Chapter 5. Magnetostatics, Faraday’s Law,
Quasi-Static Fields

5.1 Introduction and Definitions
We begin with the law of conservation of charge:

IVV-Jd3x=<jSJ-da:—a—Q——@—jvpd3x T

ot ot i
op _ conservation ¥
= V- J+5,=0 [ofcharge } T—— (2)

arbitrary volume
Magnetostatics 1s applicable under the static condition. Hence,

%—'? =0 and (5.2) gives V-J =0 [for magnetoststics] (5.3)
Assuming a magnetic force Fj 1s experienced by charge g moving
at velocity v, we define the magnetic induction B by the relation:
Fp =gvxB,
which is consistent with the definition in (5.1).




5.2 Biot and Savart Law
The Biot-Savart law states that the differential magnetic field dB
at point P (see figure) due to a differential current element d/, in
dl, XXy loop 1 (5.4)
loop 2

loop 2 1s given by dB = Ho I, 3
47 [xpy h

Thus, the total field at P due to /, in de,

loop 2 is: B = Ho L dly 3212 {linear SUPCTPOSitiOH,}
| X1 | an experimental fact

Integrating the force on /; in loop 1 due to /, in loop 2, we obtain
Ho dly x(dlyxXp)
=1/ di,-x dié,-df,)x
A 1 ZC.MS |X12 |3 —Cﬁdf <J3 1 12 c_|3<j>< 1 2) 12
) v\ | x 12| | x 12|
T
My (d4; - dEZ)Xlz = L2
47 ]1]2<J‘><ﬁ CJS \Xlz\ 2
| 12| 3




5.3 Differential Equations of Magnetostatics

and Ampere’s Law

4 B AaEmEm

Gauss Law of Magnetism :

dl ~xXx Cross section
27412 .
of wire

Rewrite (1): B = 20 ¢

4w P :
’ " 3 .
Change x; to x, X, to x', and let ]2d£2 = Jda dl, =Jd x, we obtain
B(x) = “0 [J(x')x X=X 3o o 1y « J(x')d>x’
41t x—x'P T 7 IX X'|
x—x' _ _y 1

Vxwa=Vyxa+yVxa

:l&J'[Vx i) 1 VxJ(x)]d*x
4 Ix—x'| |x—X'|—v

|X_X’|3 B |X—X,|

=
= Ho g ) LUCONFEN T (5.16)
477 Ped V operates on x

= V-B=0 [Gausslaw of magnetism] (5.17),



5.3 Differential Equations of Magnetostatics and Ampere’s Law (continued)

Ampere's Law : Rewrite (5.16); 6 2
V2 dox
B(x):&ij J(x) d>x' J x=x] S
47 [x—x'| = [[3(<)-V . ! ,|+|X_X,|V-J(x')]d3x'
:VZB(X) T 53 =—[3(x)- V' L d
_ 0 X '
- EV xVx j [x—x/| d”x - jIX—X’lvl'J(X )d?’xl_IV, Ii(xx)l d’x’
0 —_— 0 —
_Hory py IO g3, 1
Tart Y ey x| 4]
V x (V xa)=V(V-a)-V4a —475(x-X) n
VxB(X) = 1pJ(x) arbitrary (5.22)
IVXB nda ILlOJJ IldCl I (_loop
§B-d/ 1 (through the loop) 4y
Ampere's law, a much more elaborate
= 9B-dl =l [representation of the Biot-Savart law } (5:25) .




5.4 Vector Potential

T
J\

Vector Potential : Rewrite (5.16): B(x) = Ho gy | gy
4r | x—x'|
= B=VxA, (5.27)
where the vector potential A 1s given by
A= 1) sty (5.28)

which shows that A may be freely transformed (without changing B)
accordingto A —> A+Vy (gauge transformation) (5.29)
We may exploit this freedom by choosing a i so that

V-A=0 (Coulomb gauge) (5.31)
See proof on previous page.

0~

/\

V-(5.28)=> V-A= “Ojv Xd3'+V21// Vy,

= Coulomb gauge requires V2 v =0 everywhere and hence = const.



