \tag{5.55}
\end{align*}
$$

where $\mathbf{m} \equiv \frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \quad$ [magnetic (dipole) moment]
Note: $\operatorname{In}(5.54), \mathbf{m}$ is defined with respect to a point of reference. Here, it coincides with the origin of the coordinates $(\mathbf{x}=0)$.

5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Problem: Prove the relation $\int \mathbf{J}(\mathbf{x}) d^{3} x=0$ under the conditions:
$\nabla \cdot \mathbf{J}=0$ and \mathbf{J} is localized within volume of integration.
Proof: Since $\mathbf{J}=0$ outside the volume of integration, we may extend the volume of integration to ∞ without changing the integral value.

$$
\int \mathbf{J}(\mathbf{x}) d^{3} x=\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z\left(J_{x} \mathbf{e}_{x}+J_{y} \mathbf{e}_{y}+J_{z} \mathbf{e}_{z}\right)
$$

Consider the x-component first:

$$
\begin{aligned}
& \mathbf{e}_{x} \cdot \int \mathbf{J}(\mathbf{x}) d^{3} x=\int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z \underbrace{\int_{-\infty}^{\infty} J_{x} d x} \\
& =-\left.\int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z \int_{-\infty}^{\infty} x \frac{\partial J_{x}}{\partial x} d x x^{\infty}\right|_{-\infty} ^{\prime}-\int_{-\infty}^{\infty} x \frac{\partial J_{x}}{\partial x} d x \\
& =-\int_{-\infty}^{\infty} d y \int_{-\infty}^{\infty} d z \int_{-\infty}^{\infty} x(\frac{\partial J_{x}}{\partial x}+\underbrace{\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{z}}{\partial z}}) d x
\end{aligned}
$$

$$
=-\int x \nabla \cdot \mathbf{J} d^{3} x=0
$$

Similarly, the y-and z-components also vanish.

$$
\text { Thus, } \int \mathbf{J}(\mathbf{x}) d^{3} x=0
$$

The insertion of these 2 terms will not change the value of the integral because

$$
\int_{-\infty}^{\infty}\left(\frac{\partial J_{y}}{\partial y}\right) d y=\left.J_{y}\right|_{-\infty} ^{\infty}=0 \& \int_{-\infty}^{\infty}\left(\frac{\partial J_{z}}{\partial z}\right) d z=\left.J_{z}\right|_{-\infty} ^{\infty}=0
$$

Anti-symmetric unit tensor $\left(\varepsilon_{i j k}\right)$: (used on p .185 and p.188) $\varepsilon_{i j k} \equiv \begin{cases}0 & , \text { if two or more indices are equal } \\ 1, & \text { if } i, j, k \text { is an even permutation of } 1,2,3 \\ -1, & \text { if } i, j, k \text { is an odd permutation of } 1,2,3\end{cases}$

Examples: $\varepsilon_{112}=0, \varepsilon_{123}=1, \varepsilon_{132}=-1, \varepsilon_{312}=1$

$$
\begin{aligned}
& (\mathbf{A} \times \mathbf{B})_{i}=\sum_{j k} \varepsilon_{i j k} A_{j} B_{k}, \quad(\nabla \times \mathbf{A})_{i}=\sum_{j k} \varepsilon_{i j k} \frac{\partial}{\partial x_{j}} A_{k} \\
& \nabla \cdot(\mathbf{A} \times \mathbf{B})= \\
& =\sum_{i j k} \varepsilon_{i j k} \frac{\partial}{\partial x_{i}}\left(A_{j} B_{k}\right) \\
& \\
& =\sum_{i j k}\left[\varepsilon_{i j k} \frac{\partial A_{j}}{\partial x_{i}} B_{k}+\varepsilon_{i j k} A_{j} \frac{\partial B_{k}}{\partial x_{i}}\right] \\
& \\
& =\sum_{i j k}\left[\varepsilon_{k i j} B_{k} \frac{\partial A_{j}}{\partial x_{i}}-\varepsilon_{j i k} A_{j} \frac{\partial B_{k}}{\partial x_{i}}\right] \\
&
\end{aligned}=\mathbf{B} \cdot(\nabla \times \mathbf{A})-\mathbf{A} \cdot(\nabla \times \mathbf{B}) \text {. }
$$

5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Example 1 of magnetic moment: plane loop

$$
\mathbf{m}=\frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\frac{I}{2} \underbrace{\oint \mathbf{x}^{\prime} \times d \ell}_{2 \cdot(\text { area })}
$$

$$
\Rightarrow\left\{\begin{array}{l}
|\mathbf{m}|=I \cdot(\text { area })
\end{array}\right.
$$

\mathbf{m} is normal (by right hand rule) to the plane of the loop.
Example 2 of magnetic moment: a number of charged particles in motion

$$
\begin{align*}
\mathbf{J} & =\sum_{i} q_{i} \mathbf{v}_{i} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right) \\
\Rightarrow \mathbf{m} & =\frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=\frac{1}{2} \sum_{i} q_{i} \mathbf{x}_{i} \times \mathbf{v}_{i}=\sum_{i} \frac{q_{i}}{2 M_{i}} \mathbf{L}_{i} \tag{5.58}\\
& =\frac{e}{2 M} \mathbf{L} \stackrel{\text { if } q_{i} / M_{i}=e / M \text { for all particles. }}{ } \begin{array}{l}
\mathbf{L}: \text { total angular momentum }
\end{array} \tag{5.59}
\end{align*}
$$

Dipole Field : (valid far from the source)

$$
\begin{align*}
& \text { Rewrite (5.55) : } \mathbf{A}=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \mathbf{x}}{|\mathbf{x}|^{3}} \tag{5.55}\\
& \Rightarrow \mathbf{B}=\nabla \times \mathbf{A}=\frac{\mu_{0}}{4 \pi} \nabla \times\left(\mathbf{m} \times \frac{\mathbf{x}}{|\mathbf{x}|^{3}}\right) \\
& \begin{aligned}
\nabla \cdot \frac{\mathbf{x}}{|\mathbf{x}|^{3}} & =\frac{1}{|\mathbf{x}|^{3}} \nabla \cdot \mathbf{x}+\mathbf{x} \cdot \nabla \\
& =\frac{3}{|\mathbf{x}|^{3}}-\mathbf{x} \cdot \frac{\mathbf{x}}{|\mathbf{x}|^{5}}=0
\end{aligned} \\
& =\frac{\mu_{0}}{4 \pi}[\mathbf{m} \overbrace{\nabla \cdot \frac{\mathbf{x}}{|\mathbf{x}|^{\beta}}-\frac{\mathbf{x}}{|\mathbf{x}|^{3}} \overbrace{\nabla \cdot \mathbf{m}}^{=0}+\overbrace{\left[\frac{\mathbf{x}}{|\mathbf{x}|^{3}} \cdot \nabla\right) \mathbf{m}}^{=0(\because \mathbf{m}}-(\mathbf{m} \cdot \nabla) \frac{\mathbf{x}}{|\mathbf{x}|^{3}}]}^{=0} \text { is a constant. } \\
& =\frac{\mu_{0}}{4 \pi}\left[-m_{x} \frac{\partial}{\partial x} \frac{\mathbf{x}}{|\mathbf{x}|^{3}}-m_{y} \frac{\partial}{\partial y} \frac{\mathbf{x}}{|\mathbf{x}|^{3}}-m_{z} \frac{\partial}{\partial z} \frac{\mathbf{x}}{|\mathbf{x}|^{3}}\right] \begin{array}{r}
\nabla \times(\mathbf{A} \times \mathbf{B})=(\mathbf{B} \cdot \nabla) \mathbf{A}-(\mathbf{A} \cdot \nabla) \mathbf{B} \\
+\mathbf{A}(\nabla \cdot \mathbf{B})-\mathbf{B}(\nabla \cdot \mathbf{A})
\end{array} \\
& =\frac{\mu_{0}}{4 \pi}\left[-m_{x}\left(\frac{\mathbf{e}_{x}}{|\mathbf{x}|^{3}}+\mathbf{x} \frac{-3 x}{|\mathbf{x}|^{5}}\right)-(y)-(z)\right] \\
& =\frac{\mu_{0}}{4 \pi} \frac{3 \mathbf{n}(\mathbf{n} \cdot \mathbf{m})-\mathbf{m}}{|\mathbf{x}|^{3}} \longleftrightarrow \mathbf{n = \frac { \mathbf { x } } { | \mathbf { x } | }} \quad\left[\begin{array}{l}
\text { magnetic dipole } \\
\text { field }
\end{array}\right] \tag{5.56}
\end{align*}
$$

