
Chapter 5: Magnetostatics, Faraday’s Law, 

5.1 Introduction and Definitions
Quasi-Static Fields

3 3

     We begin with the law of conservation of charge: 
Qd x d d x      J J a

5.1 Introduction and Definitions
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arbitrary volume

     0                                             (5.2)of charge

     Magnetost

t    
J

atics is applicable under the static condition. Hence,

0 and (5.2) gives         0  [for magnetoststics]            (5.3)

Assuming a magnetic force is experienced by charge movingB

t
q


    J

F     Assuming a magnetic force  is experienced by charge  moving
at v

B qF
elocity , we define the magnetic induction  by the relation:

B q 
v B

F v B                    ,
which is consistent with the definition in (5.1).

B q F v B
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5.2 Biot and Savart Law
The Biot-Savart law states that the differential magnetic field dB

loop 1   
2

0 2 12

     The Biot Savart law states that the differential magnetic field 
at point  (see figure) due to a differential current element  in 

l 2 i i b  

d
P d

dd I

B

xB


 (5 4)
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loop 2 is given by                    
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                     (5.4)

   Thus the total field at due to inP I
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1d
2d
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2 3

linear superposition,
an experimental fact

     Thus, the total field at  due to  in 

loop 2 is:                      (1)
4 | |
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     
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P I
dI xB

x


2I12
an experimental fact4 | |

     Integrating the
  x

1 2 force on  in loop 1 due to  in loop 2, we obtain
(5 7)
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 x x x

5.3 Differential Equations of Magnetostatics 
and Ampere’s Law

  
    

  12 1 2 x x x

1x
2x

B

2d
      

d x
Gauss Law of Magnetism :



and Ampere s Law

cross section 2

2I0
2

3

0 2 12
3

124 | |
         Rewrite (1):   dI




 
x

x
B 

 cross section
of wire

3
1 2 2 2 2

30 0
3

    Change  to ,   to ,  and let ,  we obtain
1    ( ) ( ) ( )

I d da d d x

d x 
  
      



x x x x J J
x xB x J x J x


3d x3( ) ( ) ( )

4 4 | || |  
 x xx x


  B x x3
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| || |

 
  

 x x
x xx x       a a a
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4 | | | |
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
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0
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( )                                                                  (5.16)
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J x
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  0

operates on  x| |

               0   [Gauss  B  law of magnetism]                        (5.17)
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Rewrite (5.16):Ampere's Law :
5.3 Differential Equations of Magnetostatics and Ampere’s Law (continued)

30

      Rewrite (5.16):  
( )         ( )   
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   n
arbitrary

loop

( )

   0 ( ) ( ) (5.22) 
da da



 
    

B x J x                                                                
B n J n

( ) ( )      a a a

  

d
loop0

                           (through the loop)
    

Ampere's law
d I

da da
 

    
B
B n J n





a much more elaborate 

0
, Ampere s law

      d I   B 
a much more elaborate

representation of the Biot-Savart law     (5.25) 
   4



( ) J x
5.4 Vector Potential

30 ( )
| |

      Rewrite (5.16): ( )    
4

 (5 27)

d x






 

 


J x
x x

Vector Potential : B x

B A     ,                                                                       (5.27)
where the vector potential  is given by 

 B A
A

( ) J x 30 ( )
| |

          ,                                              (5.28)
4

which shows that may be freely transformed (without changing

d x
 





 
J x
x x

A

A B)which shows that  may be freely transformed (without changing  
according to          (gauge transformat 

A B)
A A ion)            (5.29)

W l it thi f d b h i th t     We may exploit this freedom by choosing a  so that
          0       (Coulomb gauge)                                         (5.31)


 A

See proof on previous page

0 ( ) 3
4 | |      (5.28) d



     J x

x xA

0
2 2 ,x     


See proof on previous page.

4 | | x x
2Coulomb gauge requires 0 everywhere and hence const.    


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5.4 Vector Potential (continued)

 0     Rewrite:    
 


 

B J   
B A

0
2

0

         

       ( )





 

   

A J

A A J0

2

( )
     Choose the Coulomb gauge ( 0)

(5 31)





 



A

A J0                                                                    (5.31)

  

  A J

30 ( )                                                      (5.32)
4
 




   d x
J xA

| |
( )

4
: 

 

     Note
x x

     (5.32) is valid in unbounded (infinite) space, i.e. the volume of
integration must include all currents. If there is a boundary surface, 
the currents on the boundary must be accounted for by applicationthe currents on the boundary must be accounted for by application
of boundary conditions (See example in Sec. 5.12.)   6



A Comparison of Electrostatics and Magnetostatics :
5.4 Vector Potential (continued)

D fi i i f
        Magnetostatics 

B
             Electrostatics

A Comparison of Electrostatics and Magnetostatics :

    

    J

x

Definition of :  
  B q 

B
F v B

    

    

x

Definition of :  
   E q

E
F E

x x

Biot-Savart law: 


x x

Coulomb's law: 
1 ( )( )  30

3( ) ( )
4 | |
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

  



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x x

3
3

0

1 ( )( )( )
4 | |
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

  



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

   
 
B B J


0 0 


   
 

