Chapter 6: Maxwell Equations, Macroscopic
Electromagnetism, Conservation Laws

6.1 Mawell’s Displacement Current;
Maxwell Equations

The Displacement Current :
So far, we have the following set of laws :

V-D=pPtees VXH=fee, VXE=~ T’ andV-B=0 (6.1)
Taking the divergence of V xH =J .., we obtain

V-VxH=V-Je =0 (6.2)
0

= V~Jfree+T¢01fT¢O

This violates the law of conservation of charge.

6.1 Mawell’s Displacement Current; Maxwell Equations (continued)
Maxwell observed that if we postulate
VXH:Jfree""ajDr’ (6.5)

where Jp = 67[2 is called the displacement current by Maxwell,

then, V'VXH:V"]free_"ﬁV'D:V"]free"'T 0,
0
which is consistent with the conservation of charge.

(6.5) can be written: VxH =J ¢ +Jp,

The immediate significance of (6.5) is that it establishes a new
mechanism to generate the B-field, i.e. by a time-varying E-field.

Example of the displacement current:

C I ,
l, I’ ™ real current
) ) on the wire
displacement current in the gap
A Vsinat
1S 2

6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

The Maxwell Equations :
In (6.1), replacing Vx H = J grge with VxH =J 0 + %2, we have
a new set of equations called the Maxwell equations:
V-B=0
__0B
VxE= Gt

—>homogeneous equations|

6.6
V-D= Pfee >| inhomogeneous equations| (6.6)

VxH=J e + 22

These 4 equations form the basis of all classical electromagnetic
phenomena. As discussed in Ch. 5, Faraday's law connects E and B.
As will be shown in Ch. 7, (6.6) lead to EM waves. Thus, Maxwell's
theory connects "optics" and "electromagnetism". On the other hand,
the Lorentz force equation, f = pE +J x B, connects "mechanics" and
"electromagnetism". 3

6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

Review of Laws & Equations Obtained under Static Conditions :
Scalar and vector potentials:

VxE=0 (¢) > E=-VO,

p 2P = O=g] f’o(xr)d X,
v.E:% (b) »> V @:_?0, TTEy ¥ [X—X
V-B=0 e) > B=VxA,

() ; =f IJ(x)ol .
VxB=pyd (f) - VA=—y,J X=X
Physical laws:
_ _ PX)XX) 43
E=-Vd= 47[8()] P X' (a) (pp.27-30)

B=VxA= IJ(x)x(x XDd3x (d) (pp. 1789)

Question: Which of the above laws/equations still hold true if a #=07?
Why? 4




6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

Field energy:

We =1 [E-Dd’x (4.89)

Wg =1 [B-Hd’x (5.148)
Forces: f = pE+JxB

fe = [ pEd’x

fg = [IxBd’x

Boundary conditions:

{(Dz —Dy)N=0ree 1 (4.40)
(E, -E))xn=0

(B, -By):n=0 (5.86)
{nX(Hz_Hl):Kfree (5.87)

Question: Which of the above equations still hold true if % #07?

6.2 Vector and Scalar Potentials

From the 2 homogeneous Maxwell equations, we may find a
vector potential A and a scalar potential ® to represent E and B.

V-B=0 =B=VxA (6.7)
oB _ o A= O A —
VxE+®B=0 = Vx(E+JA)=0 = E+5A=-Vd
>E=-VO-ZA (6.9)

With (6.7) and (6.9), we write the 2 inhomogeneous Maxwell
equations (for vacuum medum) in terms of A and @ as follows

V-E=p/e, = V20 + 2 (V- A)———O (6.10)

VxB :/JO\] +IU080£
2 1
ﬁ 1n vacuum = _/UOJ (61 1)

Thus, the set of 4 Maxwell equations for E and B have been

=V A-LZA-V(V-A+ ] S0

Why? reduced to 2 coupled equations for A and @.
5 6
6.2 Vector and Scalar Potentials (continued) 6.3 Gauge Transformations, Lorenz Gauge,
Rewrite L
v2Aa_ L A V(V-At 12 2 D) = — 1 (6.11) Gauge Transformations :
If the potentials A and @ satisfy the Lorenz condition: Rewrite (6.7) and (6.9): B
5 E=-VO-ZA (6.9)
V-A+L D=0, (6.14) L
¢ . _ If (A, @) are transformed to (A’, ') according to
then, (6.10) and (6.11) are uncoupled to give the equations: ,
2 0 A'=A+VA A an arbitrary scalar (6.12)
Vo - 2at2q)_ N (6.15) q)':cp_%/\ function of X and t (6.13)
ViA-L aatz A=—pyd (6.16) then A" and @’ will give the same E and B, i.e.
Equations (6.15) and (6.16), under the Lorenz condition, are {B =VxA 5
equivalent in all respects to the Maxwell equations. E=-VO'-ZA

If A and @ do not satisfy the Lorentz condition, then through the
gauge transformation discussed below, we may obtain a new set of
potentials A" and @', which satisfy the Lorentz condition. 7

The transformation defined by (6.12) and (6.13) is called the
gauge transformation. The invariance of E and B under such
transformations is called gauge invariance.