5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

As in the case of the electric dipole moment, here we characterize a localized current distribution by a constant quantity, the magnetic moment \mathbf{m}, which turns an otherwise complicated field calculation (see, for example, Sec. 5.5) into a simple one (with limited validity.)

Consider, for example, a circular loop carrying current I. Using (5.57), we have $\mathbf{m}=I \pi a^{2} \mathbf{e}_{z}$ (see figure). Hence, the dipole field is

$$
\begin{align*}
\mathbf{B} & =\frac{\mu_{0}}{4 \pi} \frac{3 \mathbf{n}(\mathbf{n} \cdot \mathbf{m})-\mathbf{m}}{|\mathbf{x}|^{3}} \longleftarrow \begin{array}{l}
\mathbf{n}=\mathbf{e}_{r} \\
\mathbf{m}=I \pi a^{2} \mathbf{e}_{z}
\end{array} \tag{5.56}\\
& =\frac{\mu_{0}}{4 \pi} I \pi a^{2} \frac{3 \mathbf{e}_{r}\left(\mathbf{e}_{r} \cdot \mathbf{e}_{z}\right)-\mathbf{e}_{z}}{r^{3}} \\
& \left(\mathbf{e}_{z}=\mathbf{e}_{r} \cos \theta-\mathbf{e}_{\theta} \sin \theta\right) \\
& =\frac{\mu_{0}}{4 \pi} I \pi a^{2} \frac{2 \cos \theta \mathbf{e}_{r}+\sin \theta \mathbf{e}_{\theta}}{r^{3}} \tag{5.41}
\end{align*}
$$

When $r \gg a$, the dipole field is a good approximation of the total field [see Jackson (5.40).]

5.7 Forces and Torque on and Energy of a Localized

 Current Distribution in an External Magnetic Induction
Magnetic Force in External Field :

$$
\begin{equation*}
\mathbf{F}=\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \times \mathbf{B}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \tag{5.12}
\end{equation*}
$$

Expanding \mathbf{B} :[see lecture notes, Ch. 4, Appendix A, Eq. (A.4)]

$$
\begin{align*}
& \quad \mathbf{B}(\mathbf{x})=\mathbf{B}(0)+\underbrace{(\mathbf{x} \cdot \nabla) \mathbf{B}(0)}+\cdots \\
& \\
& \begin{array}{l}
\text { This implies "After differention of } \mathbf{B}(\mathbf{x}), \text { set } \mathbf{x} \text { in results to } 0, \text { " i.e. } \\
(\mathbf{x} \cdot \nabla) \mathbf{B}(0)=x\left[\frac{\partial}{\partial x} \mathbf{B}(\mathbf{x})\right]_{\mathbf{x}=0}+y\left[\frac{\partial}{\partial y} \mathbf{B}(\mathbf{x})\right]_{\mathbf{x}=0}+z\left[\frac{\partial}{\partial z} \mathbf{B}(\mathbf{x})\right]_{\mathbf{x}=0}
\end{array} \\
& \Rightarrow \mathbf{F}=[\underbrace{\int \mathbf{J}^{\mathbf{J}}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}_{=0 \text { (proved in Sec. 5.6) }}] \times \mathbf{B}(0)+\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \times\left[\left(\mathbf{x}^{\prime} \cdot \nabla^{\prime}\right) \mathbf{B}(0)\right] d^{3} x^{\prime}+\cdots \\
& \\
& =\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) \times\left[\left(\mathbf{x}^{\prime} \cdot \nabla^{\prime}\right) \mathbf{B}(0)\right] d^{3} x^{\prime}+\cdots=\nabla(\mathbf{m} \cdot \mathbf{B}) \tag{5.69}\\
& =-\nabla U, \quad \text { See derivation on pp.188-189 }
\end{align*}
$$

where $U=-\mathbf{m} \cdot \mathbf{B}=$ potential energy.

Magnetic Torque in External Field:

$$
\begin{align*}
& \mathbf{N}=\int \mathbf{x}^{\prime} \times \mathbf{f}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\
& =\int \mathbf{x}^{\prime} \times[\mathbf{J}\left(\mathbf{x}^{\prime}\right) \times \underbrace{\mathbf{B}\left(\mathbf{x}^{\prime}\right)}] d^{3} x^{\prime} \tag{5.13}\\
& \nabla^{\prime} \cdot\left[\mid \mathbf{x}^{\prime 2} \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right] \\
& =\mathbf{J}\left(\mathbf{x}^{\prime}\right) \cdot \overbrace{\nabla^{\prime}\left|\mathbf{x}^{\prime}\right|^{2}}^{2 \mathbf{x}^{\prime}}+\left|\mathbf{x}^{\prime}\right|^{2} \overbrace{\nabla^{\prime} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}^{0} \\
& \mathbf{B}(0)+\left(\mathbf{x}^{\prime} \cdot \nabla^{\prime}\right) \mathbf{B}(0)+\cdots \approx \mathbf{B}(0) \\
& \approx \int \mathbf{x}^{\prime} \times\left[\mathbf{J}\left(\mathbf{x}^{\prime}\right) \times \mathbf{B}(0)\right] d^{3} x^{\prime} \\
& \left.=\int\left[\mathbf{B}(0) \cdot \mathbf{x}^{\prime}\right] \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}-\mathbf{B}(0)\right] \overbrace{\mathbf{x}^{\prime} \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)} d^{3} x^{\prime} \\
& =\underbrace{\int\left[\mathbf{B}(0) \cdot \mathbf{x}^{\prime}\right] \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}_{\uparrow}-\frac{1}{2} \mathbf{B}(0) \underbrace{\int \nabla^{\prime} \cdot\left[\left.\mathbf{x}^{\prime}\right|^{2} \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right] d^{3} x^{\prime}}_{\uparrow} \\
& =-\frac{1}{2} \int \mathbf{B}(0) \times\left[\mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right)\right] d^{3} x^{\prime} \\
& \text { [Using the formula at the } \\
& \text { bottom of p.185, replacing } \\
& =\oint_{S}\left|\mathbf{x}^{\prime}\right|^{2} \mathbf{J}\left(\mathbf{x}^{\prime}\right) \cdot d \mathbf{a}^{\prime}=0 \\
& \mathbf{J} \text { is localized. } \\
& \mathbf{x} \text { with } \mathbf{B}(0) \text {.] } \\
& \Rightarrow \mathbf{J}=0 \text { on surface } \\
& =\mathbf{m} \times \mathbf{B}(0) \tag{5.71}
\end{align*}
$$

A Comparison between Electric and Magnetic Potential Energy, Force, and Torque in External Field :

Potential energy Force Torque $U=-\mathbf{p} \cdot \mathbf{E}(4.24) \quad \mathbf{F}=-\nabla U \quad \mathbf{N}=\mathbf{p} \times \mathbf{E}$ $U=-\mathbf{m} \cdot \mathbf{B}(5.72) \quad \mathbf{F}=-\nabla U \quad \mathbf{N}=\mathbf{m} \times \mathbf{B}$

Both \mathbf{p} and \mathbf{m} tend to orient along the positive field direction under the action of the torque (see figures on the right). This results in a state of minimum potential energy. In this state, \mathbf{p} reduces \mathbf{E}, whereas m enhances B.