E E


00
Gauss's Law Ampere's law

d d I
 
    B a B  0 0

G ' l
d q d
 

    E a E  
Gauss's Law Ampere's law
of magnetism

Gauss's law
 of electrostatics 7



5.6 Magnetic Field of Localized Current 
Distribution, Magnetic Moment

30

     
( ) d 



Magnetic (Dipole) Moment :   
J xA 1 1 [ ( ) Ch 4]x x

Distribution, Magnetic Moment
)()()( BACCABCBA 

       
J

30

3 30

( )
4 | |

1 1[ ( ) ( ) ]

d x

d x d x








     



 

A
x x

J x x x J x

3| |
1 1 [Eq. (5), Ch. 4]

| | | |
  

 x
x x

x x x


     
 x x

J

0

0
3

0

   [ ( ) ( ) ]
4 | | | |

d x d x




    J x x x J x
x x

 

Proved on next page
31

2 [ ( )]d x    x x J x

Proved on p.185 under the
1.  is localized 


J0
3

3
[ ( )]

| |
   

8
d x


      x x J x

x


Proved on next page.

  within volume conditions:   of integration
2 0





  J
0

3

| |8
If  is far           from source.4 | |





     

x
m x x

x
                                             (5.55)

2. 0  J4 | |  x
31

2where ( )   [magnetic (dipole) moment]         (5.54)
I (5 54) i d fi d ith t t

d x
N t i t f f

   m x J x
m     : In (5.54),  is defined with respect to a 

Here, it 
Note point of  reference.m

coincides with the origin of the coordinates ( 0). x 8



3:  Prove the relation ( ) 0 under the conditions:Problem d x  J x
5.6  Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

                 0 and  is localized within volume of integration.
: Since 0 outside the volume of integration, we may extend Proof

 


J J
J

the
3

 volume of integration to  without changing the integral value.
      ( ) )x x y y z zd x dx dy dz(J J J  

  


     J x e e e

3
     Consider the -component first:
      ( )x x

x
d x dy dz J dx  

      e J x( )

     

x xy

d
  

 

   
 xJ

x
J

y dz x dx  
  





   xxJ 


 xJ

x dxx



 

3

     

0

( )yx zJJ J
x y zdy dz x dx

d

  
  

 
     



  

 J


3      0 
     Similarly, the - and 

components also vanish

x d x
y

z

    J     The insertion of these 2 terms will not
change the value of the integral because

y JJ   
 

3
-components also vanish. 

     Thus,  ( ) 0                               
z

d x  J x
&( ) 0 ( ) 0y zJ

y z
J
y zdy J dz J 

 
 




     
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( ): (used on p 185 and p 188)Anti symmetric unit tensor 
5.6  Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

( ): (used on p.185 and p.188)
0   ,  if two or more indices are equal
1 if i t ti f 1 2 3

ijkAnti - symmetric unit tensor

i j k




(2)

1    ,  if , ,  is an even permutation of 1, 2,3
1 ,  if , ,  is an odd permutation of 1, 2,3

    ijk i j k
i j k

 


    (2)

0 1 1 1E l



Levi-Civita symbol

112 123 132 312: 0,  1,  1,  1 
                         ( )  ,   ( )

ji ijk j k i ijk kxk k

Examples

A B A

   

  
 

    

   A B A

        ( )

j

i

j j j xjk jk

ijk j kxijk
A B




   A B

                       j k
i

ijk
A B

ijk k ijk jx xB A 
 
  

iijk
  
  

                       j k
i i

j
A B

kij k jik jx xijk
B A 

 
      

                       ( ) ( )     B A A B
10



: plane loopExample 1of magnetic moment
5.6  Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

I
d

3

2 ( )

1
2 2

: plane loop 

( )            I
     Example 1 of  magnetic moment

d x d      x J xm x 

da
x2 ( )

( )                                                             (5.57)
    

is normal (by rig

area
I area


 


m
m ht hand rule) to the plane of the loop


  is normal (by rigm ht hand rule) to the plane of the loop.

     : a number of charged particles
i ti

Example 2 of  magnetic moment


in motion      
          ( )i i i

i
q  J v x x

angular momentum
i i i iM L x v

31 1
2 2   ( )            

2

i

i
i i i i

i i i

qd x q
M

        m x J x x v L   (5.58)
i

                                                                                  (5.59)
2

e
M

 L
if / /  for all particles.i iq M e M

2M
: total angular momentumL
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5.6  Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

(valid far from the source)Dipole Field :

0
3| |

       (valid far from the source)

     Rewrite (5.55) :                                                   (5.55)
4



 m x
x

Dipole Field :

 A
3 3 3

1 1     x x x

0
3

| |

| |

4

4





       
 

x
x
x

B A m

3 3 3

3 5

| | | | | |
3 3

| | | |
0

   

   
x x x

x
x x

x x

x

 0 0
0

| |4

[




 

 

 

x

x x x  

0

]



   
x



| | | |

( is a constant.)m 

0
3 3| | | | |

       [
4



      x x x
x x

m m  

0

3 3| | |
]

m m m   

    
 

 
 

x
x x

x x x

m m

( ) ( ) ( )     A B B A A B

   

0

0

3 3 3
  

| | | | | |
       

4
3x

x y zx y zm m m

x





  
       