5.4 Vector Potential (continued)
VxB =yl
B=VxA
= VXV XA = pd
= V(V-A)-V?A = 1,J
Choose the Coulomb gauge (V- A =0)

Rewrite: {

= VA =—1J (5.31)
A= Ho I (5.32)
4r° | x—x'|
Note:

(5.32) 1s valid in unbounded (infinite) space, 1.e. the volume of
integration must include all currents. If there 1s a boundary surface,
the currents on the boundary must be accounted for by application
of boundary conditions (See example in Sec. 5.12.) 6



5.4 Vector Potential (continued)

A Comparison of Electrostatics and Magnetostatics :

Electrostatics

Deftinition of E:

Coulomb's law:
E(X): 1 J‘IO(X)(X X)d3 ’
4rgy”  |x—x'f
Y
V-E=p/eg, VXE=0
U U
$E-da=q/ey $E-dl=0
Gauss's law
of electrostatics

Magnetostatics
Definition of B:
Fp=qvxB
X'/ -
Biot-Savart law:
B(x)— Ho jJ(x)x XX 3d3x’
[ x —x'|
Y
V-B=0 VxB =yl
U U
gSB-da:O cﬁB-cM:,uO[

Gauss's Law ~ Ampere's law
of magnetism



5.6 Magnetic Field of Localized Current
Distribution, Magnetic Moment
Magnetic (Dipole) Moment : Ax(BxC)=B(A-C)-C(A-B)

j 169 4 L _1 +X"3"+ . [Eq. (5). Ch. 4]
x- XL/|1X ¥ Ixl
yal [—jJ(x)d3x'+—x [XI(K)dx +] |
472' |X| % |X| ; X
—O\ jxx[x ><J(x )]d-x'

Proved on next page.

Proved on p.185 under the
4 ! 3 ! p
_ Ho [XHXXI(X)]d"x (1. J is localized

3
4 x| within volume

 Ho MxX If x 1s far SOOI of integration (5.55)
4z x| from source. 2.V-J=0 '

where m = % j x xJ(x")d %' [magnetic (dipole) moment | (5.54)

Note: In (5.54), m 1s defined with respect to a point of reference.

Here, 1t coincides with the origin of the coordinates (x = 0). o



5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Problem : Prove the relation j J(x)d 3x =0 under the conditions:
V-J =0 and J 1s localized within volume of integration.

Proof: Since J =0 outside the volume of integration, we may extend
the volume of integration to co without changing the integral value.

JI)dx=[" dx[” dy[” dz(J e, +J e, +Je.)
Consider the x-component first:
e, [JX)dx=[" dy[” dz[” J dx

. r 00 00 * 00 aJx " Y aJ
__._oody.—oodz.—oox ox dx \: X —o0 _I—wx@—;dx
w gm0 Oy Oy aJ,

R dy.—oo dZ.—oo X( Ox + @y + Oz )dx

—_ [ . 3 — —

=—|xV-Jd"x=0 The insertion of these 2 terms will not

Similarly, the y- and | change the value of the integral because

- 1 w 0 <o o 0J, 0
z-components alsg vanish. | 1= Gy =J,[" =08 (55)dz=J,", =0
Thus, IJ(X)d x=0 5




5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Anti - symmetric unit tensor (& ): (used on p.185 and p.188)

(0 , if two or more indices are equal

gir =91, 11, j, k 18 an even permutation of 12,3 (2)

Levi-Civita symbol| | —1 , 1f i, j, k 18 an odd permutation of 1,2,3

ExampleS: E11n = O, &3 = 1, E13p = —1, €312 =1

V. (AxB) zg,]ka (A Bk)

=2
ijk L

=2
ijk L

04 OB, |
] k

l]k a Bk + & l]kA X,
0A 0B,

J et 4

EriiBr o ~EjinAj o

=B-(VxA)-A-(VxB)

ljka Ay

10



5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Example I of magnetic moment: plane loop

1
—_ 1 / / 3 r __ ] /
m—jjx xJ(x")d —jfﬁxim’li df
2-(area)
N m|=1-(area) (5.57)
m 1s normal (by right hand rule) to the plane of the loop.
Example 2 of magnetic moment. a number of charged particles
in motion
angular momentum
J:Z%'Vié‘(x_xi) L =MXx.xV.
] I [ I
1 3 1 qdi t
:mzjjx’xJ(x’)d '=53gx; xv; =X L, (5.58)
l

l : 2Ml l
~ifq;/ M, =e/ M for all particles.