Questions:

(1) How does a permanent magnet attract a piece of iron?
(2) How does it attract another permanent magnet?

Force in Self-Consistent Field; Magnetic Pressure and Tension :

A self-consistent field is the combined field generated by the source \mathbf{J} under consideration and the external source (if present). Thus, using $\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}$, we may express the magnetic force density \mathbf{f} (force / unit volume) in terms of \mathbf{B}.

$$
\mathbf{f}=\mathbf{J} \times \mathbf{B}=\frac{1}{\mu_{0}}(\nabla \times \mathbf{B}) \times \mathbf{B}
$$

$\nabla(\mathbf{a} \cdot \mathbf{b})=(\mathbf{a} \cdot \nabla) \mathbf{b}+(\mathbf{b} \cdot \nabla) \mathbf{a}+\mathbf{a} \times(\nabla \times \mathbf{b})+\mathbf{b} \times(\nabla \times \mathbf{a})$ $=\underbrace{-\nabla \frac{B^{2}}{2 \mu_{0}}}+\underbrace{\frac{1}{\mu_{0}}(\mathbf{B} \cdot \nabla) \mathbf{B}} \quad[$ see p. 320 $)]$
magnetic pressure force density
magnetic tension force density, as if a curved B-field line tended to become a straight line.
In regions where $\mathbf{J}=0$, we have $\mathbf{f}=0$
[pressure and tension force densities cancel out].

5.8 Macroscopic Equations, Boundary Conditions on B and H

Macroscopic Equations: To be more general, we move the point of reference for \mathbf{m} from $\mathbf{x}=0$ to $\mathbf{x}=\mathbf{x}_{0}$ and write

$$
\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=\frac{1}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\frac{\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right) \cdot\left(\mathbf{x}-\mathbf{x}_{0}\right)}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{3}}+\cdots \quad[\text { See Sec. 4.1] }
$$

Sub. this relation into How about $\mathbf{J}_{\text {free }}$?

$$
\mathbf{A}=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \quad[(5.32)]
$$

we obtain

$\mathbf{A}=\frac{\mu_{0}}{4 \pi} \frac{\int \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m}\left(\mathbf{x}_{0}\right) \times\left(\mathbf{x}-\mathbf{x}_{0}\right)}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{3}}+\cdots$,
where $\mathbf{m}\left(\mathbf{x}_{0}\right)=\frac{1}{2} \int\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right) \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}$.

To proceed, we consider the orbital motion of atomic/molecular electrons, which can collectively give rise to a permanent or induced magnetization \mathbf{M} (total magnetic moment / unit volume) given by

$$
\begin{gather*}
\left.\mathbf{M}(\mathbf{x})=\sum_{i \uparrow} N_{i}<\mathbf{m}_{i}\right\rangle \tag{5.76}\\
\begin{array}{l|l|l|}
\hline \begin{array}{l}
\text { volume density of } \\
\text { type } i \text { molecules }
\end{array} \\
\begin{array}{l}
\text { magnetic moment per type } i \text { molecule } \\
\text { averaged over a small volume }
\end{array} \\
\hline
\end{array}
\end{gather*}
$$

As will be shown in (5.79), a current density $\left(\mathbf{J}_{M}\right)$ is associated with \mathbf{M}. In addition, there is also a current density due to the flow of free charges, which we denote by $\mathbf{J}_{\text {free }}$ (Jackson denotes it by \mathbf{J} in Sec. 5.8). By the principle of linear superposition, we may write

$$
\mathbf{A}(\mathbf{x})=\mathbf{A}_{\text {free }}(\mathbf{x})+\mathbf{A}_{M}(\mathbf{x}),
$$

where $\mathbf{A}_{\text {free }}$ and \mathbf{A}_{M} are due to $\mathbf{J}_{\text {free }}$ and \mathbf{J}_{M}, respectively.
Obviously, $\mathbf{A}_{\text {free }}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}_{\text {free }}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$

For \mathbf{A}_{M}, we have the expression for \mathbf{M}, but not yet for \mathbf{J}_{M}. So we approximate \mathbf{A}_{M} by the dipole term in (4).

$$
\mathbf{A}_{M}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{\int \mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}{\left|\mathbf{x}-\mathbf{x}_{0}\right|}+\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m}\left(\mathbf{x}_{0}\right) \times\left(\mathbf{x}-\mathbf{x}_{0}\right)}{\left|\mathbf{x}-\mathbf{x}_{0}\right|^{3}}+\cdots,
$$

where we have set $\int \mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}=0$ because \mathbf{J}_{M} is formed of current loops of atomic dimensions (<<volume of integration). Under this condition, \mathbf{m} is independent of the point of reference because

$$
\begin{aligned}
\mathbf{m}\left(\mathbf{x}_{0}\right) & =\frac{1}{2} \int\left(\mathbf{x}^{\prime}-\mathbf{x}_{0}\right) \times \mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\
& =\frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}-\frac{1}{2} \mathbf{x}_{0} \times \overbrace{\mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}}^{0}=(5.54)
\end{aligned}
$$

To represent \mathbf{A}_{M} by the dipole term, we must have $\mid \mathbf{x} \gg$ the dimension of the dipole. So, we divide the source into infinistesimal volumes. In each small volume ΔV, the dipole moment is $\mathbf{M} \Delta V$, which generates a small $\Delta \mathbf{A}_{M}$ at \mathbf{x} given by

$$
\Delta \mathbf{A}_{M}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right) \times\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \Delta \mathrm{V}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}}
$$

where we have replaced the notation \mathbf{x}_{0} with \mathbf{x}^{\prime}. This gives $\quad \mathbf{A}_{M}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right) \times\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{3}} d^{3} x^{\prime}$

Question: Does this relation still hold as $\mathbf{x} \rightarrow \mathbf{x}^{\prime}$?

6.2 The Field of a Magnetized Object

 6.2.1 Bound CurrentsSuppose we have a piece of magnetized material (i.e. M is given). What field does this object produce?