    


x x x

e

( ) ( ) ( )
                ( ) ( )     A B B A

   0

0

53 | || |
       

4
3 ( ) magnetic dipole

x
xm y z




          
 

xx
x

n n m m (5 56) x0
3

( ) g p                                   fie4 | |




x

     (5.56)ld
 
  | |

n
x
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     As in the case of the electric dipole moment, here we characterize
5.6  Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

a localized current distribution by a constant quantity, the magnetic 
moment , which turns an otherwise complicated field calculm ation 
( f l S 5 5) i t i l ( ith li it d lidit )

2

(see, for example, Sec. 5.5) into a simple one (with limited validity.)
     Consider, for example, a circular loop carrying current . Using
(5 57) h ( fi ) H th di

I
I l fi ld i

re
z

2(5.57), we have  (see figure). Hence, the dipo zI am e
0

3

le field is
3 ( )                                                             (5.56)

4 | |
  


n n m mB

2
rn e

r
re


3

20
3

4 | |
3 ( )        r r z zaI


   



x
e e e e

2
zI am e

      
a

I

34
             ( cos sin )

2 i
z r

r



 
 

 e e e
 I

20
3

2cos sin              
4

ra
r

I   





e e                                   (5.41)

Wh th di l fi ld i d i ti f th t t l     When , the dipole field is a good approximation of the total 
field [see Jackson (5.40).]

r a
13



5.7 Forces and Torque on and Energy of a Localized 
Current Distribution in an External Magnetic Induction

3
:    

( ) ( ) (5 12)d x  
     Magnetic Force in External Field

F J x B x

Current Distribution in an External Magnetic Induction

          ( ) ( )                                                    (5.12)
     Expanding : [see lecture notes, Ch. 4,  Appendix A, Eq. (A.4)]

d x F J x B x
B

( ) (0) ( ) (0)B B B         ( ) (0) ( ) (0)   B x B x B 
This implies "After differention of ( ), set  in results to 0," i.e.B x x

0 00

p ( )

( ) (0) ( ) ( ) ( )y zxx y z
 

  
  

           x xx
x B B x B x B x

 3 3

(proved in Sec. 5.6)

   ( ) (0) ( ) ( ) (0)

                 0 

[ ]d x d x           


 F J x B J x x B 

  3
(p )

          ( ) ( ) (0) ( )
,

d x
U
         

 
 J x x B m B

(5.69)See derivation on pp.188-189          ,                     U                                                    (5.69)
where potential energy.                                     (5.72)U    m B

See derivation on pp.188 189

14



     :Magnetic Torque in External Field
5.7 Forces and Torque… (continued)

3

3

        ( )

[ ( ) ( )] (5 13)

d x

d

   

   




g q

N x f x

J B 0

2

2
[ ( )]


   

x
x J x


3

           (0) ( ) (0) (0)

           [ ( ) ( )]                                                  (5.13)d x

    

     

B x B B

x J x B x



 0
2 2

2

( ) ( )

2 ( )

         

 

x

x xJ x x J

x J x



( ) ( ) ( ) ( )

            x 3

3 3

[ ( ) (0)]   

[ (0) ] ( ) (0) ( )

d x

d d

 

     


 

J x B

B J B J


2 ( ) x J x

3 3

23 31
2

           [ (0) ] ( ) (0) ( )

            = [ (0) ] ( ) (0) [ ( )]

d x d x

d x d x

        

         

 



B x J x B x J x

B x J x B x J x   
31

2 (0) [ ( )]d x     B x J x 2 ( ) 0     ds x J x a
[Using

]

the formula at the
bottom of  p.185, replacing

with (0).x B

     is localized.   
0 on surface 

J
J

           (0)                                   m B                                        (5.71)
]with (0).x B

15



5.7 Forces and Torque… (continued)

A Comparison between Electric and Magnetic Potential Energy,

Potential energy Force Torque

A Comparison between Electric and Magnetic Potential Energy, 
                     Force, and Torque in External Field :

 
  (4.24)

(5 72)

Potential energy Force Torque
U U
U U
      
      

p E F N p E
m B F N m B

Ep +
 (5.72)

     Both  and  tend to orient along the
positive field direction under the action of

U U     m B F N m B
p m

p

Bm
I

positive field direction under the action of
the torque (see figures on the right). This 
results in a state of minimum potential 

Ienergy. In this state,   , whereas 
  .

reduces
enhances

p E
m B

 (1) How does a permanent magnet attract a piece of iron?
     :Questions

 (2) How does it attract another permanent magnet?    
16



-     Force in Self Consistent Field; Magnetic Pressure and Tension :
5.7 Forces and Torque… (continued)

     A self-consistent field is the combined field 
generated by the source  under consideration

d h l (if )

; g

J
Th iand the external source (if present).

0

Thus, using
,  we may express the magnetic force

density (force / unit volume) in terms of
 B J  
f B

0
1

density (force / unit volume) in terms of .                                        
       ( )    

f  B
f J B B B

if

-field 
lines
Ba solenoid

2 1
2         ( )      B B B [see p. 320)]                                    (3)

a uniform
electron beam( ) ( ) ( ) ( ) + ( )        a b a b + b a + a b b a

002 ( ) 
[ p )] ( )

magnetic pressure magnetic tension force density,

I i h 0 h 0J f
B

-field 
lines
B

magnetic pressure 
force density as if a curved -field line tended 

to become a straight line.
B

     In regions where 0, we have 0 
[pressure and tension force densities cancel out].