- ‘L

= 5.59
oM s (5.59)

L: total angular momentum

11



5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

Ninala Binald ¢ (vialid far franm the antiree )
UllJUlC L1'ITCIU . \V 11U 14al 119111 U1V DUUL\/U}
. A Mo mxx
Rewr1te(5.55).A-4ﬂ X V. x-lvxixvL (5.55)
X" x X
—B=VxA="0Vx| mx>, =3 _x.3x_g
4 X X X
0 =0 (" misa constant.)
_ - <
=——mV-—5—-—">V-m+| —=-V m-(m-V)—
N (xP j S
_Ho)_, 0 X . 0 X . 0 X |[Vx(AxB)=(B-V)A-(A-V)B
4r| TOxxP Y xP FOzxP +A(V-B)-B(V-A)
Ho | €y —3x
== - —% + —(v)—(z
A4 X(|X|3 |X5j ( ) ( ):l
_Hp3nmm)-m X [magnetlc dlp016:| (5.56)
47 x| | X | field
12




5.6 Magnetic Field of Localized Current Distribution, Magnetic Moment (continued)

As 1n the case of the electric dipole moment, here we characterize
a localized current distribution by a constant quantity, the magnetic
moment m, which turns an otherwise complicated field calculation
(see, for example, Sec. 5.5) into a simple one (with limited validity.)

Consider, for example, a circular loop carrying current /. Using
(5.57), we have m = [ ﬂazez (see figure). Hence, the dipole field 1s

p_ Ho 3n(n-m)-m [p=e, < (5.56)
47 |X|3 (——-m:[ﬂ'azez e’, 9
=&I7m2 36,,(6,,-62)—62 A
4 r3 5
(e, =e,.cosf—eysind)
2cosBe, +sin Be !
:Zl—;[ﬂaz = 0 (5.41)
r

When r > a, the dipole field 1s a good approximation of the total
field [see Jackson (5.40).] 13



5.7 Forces and Torque on and Energy of a Localized
Current Distribution in an External Magnetic Induction

Magnetic Force in External Field :
F=[J(xX)xB(X)d’x’ (5.12)
Expanding B :[see lecture notes, Ch.4, Appendix A, Eq.(A.4)]
B(x)=B(0)+ gx : V)B(O) + e

This implies "After differention of B(x), set x in results to 0," 1.e.

(x-V)BO)=x[ Bx)] _ + y[%B(X)} +z[ 2B

X= x=0
= F =[[J(x)d*x'TxB(0) + [I(x)x[(x -V)B(0)]d"x' +-
— 0 ZprovJGd in Sec. 5.6)
= [J(xX)x[(X"-V)B(0)]d°x' +--- =V(m-B)
=-VU, See derivation on pp.188-189 (5.69)
where U = —m - B = potential energy. (5.72) 14

x=0




5.7 Forces and Torque... (continued)

Magnetic Torque in External Field:

N = [x'xf(x')d’x’
= [x'x[J(x)x B(x')]d°x’
A

B(0) + (x' - V)B(0) +--- ~ B(0)

~ [x'x[J(x')x B(0)]d"x’

.

—~

A
= —%IB(O) x[x'x J(x")]d %’
[Using the formula at the

bottom of p.185, replacing
x with B(0).]

=m xB(0)

V' [x] I(x)]

2x'
—

=2x"-J(x)

0

' Ty 12 1 '
=J(x)-V'X|"+x|" V- J(x)

/

/—/\'ﬁ

= [[B(0)- X' (x)d>x' —B(0)[x'- J(x") d°x’
= [[BO)-XW(x)d’x' = s BO) [V'-[¥ I(:)Jd

t

X!

2 J(X')-da’ ; 0

— q}s
J 1s localized.
— J =0 on surface

(5.13)

(5.71),



5.7 Forces and Torque... (continued)

A Comparison between Electric and Magnetic Potential Energy,
Force,and Torque in External Field :

Potential energy  Force Torque

U=-p-E (424) F=-VU N=pxE j
gt E

U=-m-B (5.72) F=-VU N=mxB —DP >

Both p and m tend to orient along the ?

positive field direction under the action of |

the torque (see figures on the right). This 7o >

results in a state of minimum potential —Sm _ ~B

energy. In this state, p reduces E, whereas ~  |® —

m enhances B. - >

Questions:
(1) How does a permanent magnet attract a piece of iron?
(2) How does 1t attract another permanent magnet?