The vector potential of a single dipole \mathbf{m} is

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \frac{\mathbf{m} \times \hat{\imath}}{r^{2}}
$$

In the magnetized object, each volume element carries a dipole moment $\mathbf{M} d \tau^{\prime}$, so the total vector potential is

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{M}\left(\mathbf{r}^{\prime}\right) \times \hat{\imath}}{r^{2}} d \tau^{\prime}
$$

Griffith 2/4

Vector potential and Bound Currents

Can the equation be expressed in a more illuminating form, as in the electrical case? Yes!
By exploiting the identity,

$$
\begin{aligned}
& \text { iting the identity, } \\
& \begin{array}{ll}
\left.\nabla^{\prime} \frac{1}{\mathbf{x}^{\prime}} \frac{\partial}{\partial x^{\prime}}+\hat{\mathbf{y}}^{\prime} \frac{\partial}{\partial y^{\prime}}+\hat{\mathbf{z}}^{\prime} \frac{\partial}{\partial z^{\prime}}\right) \frac{1}{\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}} \\
& =\frac{\hat{\mathbf{x}}^{\prime}\left(x-x^{\prime}\right)+\hat{\mathbf{y}}^{\prime}\left(y-y^{\prime}\right)+\hat{\mathbf{z}}^{\prime}\left(z-z^{\prime}\right)}{\left(\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right)^{3 / 2}}=\frac{\hat{r}}{r^{2}}
\end{array}
\end{aligned}
$$

The vector potential is $\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \mathbf{M}\left(\mathbf{r}^{\prime}\right) \times\left(\nabla^{\prime} \frac{1}{r}\right) d \tau^{\prime}$ Using the product rule $\nabla \times(f \mathbf{A})=\nabla f \times \mathbf{A}+f(\nabla \times \mathbf{A})$
and integrating by part, we have

$$
\begin{aligned}
\mathbf{A}(\mathbf{r}) & =\frac{\mu_{0}}{4 \pi}\left\{\int_{r} \frac{1}{r}\left[\nabla^{\prime} \times \mathbf{M}\left(\mathbf{r}^{\prime}\right)\right] d \tau^{\prime}-\int \nabla^{\prime} \times\left[\frac{\mathbf{M}\left(\mathbf{r}^{\prime}\right)}{r}\right] d \tau^{\prime}\right\} \\
& =\frac{\mu_{0}}{4 \pi}\left\{\int_{r} \frac{1}{2}\left[\nabla^{\prime} \times \mathbf{M}\left(\mathbf{r}^{\prime}\right)\right] d \tau^{\prime}\right\}+\frac{\mu_{0}}{4 \pi} \oint \frac{1}{\imath}\left[\mathbf{M}\left(\mathbf{r}^{\prime}\right) \times \hat{\mathbf{n}}^{\prime}\right] d a^{\prime}
\end{aligned}
$$

Griffith 3/4

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental integral theorems of vector calculus, it is possible to derive a number of corollaries from them. Show that;
(a) $\int_{\mathcal{V}}(\nabla T) d \tau=\oint_{\mathcal{S}} T d \mathbf{a}$. [Hint: Let $\mathbf{v}=\mathbf{c} T$, where \mathbf{c} is a constant, in the divergence theorem; use the product rules.]
(b) $\int_{\mathcal{V}}(\nabla \times \mathbf{v}) d \tau=-\oint_{\mathcal{S}} \mathbf{v} \times d \mathbf{a}$. [Hint: Replace \mathbf{v} by ($\mathbf{v} \times \mathbf{c}$) in the divergence theorem.]
(c) $\int_{\mathcal{V}}\left[T \nabla^{2} U+(\nabla T) \cdot(\nabla U)\right] d \tau=\oint_{S}(T \nabla U) \cdot d \mathbf{a}$. [Hint: Let $\mathbf{v}=T \nabla U$ in the divergence theorem.]

Gauss's law $\int_{v}(\nabla \cdot \mathbf{E}) d \tau=\oint_{S} \mathbf{E} \cdot d \mathbf{a}$
Let $\mathbf{E}=\mathbf{v} \times \mathbf{c}, \quad\left\{\begin{array}{l}\int_{v}(\nabla \cdot(\mathbf{v} \times \mathbf{c})) d \tau=\mathbf{c} \cdot \int_{v}(\nabla \times \mathbf{v}) d \tau \\ \oint_{S}(\mathbf{v} \times \mathbf{c}) \cdot d \mathbf{a}=-\mathbf{c} \cdot \oint_{S} \mathbf{v} \times d \mathbf{a}\end{array}\right.$
Since \mathbf{c} is a constant vector, so $\int_{v}(\nabla \times \mathbf{v}) d \tau=-\oint_{S} \mathbf{v} \times d \mathbf{a}$

Vector potential and Bound Currents

$$
\begin{aligned}
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int \underbrace{\frac{1}{2}}_{\imath}[\underbrace{\mathbf{J}_{b}=\nabla^{\prime} \times \mathbf{M}\left(\mathbf{r}^{\prime}\right)}_{\left.\begin{array}{l}
\nabla^{\prime} \times \mathbf{M}\left(\mathbf{r}^{\prime}\right)
\end{array}\right]} \begin{array}{l}
\text { volume current }
\end{array} & \begin{array}{l}
\mathbf{K}_{b}=\mathbf{M}\left(\mathbf{r}^{\prime}\right) \times \hat{\mathbf{n}}^{\prime} \\
\text { vurface current }
\end{array}
\end{aligned}
$$

With these definitions, bound currents

$$
\mathbf{A}(\mathbf{r})=\frac{\mu_{0}}{4 \pi} \int_{v} \frac{\mathbf{J}_{b}}{r} d \tau^{\prime}+\frac{\mu_{0}}{4 \pi} \oint_{S} \frac{\mathbf{K}_{b}}{r} d a^{\prime}
$$

The electrical analogy
volume charge density $\rho_{b}=-\nabla \cdot \mathbf{P}$
surface charge density $\sigma_{b}=\mathbf{P} \cdot \hat{\mathbf{n}}$

Thus,

$$
\begin{align*}
\mathbf{A}(\mathbf{x}) & =\mathbf{A}_{\text {free }}(\mathbf{x})+\mathbf{A}_{M}(\mathbf{x}) \\
& =\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}_{\text {free }}\left(\mathbf{x}^{\prime}\right)+\nabla^{\prime} \times \mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{5.78}
\end{align*}
$$

For comparison, in Sec. 5.3, we have $\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}$,
which has the solution: $\quad \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}$
In (5.31) and (5.32), \mathbf{J} represents the current due to both free and bound (atomic) electrons, whereas in (5.78) contributions from free and bound electrons are separated into two terms.

Comparing (5.78) and (5.32), we find that the bound electrons contribute to $\mathbf{A}(\mathbf{x})$ through a magnetization current density $\left(\mathbf{J}_{M}\right)$ given by $\quad \mathbf{J}_{M}=\nabla \times \mathbf{M}$,
which is the macroscopic exhibition of the atomic currents.

Hence, by separating free and bound electrons, $\nabla \times \mathbf{B}(\mathbf{x})=\mu_{0} \mathbf{J}(\mathbf{x})$
[(5.22)] can be written $\quad \nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}_{\text {free }}+\nabla \times \mathbf{M}\right)$
Defining a new quantity called the magnetic field \mathbf{H} :

$$
\mathbf{H} \equiv \frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M},\left[\begin{array}{l}
\Rightarrow \text { Effects of the atomic } \tag{5.81}\\
\text { currents are implicit in } \mathbf{H} .
\end{array}\right]
$$

we obtain from (5.80) the macroscopic version of (5.22):

$$
\begin{equation*}
\nabla \times \mathbf{H}=\mathbf{J}_{\text {free }} \tag{5.82}
\end{equation*}
$$

Question: Does \mathbf{H} have a physical meaning?
Diamagnetic, Paramagnetic, and Ferromagnetic Substances :
The counterpart of (5.81) in electrostatics is $\mathbf{D}=\varepsilon_{0} \mathbf{E}+\mathbf{P}$ [(4.34)]. In Sec. 4.3, it is shown that, for small displacement of the bound electrons, we have the linear relations:

$$
\left\{\begin{array}{l}
\mathbf{P}=\varepsilon_{0} \chi_{e} \mathbf{E} \tag{4.36}\\
\mathbf{D}=\varepsilon \mathbf{E}, \text { with } \varepsilon=\varepsilon_{0}\left(1+\chi_{e}\right)
\end{array}\right.
$$

However, the magnetic properties of materials are such that \mathbf{M} is not always proportional to \mathbf{B}, depending on the type of the material. We summarize, without derivation, possible relations between \mathbf{B} and \mathbf{H}.