 J f
uniform current 17



5.8 Macroscopic Equations, Boundary 
Conditions on B and HConditions on B and H

0

      To be more general, we move the
point of reference for  from 0 to  and write  

Macroscopic Equations :
m x x x0

0 0
3

0 0

p
( ) ( )1 1        [See Sec. 4.1]
   

  
  

x x x x
x x x x x x



            

 x x
J

0

0 0

     Sub. this relation into  

x x

( ) J x
How about Jfree?

i h l if i l li dJ

0    30 ( )
| |

          [(5.32)]
4

d x






 
J x
x x

A

     
          

     

J

0x x
0 x x

vanishes only if  is localized 
within the volume of integration.

Jwe obtain



    0x x
x

3
0 0 0 0

3
0 0

( ) ( ) ( ) ,                                 (4)
4 | | 4 | |

d x 
 

   
  

 
 J x m x x xA

x x x x


0

0
31

0 02

| |

where ( ) ( ) ( ) .d x    m x x x J x
18



To proceed, we consider the orbital motion of atomic/molecular
5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

     To proceed, we consider the orbital motion of atomic/molecular
electrons, which can collectively give rise to a permanent or induced
magnetization  (total magnetic moment / unit volume) given byM
               ( )                                                      (5.76)  i i

i
NM x m

magnetic moment per type i moleculevolume density of

As will be shown in (5.79), a current density ( ) is associatedMJ

magnetic moment per type i molecule
averaged over a small volume

volume density of
type i molecules

     As will be shown in (5.79), a current density ( ) is associated 
with . In addition, there is also a current

MJ
M density due to the flow of 

 charges, which we denote by  (Jackson denotes it by  in freefree J J
Sec. 5.8). By the principle of linear superposition, we may write
                         ( ) ( ) 

f

freeA x A x A ( ),M x( ) ( )free ( )
where  and  are due to  and , respectively.

( ) 

M

free M free M

f

A A J J
J x 30 ( )

     Obviously, ( )
4 | |






free
free d x

J x
A x

x x 19



     For , we have the expression for , but not yet for . SoM MA M J
5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

3

, p , y
we approximate  by the dipole term in (4).

( )  

M M

M

M d x

A

J x ( ) ( ) m x x x0 ( )
      ( )

4




 M

M
d xJ x

A x 0 0 0
3

0 0
3

( ) ( ) ,  
| | 4 | |

h h t ( ) 0 b i f d f t




 
 

 
 



d

m x x x
x x x x
J J3where we have set ( ) 0 because  is formed of current 

loops of atomic dimensions ( volume of integration). Under this
condition is independent of the poin

  


M Md xJ x J

m t of reference becausecondition,   is independent of the poinm
31

0 02 0

t of reference because

       ( ) ( ) ( )    
M d xm x x x J x

(5.54)
3 31 1

02 2                 ( ) ( ) (0).
To represent by the dipole term we must have the

         



M M

M

d x d xx J x x J x m
A x     To represent  by the dipole term, we must have the

dimension of the dip
MA x

ole. So, we divide the source into infinistesimal
volumes. In each small volume , the dipole moment is ,  V VM, p ,
which generates a small  at given by MA x 

20



0 ( ) ( ) V    M x x x
5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

0

0

3
( ) ( ) V

| |
            ( )      

4
where we have replaced the notation  with . This




 
 

 



M
M x x x

x x
A x

x x x x

V

0

30
3

( ) ( )
| |

p

gives     ( )  
4



  
 

 M d xM x x x
x x

A x

x

0 3

| |

1
| |4

4

                        ( )




 
   d x

x x

x xM x Volume of integration
includes all sources.| |4

     

0 03 3( ) ( )

| | | |4 4
               





  
      d x d xM x M x

x x x x

                                                   

4
( )

| |

4

                                                        0
 


   



 das
M x
x xn

                                                         
S

       a a a
3

  d x daA n A                                                                                                                                            

0

                                                                                   ( )

3

                  0 
( )

| |

on 

4

  
                    


 

  

S

d x

M
M x

x x

   v sd x daA n A

What if M ≠ 0 on S?
| |4

      Does this relation i: st ll 
 

Question
x x

hold as ?x x 21



6.2 The Field of a Magnetized Object  
6 2 1 B d C t

Griffith
1/4

6.2.1 Bound Currents
Suppose we have a piece of magnetized 
material (i.e. M is given). What field does 
this object produce?

The vector potential of a single dipole m is

r̂m
2

0

4
)(

r
r


mrA




I th ti d bj t h l l t iIn the magnetized object, each volume element carries a 
dipole moment Md’, so the total vector potential is

 
 


 d2

0 ˆ)(
4

)(
r

rrMrA

22
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Vector potential and Bound Currents
Griffith 2/4

Can the equation be expressed in a more illuminating form, 
as in the electrical case? Yes! 