6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)
Lorenz Gauge:
Any set of A" and @ under the gauge tranformation gives the same
2 4 '
VO +L(V-A)=—-p/e (6.10)
E and B. Hence, dnr 1S A D6

If the original (A, @) do not satisfy the Lorenz condition, we may
choose a gauge function A and demand that the new (A’, @) satisfy:

VAA+ L L0 =0 @
This then uncouples A’ and @' to give the same equations as in
Vi - L O =-F (6.15)
(6.15) and (6.16): , o C a 0
\% A'—C%S?A'z—yOJ (6.16)
Using A'=A+VA and ' =@ —%A, we obatin from (1) the
: . w2 10° A _ 10
equation for A: V A—C—zat—zA——V-A—C—zaCD (6.18)9

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

. 2
Rewrite (6.18): va—C%;sz:—VA—C%gq) (6.18)

If (A, @) already satisfy the Lorenz condition, a restricted gauge

transformation with A given by the equation:

VIA-L 2 A= (6.20)

c? at?

can preserve the Lorenz condition.

All (A, @) in this restricted class are said to belong to the Lorenz
gauge. The Lorenz gauge is commonly used because it gives the set
of equations [(6.15) and (6.16)] which treat A and @ on equal
footings. Furthermore, as will be shown in Egs. (39) and (40) of
Ch. 11, (6.15) and (6.16) as well as the Lorenz condition have the
same form in all inertial frames.

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

Coulomb Gauge : (also called radiation gauge, transverse gauge,
or solenoid gauge)

In the Coulomb gauge, we have V-A =0 (6.21)
(6.10)=> Vo =-2~ (6.22)
then, 20 _ 1 ;2 1 oD

To uncouple A and @, we write J = J, +J, and demand

{V xJ; =0 [J 1s called longitudinal or irrotational current]

V-J; =0 [J; is called transverse or solenoidal current]

We may construct J; and J; from J as follows:

V- I(X /
Jy=—4V] |x—(x’| Jdx See proof at the end| (0-27)

' of this section.
|;’((_XX?| d3x’ (6.28)

Jp =L VxVx]

11

Optional

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

Rewrite (6.22): Vi = —8%. The solution is

_ 1 (pX) 43, | called the instantaneous
D(x,t) = 4re, I [X—X| d-x [Coulomb potential (6.23)
InJ| = _ﬁvj V|;(‘1(X)f|’) d3x’, replacing V -J with —%O and use
2_ 1 -
(6.23) and c” = olly’ we obtain
Cizv 58% = 119, (6.28)

Sub. J; from (6.28) into

2
VA= L S A=+ 30+ LV (6.24)

The last term on the RHS of (6.24) is then cancelled by J; to
result in an equation for A uncoupled from @ :

2a_ 1 2 p__
ViA=L O A=y (630)




Optional

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

Discussion:
(1) V-J; =0 = J; does not lead to time variation of charge density

p [see (1)].

1. @ contributes only to the near fields.
(if) ® o % LV« % N 2. Radiation fields are given by A alone.
r 3. Coulomb gauge allows separation of
"near" and "radiation" fields.

(ii1) The Coulomb gauge is often used when there is no source.

Then, ® =0 and A satisfies the homogeneous equation

2
viA-L 27 A=o.
c? o2

with the fields given by
=-10A B=VxA (6.31)

Optlonal 6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

Problem: Prove J; [in (6.27)]+ J;[in (6.28)]=J

Proof: 3 = L VxVx [0 (6.28)
- i[v(v 1| “)]((_XX)‘ d 3x’) -V3[ |‘)]((_X)2|d 3X']
&) ®)
(A) = [V B3 = [30¢) ¥ L X = —[3(<)- V7 L d X
= (G200 a3 - v S dx

0 (by the divergence thm.)