1. For diamagnetic and paramagnetic substances, \mathbf{M} is proportional to \mathbf{B} and we express the linear relation as

$$
\mathbf{M}=\frac{\mu-\mu_{0}}{\mu \mu_{0}} \mathbf{B}\left[\begin{array}{ll}
\mu>\mu_{0} \Rightarrow \mathbf{M} \uparrow \uparrow \mathbf{B}, & \text { paramagnetic } \tag{5}\\
\mu<\mu_{0} \Rightarrow \mathbf{M} \uparrow \downarrow \mathbf{B}, & \text { diamagnetic }
\end{array}\right]
$$

Substituting \mathbf{M} into $\mathbf{H}=\frac{1}{\mu_{0}} \mathbf{B}-\mathbf{M}$, we get the linear relation:

$$
\begin{equation*}
\mathbf{B}=\mu \mathbf{H}, \tag{5.84}
\end{equation*}
$$

where μ is called the magnetic permeability.
Question: The plasma is diamagnetic. Why?
2. For the ferromagnetic substance we have a nonlinear relation (see figure):

$$
\begin{equation*}
\mathbf{B}=\mathbf{F}(\mathbf{H}), \tag{5.85}
\end{equation*}
$$

which exhibits the hysteresis phenomenon shown in the figure.

Boundary Conditions:

(i) $\nabla \cdot \mathbf{B}=0 \Rightarrow \int_{V} \nabla \cdot \mathbf{B} d^{3} x=\oint_{S} \mathbf{B} \cdot d \mathbf{a}=0$ $\Rightarrow\left(\mathbf{B}_{2}-\mathbf{B}_{1}\right) \cdot \mathbf{n} \Rightarrow B_{\perp 1}=B_{\perp 2}$
(ii) $\nabla \times \mathbf{H}=\mathbf{J}_{\text {free }}$
$\Rightarrow \int \nabla \times \mathbf{H} \cdot d \mathbf{a}=\int \mathbf{J}_{\text {free }} \cdot d \mathbf{a}$

$(L H S)=\oint \mathbf{H} \cdot d \ell \quad$ (see lower figure)

$$
=\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right) \cdot\left(\mathbf{n}^{\prime} \times \mathbf{n}\right) \Delta L
$$

$$
=\mathbf{n}^{\prime} \cdot\left[\mathbf{n} \times\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right)\right] \Delta L
$$

$$
\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathbf{b} \cdot(\mathbf{c} \times \mathbf{a})
$$

$(R H S)=\int \mathbf{J}_{\text {free }} \cdot \mathbf{n}^{\prime} d a=\mathbf{K}_{\text {free }} \cdot \mathbf{n}^{\prime} \Delta L$
$\Rightarrow \mathbf{n} \times\left(\mathbf{H}_{2}-\mathbf{H}_{1}\right)=\mathbf{K}_{\text {free }}$
$\mathbf{K}_{\text {free }}$: surface current of free charges (unit: A/m)
t : tangential to surface

Application to a Solenoid :

A solenoid.

B-field lines

Approximate the manetic field by that of an infinite solenoid. So, $H_{\text {in }}=$ constant.
$\oint \mathbf{H} \cdot d \mathbf{l}=I_{\text {free }} \Rightarrow H_{\text {in }} l=$ nil
$\Rightarrow H_{\text {in }}=n i \Rightarrow B_{i n}=\mu H_{i n}=\mu n i$
$\Rightarrow B_{\text {out }}=B_{\text {in }}=\mu n i$
Question:" $B_{\text {out }}=\mu n i$ " implies that filling the solenoid core with $\mu \gg \mu_{0}$ material (while keeping i at a constant value) can greatly enhance $B_{\text {out }}$. Why ${ }_{30}$

5.9 Methods of Solving Boundary-Value Problems in Magnetostatics

We put the basic equations: $\nabla \cdot \mathbf{B}=0$ and $\nabla \times \mathbf{H}=\mathbf{J}_{\text {free }}$ in forms suitable for 2 types of boundary - value problems.

Type 1: Linear medium with $\mu=$ const (in each region).
(a) Equation for vector potential (with or without $\mathbf{J}_{\text {free }}$)

$$
\begin{align*}
& \mathbf{B}=\mu \mathbf{H}=\nabla \times \mathbf{A} \Rightarrow \mathbf{H}=\frac{1}{\mu} \nabla \times \mathbf{A} \\
\Rightarrow & \nabla \times \mathbf{H}=\frac{1}{\mu} \nabla \times \nabla \times \mathbf{A}=\frac{1}{\mu}\left[\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}\right]=\mathbf{J}_{\text {free }} \\
\Rightarrow & \nabla^{2} \mathbf{A}=-\mu \mathbf{J}_{\text {free }}[\text { use Coulomb gauge, } \nabla \cdot \mathbf{A}=0] \tag{7}
\end{align*}
$$

(b) Equation for scalar potential (only for $\mathbf{J}_{\text {free }}=0$)

$$
\begin{align*}
& \nabla \cdot \mathbf{B}=0 \Rightarrow \mu \nabla \cdot \mathbf{H}=0 \text { and } \nabla \times \mathbf{H}=0 \Rightarrow \mathbf{H}=-\nabla \Phi_{M} \tag{5.93}\\
\Rightarrow & \nabla^{2} \Phi_{M}=0 \tag{8}
\end{align*}
$$

Typically, we use (7) or (8) to solve for \mathbf{A} or Φ_{M} in each uniform region and find the coefficients by applying conditions (5.86) and (5.87) on the boundary. An example will be provided in Sec. 5.12.

Discussion:

In a vacuum medium, we have

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}_{\text {free }} \tag{5.31}
\end{equation*}
$$

In a uniform- μ medium, we have

$$
\begin{equation*}
\nabla^{2} \mathbf{A}=-\mu \mathbf{J}_{f r e e} \tag{7}
\end{equation*}
$$

Hence, the effect of $\mu>\mu_{0}$ medium is to increase the ability of $\mathbf{J}_{\text {free }}$ to produce \mathbf{B} by a factor of μ / μ_{0} (see figure above).

In electrostatics, we have
and $\quad \nabla^{2} \Phi=-\frac{\rho_{\text {free }}}{\varepsilon} \quad$ (uniform dielectric medium)
Hence, an $\varepsilon>\varepsilon_{0}$ medium reduces the ability of $\rho_{\text {free }}$ to produce \mathbf{E} by a factor of $\varepsilon / \varepsilon_{0}$ (see figure above).