By exploiting the identity,
ˆ1 r 2 2 2

1ˆ ˆ ˆ( )
( ) ( ) ( )x y z x x y y z z

     
           

x y z

2

1
rr
r


2 2 2 3/ 2 2

( ) ( ) ( )
ˆ ˆ ˆ( ) ( ) ( ) ˆ

(( ) ( ) ( ) )

y x x y y z z
x x y y z z

x x y y z z

 
         

 
      

x y z r
r

The vector potential is   

 d)1()(
4

)( 0

r
rMrA

)()( AAA  fffU i th d t l
and integrating by part, we have 

)()( AAA  fffUsing the product rule

 )(1 M dd








 


  

11

])([)]([1
4

)( 0 rMrMrA
rr







How? See next page.

23
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





   ]ˆ)([1

4
)]([1

4
00 nrMrM

rr 







Griffith 3/4

Gauss's law  ( )
S

d d    E E a
( ( )) ( )

Let

v S

v v

d d       


  
 v c c v

E v cLet  ,     
( )

S S

d d
  

     

 

 

E v c
v c a c v a 

24
Since  is a constant vector, so ( )

v S

d d    c v v a



Vector potential and Bound Currents
Griffith
4/4

add   ]ˆ)([1
4

)]([1
4

)( 00 nrMrMrA
rr 





44 rr 

)(rMJ b ˆ)( nrMK b

With these definitions bound currents

currentvolume currentsurface

With these definitions,

add b

S

b  
KJrA 

44
)( 00

The electrical analogy

Sv  rr  44

The electrical analogy 
Pbdensity  charge volume

25
ˆsurface charge density bσ  P n



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

Th ( ) ( ) ( )A A A

30

     Thus,         ( ) ( ) ( )
( ) ( )

(5 78)

 
   

 

free M

free d x

A x A x A x
J x M x

2
0

                                              (5.78)
4 | |

     For comparison, in Sec. 5.3, we have   ,             (5.31)







  

 d x
x x

A J0p ( )

whic


30 ( )h has the solution:   ( )                       (5.32)

4 | |






 d xJ xA x
x x

     In (5.31) and (5.32),  represents the current due to both free 
and bound (atomic) electrons, whereas in (5.78) contrib

J
utions from

free and bound electrons are separated into two terms.

     Comparing (5.78) and (5.32), we find that the bound electronsp g ( ) ( ),
contribute to ( ) through a magnetization current density ( ) 
given

MA x J
 by          ,                                                       (5.79) MJ M

which is the macroscopic exhibition of the atomic currents.
M

26



0     Hence, by separating free and bound electrons, ( ) ( ) B x J x  
5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

0

0

y p g ( ) ( )
[(5.22)] can be written       ( )            (5.80)

Defining a new quantity called the magnetic field :



  freeB J M
H     Defining a new quantity called the magnetic field :

           

H

0
1 Effects of the atomic     ,             (5.81) currents are implicit in .

     
H B M H0 p

we obtain from (5.80) the macroscopic version of (5.22):
   

  fH J (5 82)                                              freeH J                              (5.82)
Does  have a physical meaning?:      Question H

Diamagnetic Paramagnetic and Ferromagnetic Substances :

0

     
     The counterpart of (5.81) in electrostatics is 

Diamagnetic, Paramagnetic, and Ferromagnetic Substances :
D E [(4.34)].

In Sec 4 3 it is shown that for small displacement of the bound
 P

0

In Sec. 4.3, it is shown that, for small displacement of the bound 
electrons, we have the linear relations:

 P E (4 36) 0                                                              
           

  eP E

0

   (4.36)
,  with (1 )                            (4.37), (4.38)   


    eD E 27



However, the magnetic properties of materials are such that isM
5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

     However, the magnetic properties of materials are such that  is
not always proportional to , depending on the type of  the material.
We summarize, without derivation, possible relations between  

M
B

B and .H
     1. For diamagnetic and paramagnetic substances,  is propor-
tional to  and we express the linear relation as 

 

M
B

0 0

00

,
,
  paramagnetic                
  diamagnetic

   
 




       
M B
M B

M B

1

    (5)

0
1     Substituting  into , we get the linear relation:

               ,                                                                      (5.84)
h i ll d th ti




 


M H B M
B H

bilit

B

where  is called the magnetic perm eability.
      The plasma is diamagnetic. Why?

2 F h f i b
:Question

H
     2. For the ferromagnetic substance we 
have a nonlinear relation (see figure):

( )B F H (5 85)              ( ),                                         B F H                          (5.85)
which exhibits the hysteresis phenomenon shown in the figure.     28



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

: unit normal pointingn     Boundary Conditions :

B

:  unit normal pointing  
from region 1 into region 2
n

3

2 1 1 2

(i) 0 0
    ( )                                                 (5.86) 

       

    
 v d x ds

B B
B B B a
B B n

2Bn  
region 2
region 1

pillbox of
infinitesimal
hi k

2 1 1 2( ) ( )
(ii)  

 

 

   
free

d d
H J

H a J a

n
d

1  Bregion 1 thickness    

( )    (see lower figure)

    

 
 


freed d

LHS d

H a J a

H 
( ) ( ) 