16



5.7 Forces and Torque... (continued)

Force in Self -Consistent Field; Magnetic Pressure and Tension :

A self-consistent field is the combined field
generated by the source J under consideration

and the external source (if present). Thus, using

V xB = 1yJ, we may express the magnetic force

density f (force / unit volume) in terms of B. f
f:JxB:IuLO(VxB)xB a solenoid El_lg:ld
V(a-b)=(a. Vz)b (b V)atax(V xb)+bx(V xa) auniform
=-V 23/10 + ;}O (B-V)B [see p. 320)]
—_—

/ N

magnetic tension force density,
as 1f a curved B-field line tended

magnetic pressure
force density

to become a straight line.
In regions where J =0, we have f =0
[pressure and tension force densities cancel out].  uniform current ;7




5.8 Macroscopic Equations, Boundary
Conditions on B and H

A WA

Macroscopic Equations : To be more general, we move the
point of reference for m from x = 0 to x = X; and write

1 1 Jr(X'—XO)-(X—XO)

x—x|  [x—x] x—x[

+--+ [See Sec. 4.1]

Sub. this relation into  How about J ;7

My IXD) 5,
A_4ﬂj|x_x,|dx ((5.32)]

we obtain vanishes only 1f J 1s localized
Y, within the volume of integration.
AR
A = Ho IJ(X )d ™ x L Ho m(xo)x(x—xO)er
dr [x=xo| 47 |x-Xx, 3 )

where m(x) =7 J(x"—xq)x J(x"d>x"



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

To proceed, we consider the orbital motion of atomic/molecular
electrons, which can collectively give rise to a permanent or induced
magnetization M (total magnetic moment / unit volume) given by

"} \
volume density of | |magnetic moment per type i molecule
type i molecules | |averaged over a small volume

As will be shown 1n (5.79), a current density (J,, ) 1s associated
with M. In addition, there is also a current density due to the flow of
free charges, which we denote by J 4., (Jackson denotes it by J 1in

Sec. 5.8). By the principle of linear superposition, we may write

A(X) = Afree (X) + AM (X)a
where A ., and A, are dueto J 4, and J,, respectively.

Jfree (X’) d3xr

Obviously, A ;.. (x) = o _[ x—x'|
— 19

4r



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

For A,,, we have the expression for M, but not yet for J;,. So
we approximate A ,, by the dipole term in (4).

J d>x' _
AM(X):IUOJ +,UO m(XO)X(X XO)_|_”.,

4 |X—X0| 4 |X—XO |3

where we have set [J,,(x")d 3x' =0 because J,, is formed of current

loops of atomic dimensions ( <« volume of integration). Under this
condition, m is independent of the point of reference because

m(xg) =1 [(x'—xq)xJy, (x)d>x’

N [—

I B ()
LIx"xJ), (x)d>x' —%XO x [J (x)d>x’ :/m(O).

To represent A, by the dipole term, we must have |x| > the

\©)

dimension of the dipole. So, we divide the source into infinistesimal
volumes. In each small volume AV, the dipole moment 1s MAV,

which generates a small AA,, at x given by
20



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

o M(X'*x(x—x")AV
AA ) (X) = 3
4 x—x'|

where we have replaced the notation x, with x". This

M(x’)x()é—x') 3y
x—x

: Ho
ives A, (x)=
g m (X) 47[I

_ M IM(X')XV’ 143, | Volume of integration
4 x—X'| includes all sources.

! ! ! l
— oy ¢V XM(’X ) d3xr _& J‘VIX M(X’) d3xr
i e an )Y e X

Vxya=Vyxa+yVxa ZCJS nXM(X’)da—O
S x—x|
ijxAd3x=<35Sn><Ada/ (M|:Ol)nS)
_ Hy J‘V'XM(X') 43y What if M # 0 on S?
477  [Xx—X]|

Question: Does this relation still hold as x — x'? ’1



Griffith | | |
1/4 6.2 The Field of a Magnetized Object

6.2.1 Bound Currents

Suppose we have a piece of magnetized
material (i.e. M Is given). What field does
this object produce?

The vector potential of a single dipole m is

Uy MX~
2

A(r) =

) 4~

In the magnetized object, each volume element carries a
dipole moment Md7, so the total vector potential is

A(r) = Ho dr’

4

2
&y

J‘ M(r')x~

22



Griffith 2/4

Vector potential and Bound Currents

Can the equation be expressed in a more illuminating form,
as in the electrical case? Yes!