Type 2 : Hard ferromagnets (permanent magnet, \mathbf{M} given, $\mathbf{J}_{\text {free }}=0$)
(a) Vector potential

$$
\begin{align*}
& \nabla \times \mathbf{H}=\nabla \times\left(\frac{\mathbf{B}}{\mu_{0}}-\mathbf{M}\right)=0 \quad \text { real current } \\
\Rightarrow & \nabla \times \mathbf{B}=\mu_{0} \nabla \times \mathbf{M}=\mu_{0} \mathbf{J}_{M}, \text { where } \mathbf{J}_{M} \equiv \nabla \times \mathbf{M}[\text { see (5.79) }] \\
& \mathbf{B}=\nabla \times \mathbf{A} \Rightarrow \nabla \times \mathbf{B}=\nabla \times \nabla \times \mathbf{A}=\nabla(\nabla \cdot \mathbf{A})-\nabla^{2} \mathbf{A}=\mu_{0} \mathbf{J}_{M} \\
\Rightarrow & \nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}_{M} \Rightarrow \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}_{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime},
\end{align*}
$$

(b) Scalar potential

$$
\begin{align*}
& \nabla \times \mathbf{H}=0 \Rightarrow \mathbf{H}=-\nabla \Phi_{M} \text { tool, not real charge. } \\
& \nabla \cdot \mathbf{B}=\mu_{0} \nabla \cdot(\mathbf{H}+\mathbf{M})=0 \Rightarrow \nabla^{2} \Phi_{M}=\nabla \cdot \mathbf{H}=-\rho_{M} \tag{5.95}
\end{align*}
$$

where $\rho_{M} \equiv-\nabla \cdot \mathbf{M}$ (effective magnetic charge density) (5.96)

$$
\begin{align*}
\Rightarrow \Phi_{M} & =\frac{1}{4 \pi} \int \frac{\rho_{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}=-\frac{1}{4 \pi} \int \frac{\nabla^{\prime} \cdot \mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \nabla \cdot \psi \mathbf{a}=\psi \nabla \cdot \mathbf{a}+\mathbf{a} \cdot \nabla \psi \\
& =\frac{1}{4 \pi} \int \mathbf{M}\left(\mathbf{x}^{\prime}\right) \cdot \nabla^{\prime} \frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}=-\frac{1}{4 \pi} \nabla \cdot \int \frac{\mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{5.98}
\end{align*}
$$

$\Rightarrow \int_{V} \nabla \cdot \mathbf{M} d^{3} x=\oint_{S} \mathbf{M} \cdot d \mathbf{a}=-\int_{v} \rho_{M} d^{3} x$ (see pillbox below)
$(\overbrace{\mathbf{M}_{2}}^{=0}-\overbrace{\mathbf{M}_{1}}^{=\mathbf{M}}) \cdot \mathbf{n} \Delta A=-\sigma_{M} \Delta A$
$\begin{aligned} \Rightarrow \sigma_{M} & =\mathbf{n} \cdot \mathbf{M} \\ & \text { a mathematical tool }\end{aligned}$

Surface current density \mathbf{K}_{M} due to magnetization \mathbf{M} :

Here (by the same algebra),

$$
\begin{aligned}
& \nabla \times \mathbf{M}=\mathbf{J}_{M}^{\mathbf{J}} \\
& \underbrace{\Rightarrow \mathbf{K}_{M}^{\prime}=\mathbf{n} \times(\overbrace{\mathbf{M}_{2}}^{=0}-\overbrace{\mathbf{M}_{1}})=\mathbf{M} \times \mathbf{n}}_{\text {real current }} .=\mathbf{M}
\end{aligned}
$$

$$
\mathbf{K}_{M} \frac{\mathbf{n} \uparrow \mathbf{M}_{2}=0}{\mathbf{M}_{1}=\mathbf{M}}
$$

5.10 Uniformly Magnetized Sphere

Consider a permanent magnet with magnetization :
discontinuous!
$\mathbf{M}= \begin{cases}M_{0} \mathbf{e}_{z}, & r \leq a \\ 0 \quad, & r>a\end{cases}$
ρ_{M} vanishes everywhere except on the surface.

$\Phi_{M_{\mu}}=\frac{1}{4 \pi} \int \frac{\rho_{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime}=\frac{1}{4 \pi} \oint_{S} \frac{\mathbf{n} \cdot \mathbf{M}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d a^{\prime}$

by (5.95)

$$
= \begin{cases}\frac{1}{3} M_{0} r \cos \theta=\frac{1}{3} M_{0} z, & r \leq a \tag{5.104}\\ \frac{1}{3} M_{0} a^{3} \frac{\cos \theta}{r^{2}}, & r>a\end{cases}
$$

$$
\begin{array}{|l|}
\hline \frac{1}{(3.70)} \\
\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=\frac{1}{r_{>}}+\frac{4 \pi}{3} \frac{r_{\perp}}{r_{>}^{2}} \\
{\left[Y_{1,-1}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{1,-1}(\theta, \varphi)\right.} \\
+Y_{10}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) \underbrace{Y_{10}(\theta, \varphi)}_{=\sqrt{\frac{3}{4 \pi}} \operatorname{los} \theta} \\
\left.+Y_{11}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{11}(\theta, \varphi)\right]+\cdots \\
\hline
\end{array}
$$

$\Rightarrow\left\{\begin{array}{rr}\text { Inside: } \mathbf{H}_{\text {in }}=-\frac{1}{3} \mathbf{M} & \left.+Y_{11}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{11}(\theta, \varphi)\right] \\ \mathbf{B}_{\text {in }}=\mu_{0} \mathbf{H}_{\text {in }}+\mu_{0} \mathbf{M}=\frac{2}{3} \mu_{0} \mathbf{M}\left(\Rightarrow \mathbf{H}_{i n} \uparrow \downarrow \mathbf{B}_{i n}\right)\end{array}\right.$
Outside: dipole field with dipole moment $\mathbf{m}=\frac{4 \pi a^{3}}{3} \mathbf{M}$.
$=\frac{M_{0} a^{2}}{4 \pi} \int d \Omega^{\prime} \overbrace{\left.\frac{c^{\prime}-\theta^{\prime}}{\mid \mathbf{x}-\mathbf{x}^{\prime}} \right\rvert\,}=\frac{1}{3} M_{0} a^{2} \frac{r_{<}}{r_{>}^{2}} \cos \theta$

5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field

Consider a spherical μ-shell in an external \mathbf{B}_{0}.

$$
\underbrace{\nabla^{2} \Phi_{M}=0}_{\text {Eq. (8) }} \Rightarrow \Phi_{M}=\left\{\begin{array}{l}
r^{l} \\
r^{-l-1}
\end{array}\right\}\left\{\begin{array}{l}
P_{l}^{m}(\cos \theta) \\
Q_{l}^{m}(\cos \theta)
\end{array}\right\}\left\{\begin{array}{l}
e^{i m \varphi} \\
e^{-i m \varphi}
\end{array}\right\}
$$

$$
\begin{align*}
& \left\{\begin{array}{ccc}
-H_{0} r \cos \theta+\sum_{l=0}^{\infty} \frac{\alpha_{l}}{r^{l+1}} P_{l}(\cos \theta), r>b & \longrightarrow-H_{0} r \cos \theta & (5.117)
\end{array}\right. \\
& \Rightarrow \Phi_{M}=\left\{\begin{array}{c|l}
\sum_{l=0}^{\infty}\left(\beta_{l} r^{l}+\gamma_{l} \frac{l}{r^{l+1}}\right)
\end{array} P_{l}(\cos \theta), \quad a<r<b \begin{array}{l}
\text { gives the } \\
\text { external } \mathbf{B}_{0}
\end{array} .\right. \tag{5.118}\\
& \left.\begin{array}{rl}
\left\{\begin{array}{l}
\mathbf{H}=-\nabla \Phi_{M}(5.93) \\
\mathbf{B}=\mu_{0} \mathbf{H} \text { (outside) } \\
\mathbf{B}=\mu \mathbf{H} \text { (inside) }
\end{array}\right\}+\begin{array}{l}
\mathbf{H}_{t 2}=\mathbf{H}_{t 1} \\
B_{\perp 1}=B_{\perp 2} \\
\text { (6) } \\
\text { (6.86) }
\end{array}
\end{array}\right\} \Rightarrow \begin{array}{l}
\begin{array}{l}
\text { The shell is assumed to } \\
\text { be a linear medium. }
\end{array}
\end{array} \Rightarrow\left\{\begin{array}{l}
\left.\frac{\partial \Phi_{M}}{\partial \theta}\right|_{a^{+}}=\left.\frac{\partial \Phi_{M}}{\partial \theta}\right|_{a^{-}} \\
\left.\mu_{0} \frac{\partial \Phi_{M}}{\partial r}\right|_{b^{+}}=\left.\mu \frac{\partial \Phi_{M}}{\partial r}\right|_{b^{-}} \\
\left.\mu \frac{\partial \Phi_{M}}{\partial r}\right|_{a^{+}}=\left.\mu_{0} \frac{\partial \Phi_{M}}{\partial r}\right|_{a^{-36}}
\end{array}\right.
\end{align*}
$$