                     
  

     
freeK

n

d   
rectangular
loop of
infinitesimal

2 1

2 1

          ( ) ( )
          [ ( )]

    
    

L
L

H H n n
n n H H

  d
    

 
L  

f t fK

infinitesimal
height( ) ( )    a b c b c a

( )       free freeRHS da LJ n K n
:  surface current of

 charges (unit: A/m)
free

free
K

2 1

2 1

    ( )                                                         (5.87)
: 0

   
  

f f

free

free t tSpecial case
n H H K

K H H (6)
: tangential to surfacet

2 1: 0       free t tSpecial case K H H                                         (6)
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5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

Application to a Solenoid :Application to a Solenoid :

            turns
unit length

n permeable
material

l
ii

unit length material

   outB/  in inH B  

Approximate the manetic field by that of
an infinite solenoid So = constantinH

    free ind I H l nil    H l

an infinite solenoid. So,  constant.inH

in in in

out in

H ni B H ni
B B ni

 


    
  

0

" "  implies that
filling the solenoid core with  
material (while keeping at a constant

: outBQuest nion i

i


 




material (while keeping  at a constant 
value) can greatly enhance . Wout

i
B hy?-field linesB
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5.9 Methods of Solving Boundary-Value 
Problems in Magnetostaticsob e s g e os cs

We put the basic equations :    0 and    (5.90)
in forms suitable for 2 types of boundary - value problems.

free        B H J

      Linear medium with const (in each region). 
          (a) Equati

 Type 1 :
on for vector potential (with or without )freeJ

1

21 1

               

         [ ( ) ] free



 

     

       

B H A H A

H A A A J

 2          use Coulomb gauge, 0            (7)

(b) Equat

free

free

 

    A J A

ion for scalar potential (only for 0)J          (b) Equat

2

ion for scalar potential (only for 0)
               0 0 and 0     (5.93) 

0 (8)

free

M


          
  

J
B H H H

         0                                                                       (8)
     Typic

M  
ally, we use (7) or (8) to solve for  or  in each uniform

region and find the coefficients by applying conditions (5 86) and
MA

region and find the coefficients by applying conditions (5.86) and 
(5.87) on the boundary. An example will be provided in Sec. 5.12. 31



5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)

2

     :    
     In a vacuum medium, we have

Discussion

I2
0

2

                                                                           (5.31)
     In a uniform-  medium, we have 

free


  A J

Bm




I

I
2                A

0 

.                                                               (7)
     Hence, the effect of medium is to  the ability of

free

increase


 

J

0to produce by a factor of  /  (see figure above).

 
free J B 

    In electrostatics, we have
Ep +

0

2

2

                  (vacuum medium)                                 (1.13)free

f






   

2and            (uniform dielectric medium)                  (4.39)
     Hen

free
   

0ce, an  medium  the ability of  to producefreereduces 
0by a factor of  /  (see figure above). 

f
 E 
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Hard ferromagnets (permanent magnet, given, = 0)freeType 2 : M J
5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)

Hard ferromagnets (permanent magnet,  given,  0)
        (a) Vector potential     

( ) 0

free

    B

Type 2 : M J

H M real current
0

0 0

              ( ) 0

        ,  where  [see (5.79)]M M


 

   

     

H M

B M J J M

real current

                  B A B
0

2
0

( )2 3
0 4 | |

( )

        ( ) ,                   (5.102)M

M

M d x




 


     

     
J x
x x

A A A J

A J A x0 4 | |( ) , ( )

        (b) Scalar potential
0

M

M

 

    

 x x

H H
M is a mathematical

tool, not real charge.


2
0

              0                    
              ( ) 0

M

M
    
        

H H
B H M    (5.95)

where (effective magnetic charge density) (5 96)
M


  

 

H
M

tool, not real charge.

( ) ( )3 31 1
4 4 | || |

     where   (effective magnetic charge density)     (5.96)

  M

M

M d x d x
 


   

 

  

      
x M x

x xx x

M

      a a + a
( )3 31 1 1

4 4| | | |             ( )         d x d x 


          
M x

x x x xM x    (5.98)
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5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)

     :   MEffective magnetic surface charge density 

3 3
     Rewrite (5.96):                                                (5.96)
     (see pillbox below)




  
       

M

M

Mv v

ff g f g y

d x d d xs

M
M M a

 
2 1

0
( p )

    (


 

 

   Mv vs
M

M M )     MA An
n

2 0 M
surface area  A

a mathematical tool
                                                                            (5.99)  M n M

1 M M
thickness 0
M

        :
          In Sec. 5.8,                       

MSurface current density due to magnetizationK M
       Here by the same algebra ,

real current real current 0

                                    

 

   free M

M

H J M J

   n 0Mn H

 0

2 1 2 1        ( )       ( )         free M

M

K n H H K n M M M n

n 2 0M

1 M MMK
    n

2H

1  HfreeK
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5.10 Uniformly Magnetized Sphere
discontinuous!Consider a permanent magnet with magnetization :        

       r


P
HB

discontinuous!