By exploiting the identity, 5 5 5 |

X' —+y —+1z

02" J(x=x) + (=) +(z-2)’
_ X'(x—x)+y'(y—yH)+72'(z-2Z") _ 2y
((x_xr)2+(y_yr)2+(z_zr)2)3/2 @2

, 1 i ox oy
2

v v

The vector potential is A(r)— o j M(r")x (V' )dr

Using the product rule ‘V‘X‘(fA)— VI xA+f(V XA)
and integrating by part, we have

A(r)= i‘;{ji[v x M(r")]d 7’ —IV X

i (o1 il ¢H0W7See next page.
= 1o j@[v xM(r)]df} 4ﬂ§@[M(r)x Nda N

M(r')

ld7’

r N\



Griffith 3/4

Problem 1.60 Although the gradient, divergence, and curl theorems are the fundamental in-
tegral theorems of vector calculus, it is possible to derive a number of corollaries from them.
Show that;

@)/, (YT)dt = §g T da. [Hint: Let v = cT, where ¢ is a constant, in the divergence
theorem; use the product rules.]

(b) fY(V xvdt = — ¢ v x da. [Hint: Replace v by (v x ¢) in the divergence theorem.]

(c) fV[TV2U+ (VT)-(VU)]dr = $g(TVU) - da. [Hint: Lety = TVU in the divergence
theorem. ]

Gauss's law j (V-E)dr = C_[)E -da
v S

[(V-(vxe)dr=e-[(Vxv)dr
Let E=vxe, <° v

(ﬁ(vxc)-da:—c-cﬁvxda

LS S

Since ¢ 1s a constant vector, so j (Vxv)dr =— 4) VXda

24
% S



Griffith |
4/4 Vector potential and Bound Currents

A(r) = i‘—; [ L vsmayar +f—;j§l[M(r') < f']da’

Vo— e )
J, =V xM(r’) K, = M(r')xn’
volume current surface current
N /
With these definitions, bound currents
K
A(r):ﬂj‘ idT,‘F& _bda’
4 v ~ 4 ds »

The electrical analogy
volume charge density p, =V -P

N

surface charge density o, = P-n e



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

Thus, A(X) = A 4. (X)+ Ay (X)
J x)+ V' x M(x’
— 0| free(X) , SN (5.78)
4 | X—X |
For comparison, in Sec. 5.3, we have VA = — o d, (5.31)
which has the solution: A(x) = Ho j J(x ), d>x’ (5.32)
47| x—X |

In (5.31) and (5.32), J represents the current due to both free
and bound (atomic) electrons, whereas 1n (5.78) contributions from
free and bound electrons are separated into two terms.

Comparing (5.78) and (5.32), we find that the bound electrons
contribute to A(x) through a magnetization current density (J;,)

given by J,y =VxM, (5.79)
which 1s the macroscopic exhibition of the atomic currents.

26



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

Hence, by separating free and bound electrons, V x B(X) = #5J(X)
[(5.22)] can be written VXB =ty (J e +VXM) (5.80)

Defining a new quantity called the magnetic field H :
= Effects of the atomic }

(5.81)

= 1l B_ : S
H = o B-M, {Currents are implicit in H.

we obtain from (5.80) the macroscopic version of (5.22):
VxH=J g, (5.82)
Question: Does H have a physwal meaning?

The counterpart of (5.81) in electrostatics is D = ggE + P [(4.34)].

In Sec. 4.3, 1t 1s shown that, for small displacement of the bound
electrons, we have the linear relations:

P=¢yy E (4.36)
D =¢E, with ¢ =g,(1+ 1,) (4.37), (4.38) ,



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

However, the magnetic properties of materials are such that M 1s
not always proportional to B, depending on the type of the material.
We summarize, without derivation, possible relations between B and H.

1. For diamagnetic and paramagnetic substances, M is propor-

tional to B and we express the linear relation as

1= Lo 1>ty =M TT B, paramagnetic
M=H"top . . 5)
1<ty =M 7Ty B, diamagnetic

HE
Substituting M into H = yLOB —M, we get the linear relation:
B=uH, (5.84)

where u is called the magnetic permeability.

Question : The plasma 1s diamagnetic. Why?