5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field (continued) Boundary conditions result in solutions for the coefficients:

$$
\left\{\begin{align*}
& \alpha_{l}=\beta_{l}=\gamma_{l}=\delta_{l}=0 \text { if } l \neq 1 \tag{}\\
& \alpha_{1}=\frac{\left(2 \frac{\mu}{\mu_{0}}+1\right)\left(\frac{\mu}{\mu_{0}}-1\right)\left(b^{3}-a^{3}\right)}{\left(2 \frac{\mu}{\mu_{0}}+1\right)\left(\frac{\mu}{\mu_{0}}+2\right)-2 \frac{a^{3}}{b^{3}}\left(\frac{\mu}{\mu_{0}}-1\right)^{2}} H_{0} \approx b^{3} H_{0} \\
& \mu \gg \mu_{0} \\
& \delta_{1}=\frac{-9 \frac{\mu}{\mu_{0}}}{\left(2 \frac{\mu}{\mu_{0}}+1\right)\left(\frac{\mu}{\mu_{0}}+2\right)-2 \frac{a^{3}}{b^{3}}\left(\frac{\mu}{\mu_{0}}-1\right)^{2}} H_{0} \stackrel{-9 \mu_{0}}{2 \mu\left(1-\frac{a^{3}}{b^{3}}\right)} H_{0}
\end{align*}\right\}
$$

$\mathbf{B}_{\text {in }} \searrow$ as $\frac{\mu}{\mu_{0}} \nearrow$, implying that $\mu>\mu_{0}$ materials tend to "absorb" B-field lines and thereby provide the shielding effect. High- μ materials can have μ / μ_{0} as high as $10^{3}-10^{6}$.

When $\mu=\mu_{0}, \mathbf{B}$ reduces to \mathbf{B}_{0} everywhere, i.e. a static megnetic field penetrates into the shell as if there were no shell present (even if the shell is made of good conductor, such as copper).

5.15 Faraday's Law of Induction

The Biot-Savart (or Ampere's) law relates the magnetic field to electrical current. Faraday then discovered experimantally that time-varying magnetic flux through an electrical circuit could induce an electric field around the circuit. This not only provided the first link between electric and magnetic fields, but also led to a new mechanism to generate the \mathbf{E}-field, i.e. a time-varying \mathbf{B}-field.

Referring to the figure, let loop C be an electrical circuit (as in Faraday's original experiment) or any closed path in space (a generalization of the original observation with immense consequences). Faraday's law states

$$
\oint_{C} \mathbf{E}^{\prime} \cdot d \ell=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a,\left[\begin{array}{c}
S: \text { an arbitrary surface } \tag{5.141}\\
\text { bounded by loop } C
\end{array}\right]
$$

where \mathbf{E}^{\prime} is the electric field at $d \ell$ in the frame in which $d \ell$ is at rest, and \mathbf{B} is the magnetic induction in the lab frame.

Rewrite (5.141):

$$
\begin{equation*}
\oint_{c} \mathbf{E}^{\prime} \cdot d \ell=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a \tag{5.141}
\end{equation*}
$$

Assume loop C is at rest in the lab frame, then $\mathbf{E}^{\prime}=\mathbf{E}$ (electric field in the
 lab frame) and (5.141) becomes

$$
\begin{equation*}
\oint_{C} \mathbf{E} \cdot d \ell=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a \quad[\text { integral form of Faraday's law }] \tag{9}
\end{equation*}
$$

where both \mathbf{E} and \mathbf{B} are lab-frame quantities.
(9) can be written (by Stokes's theorem: $\oint_{C} \mathbf{E} \cdot d \ell=\int_{S} \nabla \times \mathbf{E} \cdot \mathbf{n} d a$)

$$
\int_{S} \nabla \times \mathbf{E} \cdot \mathbf{n} d a=-\int_{S} \frac{\partial \mathbf{B}}{\partial t} \cdot \mathbf{n} d a
$$

Thus,

$$
\begin{equation*}
\left.\nabla \times \mathbf{E}=-\frac{\partial \mathbf{B}}{\partial t} \quad \text { [differential form of Faraday's law) }\right] \tag{5.143}
\end{equation*}
$$

5.16 Energy in the Magnetic Field

To find the energy associated with a magnetic field, we evaluate the work needed to establish the current $\mathbf{J}(\mathbf{x})$, which produces the magnetic field. We break up $\mathbf{J}(\mathbf{x})$ into a network of thin loops. In the build-up process, an \mathbf{E} field will be induced by $\partial \mathbf{B} / \partial t$. The rate of work done by \mathbf{E} within each loop is

$$
\begin{array}{|l|}
\hline \sigma \text { is the cross section of the loop (same as } \\
\text { Jackson's } \Delta \sigma) . J \& \sigma \text { may vary along } d \ell . \\
\hline
\end{array}
$$

integration over the area encircled by the loop

$$
\delta W_{\text {loop }}=\int_{S} J \sigma \mathbf{n} \cdot \underbrace{\delta \mathbf{B}}_{\nabla \times \delta \mathbf{A}} d a=\int_{S} J \sigma \nabla \times \delta \mathbf{A} \cdot \mathbf{n} d a
$$

$$
\begin{aligned}
& =\oint J \sigma \delta \mathbf{A} \cdot d \ell \\
& =\int_{\text {loop }} \delta \mathbf{A} \cdot \mathbf{J} d^{3} x
\end{aligned} \longleftrightarrow J \sigma d \ell=\mathbf{J} \underbrace{\sigma d \ell}_{d^{3} x}=\mathbf{J} d^{3} x
$$

5.16 Energy in the Magnetic Field (continued)

As shown in $\delta W_{\text {loop }}=\mathrm{f}_{\text {loop }} \delta \mathbf{A} \cdot \mathbf{J} d^{3} x[(10)]$, the work done within each loop is an integral over the volume of the loop. Thus, an integration over all space gives the total work done to generate $\delta \mathbf{B}$:

Assume the rate of build-up $\rightarrow 0 \Rightarrow \mathbf{H}$ obeys the static law $\nabla \times \mathbf{H}=\mathbf{J}$. Otherwise, the static law breaks down and there will be radiation loss.