 0

p g g
 ,   

0        ,   
zM r a

r a



e     M

M a


   zvanishes everywhere
except on the surface.
M

3( )1 1 ( )M d d     
x n M x

411  r
(3.70)by (5.95)

10
4
3

3

( , )

( )1 1
4 4| |

=

( )
| |

M
M s

Y

d x da

  


 

 

      
x

x x
n M x

x x

2

1, 1 1, 1

41
3

[ ( , ) ( , )

1
| |



   





 


 

 
  r

r r
Y Y
x x

1032
0 21

03|

( , )

cos

                    

4 |
M a

Y

d M a

 





    x x



2 cosr
r





3
4

10 10

cos

( , ) ( , )



   



  Y Y

2

1 1
0 03 3

3 cos1
03

cos ,   
(5.104)

,               
                                                 

M r M z r a
M a r a

  
 


4 cos

11 11( , ) ( , )]
 

      Y Y
203

1
3

2
Inside:  

( )

r

in

  


 

     
H M
B H M M H B



 2

0 0 03            ( )
Outside: dipole 

in in in in       B H M M H B
34

3field with dipole moment .a

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5.12 Magnetic Shielding, Spherical Shell of Permeable  
Material in a Uniform Field

0

2

   Consider a spherical -shell in an external .
(cos ) imml

l ePr 


    
   

B  

a 


0    B

r

Material in a Uniform Field

2
1

Eq. (8)

(cos )0
(cos )

l
M M l m im

l

ePr
r Q e 




  



   
        

   



b

10
0

cos (cos ) ,                               (5.117)

(

l
l lrl

M

H r P r b 





  

  1
1 (cos ),                              (5.118))l

l
l l lr P a r b 






   

0 cos
gives the

H r 

(M   1
0

0

( ), ( )

(cos ),                                                    (5.119)

)ll l lrl
l

l l
l

r P r a



 











 
 M M 

0external .B

0l

2 1
(5.93) (6) 

M M

M MM
t t

b b 

 

 



 
 
 



      



H H H

boundary conditions

0

2 1
0

1 2

(6)

(5.86)

   
(outside)  + 

 (inside)
M M

t t a a

r rb b
B B

 

 



 

 
 

 

 
 

        
     



H H
B H 
B H 

0
M M

b b

r ra a


 
 
 





The shell is assumed to 
be a linear medium. 36



5.12 Magnetic Shielding, Spherical Shell of Permeable  Material in a Uniform Field (continued)

     Boundary conditions result in solutions for the coefficients:

3 3
30 0

(2 1)( 1)( )

0 if 1
 
 

   
  

    l l l l

b a

l

H b H


  30 0

1 0 03 2
30 0 0

(2 1)( 2) 2 ( 1)                                                     

 
  
  


   

 
a
b

H b H

9

(5.121)
          &

9


       
0 

3
3

00
1 0 03 2

30 0 0

9

(2 1)( 2) 2 ( 1)

9 (5.122)
2 1( )




  
  






   

     
  


a
b

a
b

H H

0 0      as ,  implying that 
materials tend to "absorb" -field lines and


  


in

b
B

B
0 field+ dipoleout B B

materials tend to absorb  field lines and
thereby prov

B

3 6
0

ide the shielding effect. High-
materials can have /  as high as 10 10 .


  0

0 0

g
         When ,  reduces to  everywhere, 
i.e. a static megnetic field penetrates into the 

 
  B B

: uniform fieldB
shell as if there were no shell present (even if the
shell is made of good conductor, such as copper). 0

: uniform field
( 1/  if )   

inB
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5.15 Faraday’s Law of Induction
The Biot-Savart (or Ampere's) law relates the magnetic field to     The Biot Savart (or Ampere s) law relates the magnetic field to

electrical . Faraday then discovered  that
time-varying magnetic flux through an electrical 

experiman
circuit c

tall
ould

curren
 

yt

induce an electric field around the circuit. This not only provided
the first link between electric and magnetic fields, but also led to a

h i t t th fi ld i ti i fi ldE B

  
( )B

loop C

new mechanism to generate the -field, i.e. a time-varying -field.
  

E B
   Referring to the figure, let loop   

be an electrical circuit (as in Faraday's
C

 d
da

n
( , )    tB xbe an electrical circuit (as in Faradays

original experiment) or any closed path 
in space (a generalization of the originalp ( g g
observation with immense consequences). 
Faraday's law states

 : an arbitrary surface         ,     (5.141)     bounded by loop 
h i h l i fi ld i h f i hi h i

c
Sdas t C

d d

d        


   B n

E

E
 



where  is the electric field at  in the frame in which is at
rest, and is th

d dE
B 

 
e magnetic induction in the lab frame. 38



loop CR i (5 141)

5.15 Faraday’s Law of Induction (continued)

 

  

d n
( , )    tB x

loop C     Rewrite (5.141):        

                                                             (5.141)    c das td B nE 
da    Assume loop  is at rest in the lab

frame, then  (electric field in the



 

t
C

E E
 lab frame) and (5.141) becomes

integral form of Faraday's law               (9)      c das td B nE  ( )

where both  and  are lab-frame quantities.