B A
2. For the ferromagnetic substance we
| . | (T 5
have a nonlinear relation (see figure): f
B=F(H), (5.85)

which exhibits the hysteresis phenomenon shown in the figure. 28




n: unit

mm . ->aa

5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)
ormal m'nting

Boundary Conditions : normal boir
()V-B=0=[ V-Bd’x=§ B-da=0 |from region 1 into

region 2
—(B,-B,)n=B,,=B,, fl B, (5.86)
(i) VxH=J free region 2 pillbox of
_ infinitesimal
— IV X H : da — IJfree . da I'GglOIl 1 ]31 thickness
(LHS)=¢H-d¢ (sce lower figure) n
=(H, —H;)-(n"xn)AL K o0 l > rectangular
=n'-[nx(H, —H,)JAL | T |—]loop of
<— : imfinitesimal
a-(bxc)=b-(cxa) dft. height
«— AL —

(RHS)=[J 4, M'da=K ;,, -n'AL
I Jree Jree K free - surface current of

—nx(H, -H) =Kz, < free charges (unit: A/m) (5.87)
Special case: K 4., =0= H;, =H, (6)

t: tangential to surface

29



5.8 Macroscopic Equations, Boundary Conditions on B and H (continued)

—

1 turns permeable
unit length ¢ material

3

n =B/ 1 ; —> B,

Il'llI...l.'....-..-.....'i......... ....

Approximate the manetic field by that of
an infinite solenoid. So, H ;,= constant.

Y
C'“)H'dl:]ﬁ,.ee :>Hml=nll

= H; =ni= B, = uH,; = uni
:>B0ut :Bin = pni

Question:"B, , = uni" 1mplies that
filling the solenoid core with x> 1,
material (while keeping i at a constant
value) can greatly enhance B,,,,. Why?_

out:

B-field lines



5.9 Methods of Solving Boundary-Value
Problems in Magnetostatics
We put the basic equations: V-B=0and VxH=J4, (5.90)
in forms suitable for 2 types of boundary - value problems.
Typel: Linear medium with # = const (in each region).

(a) Equation for vector potential (with or without J 4...)
B:yH:VxA:H:%VxA

= VxH=1VxVxA=1[V(V-A)-V°A]=J

— VZA = ~14d fip. [use Coulomb gauge, V- A =0] (7)

(b) Equation for scalar potential (only for J 4., =0)
V-B=0=>4V-H=0and VxH=0=>H=-VO,, (5.93)

= VD, =0 (@)

Typically, we use (7) or (8) to solve for A or ®@,, 1n each uniform

region and find the coefficients by applying conditions (5.86) and
(5.87) on the boundary. An example will be provided in Sec. 5.12.

31



5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)
Discussion:

In a vacuum medium, we have

24 _ 7 2
\ A__IUOJfree im —)BS?’I)
In a uniform-x# medium, we have I8 —3
VA =—1] o ~ >

(7)
Hence, the effect of 1 > 11, medium 1s to increase the ability of
J fee to produce B by a factor of i/ 1 (see figure above).

In electrostatics, we have f
> - E
VD = — 'O‘J; ';ee (vacuum medium) T AR (1.13)
>
and V20 =—-1 (yniform dielectric medium) (4.39)

Hence, an ¢ > &, medium reduces the ability of p 4., to produce

E by a factor of ¢/¢&, (see figure above). -



5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)

Type 2 : Hard ferromagnets (permanent magnet, M given, J 5. = 0)
(a) Vector potential

VxH:Vx(ﬂ%—M):O real current

!
= VxB = VM = uyd,,, where J,, =V xM [see (5.79)]
B=VxA=VxB=VxVxA=V(V-A)-V?A = 1,J,,

= VIA=—ppdy = A(x) =20 | Tg _g’;f d3x', (5.102)
(b) Scalar potential Oy is a mathematical

VxH=0=H=-V®,, [tool, not real charge.
V-B=1,V-(H+M)=0=V*®,, =V-H=—p,, (5.95)
where p,, =-V-M (effective magnetic charge density) (5.96)

_ 1P (X) g3 0 (VM) 43
= Py ~ 4r ) x=X/| d”x 4z d x—X/ d”x V-ya=yV-ata-Vy

' ' ' M(x' '
:ﬁjM(x)-V I d3x:—#v-f ) 3y (5.983%

X—X X—X



5.9 Methods of Solving Boundary-Value Problems in Magnetostatis (continued)
Effective magnetic surface charge density o, :

Rewrite (5.96): V-M =—p,,

(5.96)

= [, V- Md>x = M-da=—| pyd x (see pillbox below)

——  —

— O-M =1N- M
N a mathematical tool

n 4 surface area = A4

GM"‘/

(5.99)
thickness — 0

Surface current density K, dueto magnetization M:

In Sec. 5.8,
VxH :}]free

real current

7
= K je =nx(H, - H))

nT H2

K free H, -

Here (by the same algebra),
VxM=J
M

real current

/ ——  ——
K, ~
MIIM 34



5.10 Uniformly Magnetized Sphere

Consider a permanent magnet with magnetlzatlon discontinuous!