(B) = [I(x)V? [ L d°x' = -4z [I(X)5(x ~x)d X' = ~473(X)

V,‘J ! ’
= 3= L[v] |X_(X>f|)d3x L 4zI(X)] = —d; +J QED

%f—/
47| by (6.27)

Chap.l 1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)
Formal Solution of Electrostatic Boundary - VValue Problem :

1L PX)
47y X=X

unbounded space. By Green's theorem, we may generalize it to an
expression for bounded space with prescribed boundary conditions.

The expression ®(X) = d3x’ is applicable only to

Consider a general electrostatic boundary-value problem:

V2®(X) =-p(X)/ &y with ®(X) =D (X) for Xon S (10)
Green's 2nd identity: P

o [0V 20 ()~ (X)V24(X) |d X S

= §s| 60) G w ()= () 5 4(x) | da (1.35)

In (1.35), let ¢(X") be the solution of (10) with variable X’ (i.e. ®(X")).

Let w(X') =Gp(X, X'), where Gp (X, X') is the Green function satisfying
V"2 Gp (X,X') = —475(x—X") with Gp(x,X)=0 forx'onS (11)
Substitution of ¢(X’) and w(X') into (1.35) gives

Chap. 1 1.10 Formal Solution of Electrostatic Boundary-Value Problem...(continued)
475 (X—=X") —p(X)/&
/_/% /_/%

[IDX)V?Gp (X, X) = Gp (X, X) VZO(X)]d X g
’ ! ! ’ ! N
:(ﬁS[CD(X)%GD(X’X)_GD(XJX)%CD(X)]da S
Thus, we obtain =OonS

! ! ’ ! aG D ! !
D)= 4 L [y POOG (x X)X = /L (X ) 00X g1 (1.44)

(1.44) expresses the solution @ of the general electrostatic problem
in (10) in terms of the solution Gp (X, X") of the point source problem
in (11) and the boundary value (®,) of ® on S. To evaluate (1.44), we
first solve (11) for Gp (X, X’), then substitute Gy (X,X'), p(X'), @, into
(1.44). 1t is often simpler to solve Gp (X, X") from (11) than solving ®
directly from (10), because (11) has the simple b.c. of G (X,X") =0 on
S. Applications of (1.44) can be found in Chs. 2 and 3. The problem
below gives an application without the need to solve (11) for G(x,X'). |,




6.4 Green’s Function for the Wave Equation
(6.15) and (6.16) have the basic form:
Viy _TF/’ —47 f(x,1) (6.32)
in free space. We assume the space is unbounded (infinite) and solve
(6.32) by the Green function method. We first obtain the Green

function from See next page

(V2 - 262)G(x,t,x t') = —475(X — XS5 (t —t") (6.41)

Fgr a p01.nt source in‘ an unboun(.ied VG = %87 (RG)
and isotropic medium, it is convenient 5
to transform the origins of space and | = aaTZG aa—zG
time to the source point at X" and t’, so

that G depends only upon R and 7. GO,LX, 1) =G(R,7)

where R = x—=X'|, z=t—t', and R =x—X'. Thus, (6.41) gives
RG(R, r)———G(R 7)=—4710(R)S(7) ()

R 6R2 17

Chap.3 5 4 Laplace Equation in Spherical Coordinates

V2D(x)=0
3%%(r®)+ L Hag<sm96®) 511n gg;q) 0 ° «
Let 00 _U0pg)o(p) 0o/
=PQs dr2 r2U1Q 0 ddﬁ(smgdp) lsJuF; 20 d;Q 3 i{ 7
Multiply by rsin” 6 N

UPQ Dividing all terms by sin?(g, we see that the r-

dependence is isolated within this term. So
=y(v+1) .~ this term must be a constant. Let it be v(v +1).

. 2 2 d2
=sin® 0 [r %TL;+Psmed6,(s1n9d N+§55=0 (3.3)

The j-dependence is isolated within this term, %
so this term must be a constant. Let it be -m? 18

6.4 Green’s Function for the Wave Equation (continued)
. 2 2
Rewrite (2): %a% RG(R,7) —C%S—ZG(R, 7) =-478(R)S(7)
T

Performing a Fourier transform in 7, we obtain

L dRz[RG(R a))]+‘" G(R,w) = -475(R), (6.37)
G(R,w) = [ G(R,7)e""dr (3)
where .
G(R,7)=5-[" G(R,0)e”"dw (4)

In the limit ”TR — 0, (6.37) takes the form of the Poisson equation
: : 2
with a point source at R = 0. Hence, %%[RG(R,@)] =—470(R)
lim G(R,0)=} (6.38)
“’TR—>0
Note: Jackson defines k = w/ ¢ (p. 243) and denotes G(R, @) by
Gy (R) (p. 244). Here, we retain the notation @ as an explicit

reminder that G(R, @) is an w-space quantity. "

6.4 Green’s Function for the Wave Equation (continued)

For R > 0, (6.37) reduces to: li[RG(R a))]+a’—zG(R ) =0.