(9) b itt (b St k ' th

 







c s t

d
E B

EE  ) d     (9) can be written (by Stokes's theorem:   c d EE  )

             



 

das
da das s t

n
BE n n

 
     Thus,

         differential form of Faraday's law)             (5.143)



   

t

t
BE  y ) ( )t
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To find the energy associated with a magnetic field we evaluate
5.16 Energy in the Magnetic Field

     To find the energy associated with a magnetic field, we evaluate 
the work needed to establish the current ( ), which produces the 
magnetic field. We break up ( ) into a network of thin loops. I

J x
J x n 

the build-up process, an  field will be induced by / . The
rate of work done by within each loop is

 tE B
E 

integration over the area

n hi


loopdW

is the cross section of the loop (same as
 Jackson's ).  &  may vary along . J d


  
integration over the area
encircled by the loop

n 

S

a thin    
 loop

/
           

 


 

      

  

 



loop
s

s
t

dW
J d J da

dt
J dat

B
E E n

Bn



St k ' th
                       

S 

d ( )d J 
   Work done within each loop to 

s t
generate :

     W J da J da
B

n B A n

Stokes's thm.


: cross section of loop

                         
           


    




    

 

 



loop s sW J da J da

J d
A

n B A n

A  3J d d d x  J J
3                                                                         (10)


 


loop

J
d xA J
 

3d x
J d d d x J J

40



3    As shown in  [(10)], the work done withinlooploopW d x  A J
5.16 Energy in the Magnetic Field (continued)

                
each loop is an integral over the volume of the loop. Thus, an inte-
gration over all space gives the total work done to 

pp

generate :B

3 3( ) (5 144)W d x d x    A J A H

Assume the rate of build-up 0  obeys the static law .
Otherwise, the static law breaks down and there will be radiation loss.

   H H J

3 3
        ( )                                (5.144)
             ( ) ( )

W d x d x
d x d x



  
 



    
      
 
 

A J A H
H A H A  For this integral

to vanish the
3 3

( ) 0
1
2             ( )  

ds
d x d x
 

 
   

    

B H A a

H B H B
 to vanish, the 

volume of integ- 
ration must be .

     Total wo
B ti f thi i

rk done to bring the field up from 0 to the final value :
 

B
Assume linear medium:  or   B H B μ H

3 By conservation of energy, this is
the total magnetic field energy.

1
2

1
2                 (5.148)

      [field energy den

)

si

(W d x

w

 
  











 B

B

H

H ty]                                     (11)2 [ gy
1 1 1
2 2 2

y] ( )
     : ( ) ( ) ( ) j j j j

j j j
Note w        H B H B H B
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5.17 Energy and Self- and Mutual Inductances
Assume linear relation between J and A

3 31
2  ( )                                              (5.144) W d x d x      A JJ A

for nonpermeable
(μ0) medium

Assume linear relation between J and A

0

3

3 3

1
2                                                                         (5.149)

( ) (
W d x


 

 

 



A J
J x J )


x

0 3( )( )   (5.32)4 | | d x


   
J xA x x x

f N t0 3 3      ( ) ( 8 d x d x
 

J x J

3 3 21

                                                   (5.153)

                             ( ) ( )

| |
)

N N N N Ni j  



J x J x

x
xx

for N current-
carrying circuits

0 3 3 2

1 1 1 1
1
2

( ) ( )
 ,  (5.152)8 | |

where

N N N N N
i j i i ij i j

i j i i j i

i j
i j

d x d x L I M I I
     

        
J x J x

x x
self-inductance for a thin wire

0

where

4i
i

L I



 0
2

3 3 ( ) ( )          (5.154)4| | | |i iC Ci i C Ci i
i i
i i i i

i id dd x d x 


       
   

J x J x
x x x x 

 
self-inductance for a thin wire

i

0 03 3

| | | |

( ) ( )
 (5.155)4 4| | | |i jC Ci j C Cij i j

i i i i

i j
j i j i j

i j
i

d d
M d x d xI I

 
 

 

   
     

   
J x J x

x x x x 
 

4 4| | | |   i jC Ci j C Cj jj i j i jiI I  
 x x x x

mutual inductance (Mij = Mji) for thin wires 42



0 3( )( ) (5 32)d  
J xA

5.17 Energy and Self- and Mutual Inductances (continued)

0 3( )     ( )                                                          (5.32)4 | |
Vector potential at circuit  due to current in circuit :

d x

i j


   




J xA x x x

0 3( )
     ( )        4 | |jC

j
ij i ji j

d x


   
J x

x x xA                                          (12)

31     From (12) and (5.155), we obtain  ( ) ( )

     Assume flows along wire of negligible cross section
iCij ij i i ii jI IM d x

d da

  A x J x

J 
3

     Assume  flows along wire of negligible cross section 

 ( )i i

d da

J dadd x 

J

J x 




ij
iI d

B
 magnetic flux from circuit j

passing through circuit i

1 1 1              (5.156)( )
Ci i

ij

ij ij ijijsj j jI I IM d da F      

B

A A


  n

Th “ ” i i li th t th i d d t d t d i t i

 jij ij ij Id dF Mdt dt    
ij: induced voltage in circuit i due

to current variation in circuit j.

The “–” sign implies that the induced ij tends to drive a current in 
circuit i to inhibit the flux change caused by circuit j (Lenz’s law). 43



Homework of Chap. 5  

Problems: 1,   3,   6,  11, 13, , , , , ,

18, 19, 20, 22,  30
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