Mpe, , r<a )
M: 0%z » P

{O , r>a r@ .’A_\ @

Py vanishes everywhere| (== z ——

except on the surface.

= L) 1 BM@)
x—X'| T 4rYs |x—x|

by (5.95 _ o (3.70)

ACES)] %YIO(Qa(D) | 1 |L1 4372”<2.

MOa , HTQ’ i Xx—Xx'| S
— dQyeos?d —1 g g2 < cosO | . 7,

I x—x| 37707 2 Y1100, 9", _1(6,9)
lMorcose 1Moz, r<a +40(0',0) ¥0(0,9) (5.104
1M0a3 0039, r>a z\/zrcosﬁ )
Inside: H; = —%M +11(0, )10, 9)] + -

— < Bin = ,U()Hl'n + ,U()M — %,UOM (:> Hin T\L Bin)
1 3
Outside: dipole field with dipole moment m = 4Z2" M. 35



5.12 Magnetic Shielding, Spherical Shell of Permeable

Material in a Uniform Field

Consider a spherical y-shell in an external By, Bo A o
. N “:i;;!h 0
2 ! P"(cosO)| | ™ | —— Wﬂ' ——
Y CDM — Q — CDM = I Qm( 9) imo i“”llum%ﬁ'mm“w
Eq,Y(S) r 7 \COS e )
_ s Y
Horcosé?+l§()rl+ll’,(cosé?) , ¥>b “Hyrcos0 (5.117)
—®,, =12 (Br'+7-5)B(cosh), a<r<b |8IVeSthe (5.118)
=0 r external B,.
< <./
\EO o;v" B(cos ), r<a (ap, oD, (5.119)
boundary conditions afbe b afpg b~
H=-V®,, (593)] / M, _ 0Py
M(. ) H,=H, (6) 00 |+ 00 |4
< B = pyH (outside) » + =
B=uH (1ns1de)‘\) Ho ~or bt H = or =
The shell is assumed to oDy | . 0Dy,
be a linear medium. \,u or |+ Ho " 5r 436




5.12 Magnetic Shielding, Spherical Shell of Permeable Material in a Uniform Field (continued)
Boundary conditions result in solutions for the coefficients:

IBZ =01f/#1
(%H)%—l)(ﬁ—a ) . |
< (2D (e +2)-2% (- } (5.121)
,U() u 3 ,U() Iu > ﬂo . &
-9~ Vo
O v PR oHo Hy| LG-122).
a
(2/,4‘1)(#4‘2)_23(#_1) 2u(1-%; |
B, \ as * / implying that u > y, B =B, + dipole field
materials ‘rpnr] ‘rn "absorb" B-field lines and
s @t N
thereby provide the shielding effect. High-u %\’
materials can have u/ 1, as high as 10° -10°. Y

When u = 1, B reduces to B, everywhere,
1.e. a static megnetic field penetrates into the
shell as if there were no shell present (even if the

shell 1s made of good conductor, such as copper).

B. : uniform field
(ocl/ pif p> 1)

37



5.15 Faraday’s Law of Induction

The Biot-Savart (nr Ampprp s) law relates the magonetic field to

Wb AN/ VAN LA/ AN LU

electrical current. Faraday then discovered experimantally that
time-varying magnetic flux through an electrical circuit could
induce an electric field around the circuit. This not only provided
the first link between electric and magnetic fields, but also led to a
new mechanism to generate the E-field, i.e. a time-varying B-field.

Referring to the figure, let loop C loop C
be an electrical circuit (as in Faraday's /> B(x,?)
original experiment) or any closed path
in space (a generalization of the original
observation with immense consequences).
Faraday's law states

gﬁCE"dfz—jS%—]?-nda, [

S': an arbitrary surface
bounded by loop C } (5-141)

where E’ is the electric field at d¢ in the frame in which d/ is at
rest, and B 1s the magnetic induction in the lab frame. 38



5.15 Faraday’s Law of Induction (continued)
Rewrite (5.141):
<j> E'-d/f = j § 3 -nda

Assume loop C 1s at rest in the lab
frame, then E' = E (electric field in the
lab frame) and (5.141) becomes