-i%R RG(R,w +”’RGRa) 0
= G(R, ) = Aec +B& dRz[ (R.@)] : )\,
IfA+B=1,(5)isalsoa Vahd solution for R = 0 since it reduces

to % as R — 0 [as required by (6.38)]. Hence, for R > 0, we have

G(R,w) = AG* (R, )+ BG (R, ), (6.39)

+{@R

subject to the condition A+ B =1.In (6.39), G* (R, w) = ¢’ C (6.40)

= G*(R,7)=5L[% G*(R,w)e ' dw [from (4)]
_i R
S P (6.43)

Sub. x—X/| for R and t—t’ for 7 into (6.43), we obtain

. X=X’
Gi(x,t;x’,t’) _ é[t'—(ti‘ C ‘)] {G+ : retarded Green function } (6.44)

’ - .
X=X G~ :advanced Green function »




6.4 Green’s Function for the Wave Equation (continued)

We have obtained 2 solutions:
x=x

o|t—(t¥
G (xtix,t) = L o)) (6.44)
for the equation:
(V2 ‘?%)G(X,t,x’,t’) =—475(X=Xx)o(t-t) (6.41)

The solution G* indicates that an effect observed at (X, t) is
caused by the action of a point source a distance X —X'| away at an
earlier time t'=t—|x—x'|/c. This is a physical solution because
the time of the cause (t") precedes the time of the effect (t). For
the G~ solution, however, the time of the cause (t' =t +x—X/|/c)
would be after the time of the effect (t). This is not physically
possible. Thus, "causality" requires that we reject the G~ solution
and set A=1, B=0 in (5) or (6.39). Then, the physical solution of

(6.41)isG=G* =

21

6.4 Green’s Function for the Wave Equation (continued)

Going back to the basic form of (6.15) and (6.16):

2
vzyx—c%g?y/ = —47zf(x,t) (6.32)

This equation has a distributed source f (X,t). Since we already
have the solution G* for a point source at (X',t’), the solution for
v in (6.32) is, by the principle of linear superposition,
f(x',t
w(x,t) = [dX[dt'G* (x,1,x,t') f(X,t) =j[(),]fetd3x' (6.47)
—_— X—X|
=Tt — (t =D/ =X
where the notation [ ]ret implies that quantities in the brackets
(including the position vector X') are to be evaluated at the retarded
time: t' =t —|x—x'|/c. We can verify that (6.47) is the solution by
sub. w(x,t) = [[G*(x,t,X,t') f (X, t")d>x'dt’ into (6.32) and use (6.41).
[see M&W, pp. 278-280 for an alternative derivation of (6.47)]

22

6.4 Green’s Function for the Wave Equation (continued)
Discussion:
(1) Rewrite (6.47):
! A
[ f (X ’t )]ret d3xr

y (Xt =] -~

(6.47) is valid for unbounded space (see p. 244, bottom). If there
are boundary surfaces, boundary conditions must be considered in
order to account for sources on the boundary. A similar situation can
be found in electrostatics, where the solution

(6.47)

©(X) = 41| PX) 3y (1.23)

IX=X|
is valid for unbounded space, while the solution

D(x) = ;1 jvp(x')GD(x,x’)d3x’—$q'>s<b(x') 0. Gp(x,x)da' (1.44)

47 on'
applies to a finite volume with boundary effects accounted for by the

second term on the RHS.

23

6.4 Green’s Function for the Wave Equation (continued)

(ii) Rewrite the Green function: G = S[t'—(t - @)] /X=X
This is the signal observed at (X, t) due to the action of a delta
function source at (X, t"). Such a source has equal components in all
frequencies. If the medium is dispersive (i.e. wave speed varys with
the frequency), components of the signal will propagate at different
speeds and reach X at different times. Thus, the signal observed at X
will be a pulse of finite duration, rather than a delta function of time
as in G. This explains why the solution for G* is valid only for the
free space or a non-dispersive medium [see p. 243 (top) and p. 245]
in which all the wave components propagate toward X at the same

speed and consequently reach X at the same instant of time.