$$
\begin{align*}
\delta W & =\int \delta \mathbf{A} \cdot \mathbf{J} d^{3} x \stackrel{\downarrow}{=} \delta \mathbf{A} \cdot(\nabla \times \mathbf{H}) d^{3} x \tag{5.144}\\
& =\int \mathbf{H} \cdot \underbrace{(\nabla \times \delta \mathbf{A})}_{\delta \mathbf{B}} d^{3} x+\underbrace{\int \nabla \cdot(\mathbf{H} \times \delta \mathbf{A}) d^{3} x}_{=\oint_{S}(\mathbf{H} \times \delta \mathbf{A}) \cdot d \mathbf{a}=0} \\
& =\int \mathbf{H} \cdot \delta \mathbf{B} d^{3} x=\frac{1}{2} \int \delta(\mathbf{H} \cdot \mathbf{B}) d^{3} x
\end{aligned} \quad \begin{aligned}
& \begin{array}{l}
\text { For this integral } \\
\text { to vanish, the } \\
\text { volume of integ- } \\
\text { ration must be } \infty .
\end{array}
\end{align*}
$$

Assume linear medium: $\mathbf{B}=\mu \mathbf{H}$ or $\mathbf{B}=\ddot{\boldsymbol{\mu}} \cdot \mathbf{H}$
Total work done to bring the field up from 0 to the final value \mathbf{B} :

$$
W=\frac{1}{2} \int(\mathbf{H} \cdot \mathbf{B}) d^{3} x\left[\begin{array}{l}
\text { By conservation of energy, this is } \tag{5.148}\\
\text { the total magnetic field energy. }
\end{array}\right]
$$

$\Rightarrow w=\frac{1}{2} \mathbf{H} \cdot \mathbf{B} \quad$ [field energy density]
Note: $w=\frac{1}{2} \mathbf{H} \cdot \mathbf{B}=\frac{1}{2}\left(\sum_{j} \mathbf{H}_{j}\right) \cdot\left(\sum_{j} \mathbf{B}_{j}\right) \neq \frac{1}{2} \sum_{j}\left(\mathbf{H}_{j} \cdot \mathbf{B}_{j}\right)$

5.17 Energy and Self- and Mutual Inductances

$$
\begin{align*}
& \text { Assume linear relation between } \mathbf{J} \text { and } \mathbf{A} \\
& \delta W=\int \delta \mathbf{A} \cdot \mathbf{J} d^{3} x \stackrel{l}{=} \frac{1}{2} \int \delta(\mathbf{A} \cdot \mathbf{J}) d^{3} x \tag{5.144}\\
& \text { for nonpermeable } \\
& \left(\mu=\mu_{0}\right) \text { medium } \\
& \Rightarrow W=\frac{1}{2} \int \mathbf{A} \cdot \mathbf{J} d^{3} x \quad \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \text { (5.32) } \tag{5.149}\\
& =\frac{\mu_{0}}{8 \pi} \int d^{3} x \int d^{3} x^{\prime} \frac{\mathbf{J}(\mathbf{x}) \cdot \mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \quad \text { for } N \text { current- } \text { carrying circuits } \tag{5.153}\\
& =\frac{\mu_{0}}{8 \pi} \sum_{i=1}^{N} \int d^{3} x_{i} \sum_{j=1}^{N} \int d^{3} x_{j}^{\prime} \frac{\mathbf{J}\left(\mathbf{x}_{i}\right) \cdot \mathbf{J}\left(\mathbf{x}_{j}^{\prime}\right)}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}^{\prime}\right|}=\frac{1}{2} \sum_{i=1}^{N} L_{i} I_{i}^{2}+\sum_{i=1}^{N} \sum_{j>i}^{N} M_{i j} I_{i} I_{j}, \tag{5.152}\\
& \begin{array}{l}
\text { where self-inductance } \\
L_{i}=\frac{\mu_{0}}{4 \pi I_{i}^{2}} \int_{C_{i}} d^{3} x_{i} \int_{C_{i}} d^{3} x_{i} \frac{\mathbf{J}\left(\mathbf{x}_{i}\right) \cdot \mathbf{J}\left(\mathbf{x}_{i}^{\prime}\right)}{\left|\mathbf{x}_{i}-\mathbf{x}_{i}^{\prime}\right|}\left[\begin{array}{l}
\text { for a thin wire } \\
= \\
= \\
4 \pi \\
\mu_{0}
\end{array} \oint_{C_{i}} \phi_{C_{i}} \frac{d \ell_{i} \cdot d \ell_{i}^{\prime}}{\left|\mathbf{x}_{i}-\mathbf{x}_{i}^{\prime}\right|}\right]
\end{array} \tag{5.154}\\
& M_{i j}=\frac{\mu_{0}}{4 \pi I_{i} I_{j}} \int_{C_{i}} d^{3} x_{i} \int_{C_{j}} d^{3} x_{j}^{\prime} \frac{\mathbf{J}\left(\mathbf{x}_{i}\right) \cdot \mathbf{J}\left(\mathbf{x}_{j}^{\prime}\right)}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}^{\prime}\right|}\left[=\frac{\mu_{0}}{4 \pi} \oint_{C_{i}} \oint_{C_{j}} \frac{d \ell_{i} \cdot d \ell_{j}^{\prime}}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}^{\prime}\right|}\right] \tag{5.155}\\
& \text { mutual inductance }\left(M_{i j}=M_{j i}\right) \\
& \text { for thin wires }
\end{align*}
$$

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} d^{3} x^{\prime} \tag{5.32}
\end{equation*}
$$

\Rightarrow Vector potential at circuit i due to current in circuit j :

$$
\begin{equation*}
\mathbf{A}_{i j}\left(\mathbf{x}_{i}\right)=\frac{\mu_{0}}{4 \pi} \oint_{C_{j}} \frac{\mathbf{J}\left(\mathbf{x}_{j}^{\prime}\right)}{\left|\mathbf{x}_{i}-\mathbf{x}_{j}^{\prime}\right|} d^{3} x_{j}^{\prime} \tag{12}
\end{equation*}
$$

From (12) and (5.155), we obtain $M_{i j}=\frac{1}{I_{i} I_{j}} \int_{C_{i}} \mathbf{A}_{i j}\left(\mathbf{x}_{i}\right) \cdot \mathbf{J}\left(\mathbf{x}_{i}\right) d^{3} x_{i}$
Assume \mathbf{J} flows along wire $d \ell$ of negligible cross section $d a$

$$
\begin{align*}
& \Rightarrow \mathbf{J}\left(\mathbf{x}_{i}\right) d^{3} x_{i}=J_{\|} d a d \ell=I_{i} d \ell \\
& \Rightarrow M_{i j}=\frac{1}{I_{j}} \oint_{C_{i}} \mathbf{A}_{i j} \cdot d \ell=\frac{1}{I_{j}} \oint_{S_{i}} \overbrace{\left(\nabla \times \mathbf{A}_{i j}\right)}^{\mathbf{B}_{i j}} \cdot \boldsymbol{n} d a=\frac{1}{I_{j}} F_{i j}^{\downarrow} \tag{5.156}
\end{align*}
$$

$$
\text { magnetic flux from circuit } j
$$

$$
\text { passing through circuit } i
$$

$\Rightarrow \varepsilon_{i j} \equiv-\frac{d}{d t} F_{i j}=-M_{i j} \frac{d}{d t} I_{j} \quad \begin{aligned} & \varepsilon_{i j}: \text { induced voltage in circuit } i \text { d } \\ & \text { to current variation in circuit }\end{aligned}$
The "-" sign implies that the induced $\varepsilon_{i j}$ tends to drive a current in circuit i to inhibit the flux change caused by circuit j (Lenz's law).

Homework of Chap. 5

Problems: 1, 3, 6, 11, 13,
18, 19, 20, 22, 30