$.E-dl = IS ‘nda [mtegral form of Faraday's law] (9)

where both E and B are lab-frame quantities.
(9) can be written (by Stokes's theorem: <_f> E- dl = IS VxE-nda)
[(VXE -nda=- js -nda
Thus,

VxE = —%—]? | differential form of Faraday's law) | (5.143)

39



5.16 Energy in the Magnetic Field

To find the energy associated with a magnetic field, we evaluate
the work needed to establish the current J(x), which produces the
magnetic field. We break up J(X) into a network of thin loops. In

the build-up process, an E field will be induced by 6B/ o¢. The
rate of work done by E within each loop 1s

o is the cross section of the loop (same as integration over the area
Jackson's Ac). J & o may vary along d¢. | [encircled by the loop

aw, —— .
;;Op:—cﬁJO'E-dfz—jSJO' VxE-nda/ n a thin

B, \ _oB/ ot loop
- jS Jon- ot 4 NStokes's thm.

Work done within each loop to generate OB : 7 de (de)| )

_ _ o
W oop = Is Jon- égda - js JOVXOA-mda . .rocs section of loop
VxOoA

=¢JooA -dl

. |Jodl=Jodl= Jd > x
SA-Jd’x d>x (10),.

- Jloop



5.16 Energy in the Magnetic Field (continued)

As shown in 6W,,,, = [1,0, OA - Jd°x [(10)], the work done within

each loop 1s an integral over the volume of the loop. Thus, an inte-
gration over all space gives the total work done to generate OB :

Assume the rate of build-up — 0 = H obeys the static law VxH = J.
Otherwise, the static law breaks down and there will be radiation loss.

SW = [6A-Jd’x L[SA-(VxH)d x (5.144)
= [H-(Vx 5A)d3x+ JV-(HX 5A)d3yf For this itegral
5B =§ (Hx SA)-da=0 ™ to vanish, the
CH.SBdx = L[ S(H.-B)d> volume of integ-
=H- XTQI (H-B)d"x ration must be oo.

Assume linear medium: B=yH or B=ji-H
Total work done to bring the field up from 0 to the final value B :

_1 . 3 By conservation of energy, this 1s
W= 2 J(H-B)d"x [the total magnetic field energy. } (5.148)

= w= %H-B [field energy density] (11)
Note: w=1H B :%(§Hj)-(§Bj) ¢%§(Hj B )

41



5.17 Energy and Self- and Mutual Inductances

Assume linear relation between J and A

for nonpermeable

oW = [SA-Jd*x £ ] S[5(A-D)d x /(uz 1) medium | (5.144)
J ,
=W =1[A-Jdx A =40 ik (X)d3 (5.32) (5.149)
SR
— ’uojd3xjd3x’ J(X)'J(’X) for N current- (5.153)
87 x—x’ ____carrying circuits
ot N 3 N oo X)) IR
=G > |d x; ZL[ +ZZM[], 5.152
872-1'%1] l]zlj / |X X]| 2 i=1j>i e ( )
Whi? self-inductance for a thin wire
Uy o o3 3 IX)I(X)) ’uo df dl;
L = 4nl? fcid xijcid 5 x| qSClgf)Cl X,—x (5.154)
J(x;)J(x;)| dl -dl'
_ Mo 3 i 7 _ Ho 17"
Mz-j\— dxL,I; Ve, %[, 47X x| —T47,95€l.<ﬁcj ;] | G159
mutual inductance (M;; = Alji)| for thin wires 42




5.17 Energy and Self- and Mutual Inductances (continued)
J(x \

A(X) = g Ho j| —x| (5.32)
= Vector potentlal at circuit i due to current in circuit j :
J(X;)
Az‘j(xl‘) CJS ¢/l )J(]| (12)
From (12) and (5.155), we obtain M, = Iillj IC,’ A (Xl-)'J(XZ-)d3xl-
Assume J flows along wire d# of negligible cross section da
3. _ _7 magnetic flux from circuit j
= J(x;)d"x, J”dadf ld¢ By passing through circuit i
D] \‘1
= M, = <ﬁ A -dl = ]cﬁ (VXAU) nda——] i (5.156)
d d &,: iInduced voltage in circuit i due
— & = ?%F -M,; dr! " to current variation in circuit J.

The “—” sign implies that the induced &; tends to drive a current in
circuit i to inhibit the flux change caused by circuitj (Lenz’s law).| 43




Homework of Chap. 5

Problems: 1, 3, 6, 11, 13,
18, 19, 20, 22, 30
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