(111) The relation between observer's time and the retarded time,
t'=t—|x—r(t")|/c, indicates that a signal from the charge travels
at speed c toward the observer, independent of the motion of the
charge (Einstein's postulate 2). "




6.4 Green’s Function for the Wave Equation (continued)

f(x,t
(iv) The solution in (47): w(X,t) =] [(X)]retd3 ' 47)
is due to the source f. More generally, we may add to this solution
a complementary function y;,(X,t), which is any solution of the
homogeneous wave equation:

2 _Li
vy oV~ 0
Thus, in general, the solution of VZW - —za—zw -4z f(X,1)
f(x,t'
can be written  w(X,t) =y, (X, t)+ j[()]ret d X’ (6.45)

For example, y;,(X,t) can be a plane wave incident on a dielectric

[f(x,t))]

| ‘ ret §3x’ is the wave generated by the induced
X —X

currents and charges in the dielectric object (treated in Ch. 9).

object while [

25

6.5 Retarded Solution for the Fields...

V2o - 2at2c1>_—p/go (6.15)

V2A - 1o 2 A =—py] (6.16)

Rewrite

Each Cartesian component of (6.15) and (6.16) is in the form of
(6.32). Assuming free space and superposing the Green function G
from all points in the distributed sources p and J, we obtain

(x|
D(X,t) 1 [t _( T c )} p(X /ey | 5,
— ] d’x'dt
A(X,1) T4 PEY Lod (X', 1)
I {p(x t)/go} d3xr, R:‘X—X" (648)
47r R | #d(X',1")

Note: @ and A reduce to (1.17) and (5.32), respectively, in the

static limit, i.e. when p and J are independent of time.
26

6.5 Retarded Solution for the Fields... (continued)
The fields E and B can be expressed in terms of @ and A. We may
also express E and B directly in terms of J, p by converting the
Maxwell equations into equations for E and B in the form of (6.32).

V-E=p/g,

V-B=0 5 Maxwell equations
VxE=-%B in free space
—_0 E)-V2E=_y. 0 j_120*
VxVxE= atV><B = V(V E)-VE=—py5J- 2 ot E
P/€
= VE-LEE=1Vpapu §I=- ) (-Vp-153) (649
VxVxB—,uOVijtia—VxE
— V(V. B) VZB ,UVXJ—TGTZB
2 —_ —

6.5 Retarded Solution for the Fields... (continued)
(6.49) and (6.50) are in the same form as (6.32). Assuming infinite
space and apply the Green function G, we obtain

= _Hﬂ v, 19
5[1: (t c vp Czat, 3!
d°x'dt

1

E(x,t) =
Ceh 47[50” X—X/|
1.1 83
= ~|-vip-L & d¥x 6.51
4ngOIR[ P Czat'Lt X (6-31)
5[t'—(t—x‘x'ﬂv’xJ
B(x.0)=1"]] P R d3xdt’
”Oj o[V d X (6.52)

(6.51) and (6.52) can be converted into the Jefimenko formulae
[see (6.55) and (6.56)], which explicitly show the reduction to the
static equations (1.5) and (5.14). 28




Griffith
10.2.2 Jefimenko’s Equations

Retarded potentials:
L orprht), H J(r, )dr
V(r,t)= “dr’ and A(r,t)=-% :
(.0 47&90-[ n .0 4r I

RV .V J'[ﬂ+ﬁ]df'

2

drg,® Cv  n
E__VV_% oA L), ot j
_on_ __(ﬂjudr'); - —ﬂj—dr’
ot ot, 4r n ot 4~
E= ! [&+pm —ﬂjidr'
dre,* Cn 4r <~
1 ¢.pp po J .,
=—|[—5+——-—"]dr
dre, I[ L 02@]
The time-dependent generalization of Coulomb’s law. 29

Griffith
Jefimenko’s Equations (i)

Retarded potentials:
1 p(r'at) ' IU J(r’ )
V(r,t)= “dr’ and A(r,t)=-% r
(1) 4re, I n ‘ .0 4 -[

B=VxA-= ”Ojv ’f) o j[leJ—Jxvl]dr'
VXJ——JXﬁ, and V( )———
My ¢ d 1 a0, The time-dependent generalization of
B= A J-[,f * Ch J]xadz the Biot-Savart law.

These two equations are of limited utility, but they provide a

satisfying sense of closure to the theory. “

6.7 Poynting’s Theorem and Conservation of Energy and
Momentum for a System of Particles and Electromagnetic Fields
w W
w_g .y d—_j—d3 = [f-vd’x

b

dw=f-d?,

The rate of work done by the E-field on charged particles inside
a volume V is given by

= S(E-VxB)
/ 4

3y 3y _ 3y _ 8 M3

[,f-vd’x=[, pv-Ed°x=[,J-Ed°x=[ (E-VxH-E-£D)d"x

=H-VXE-V-(ExH)=-H-$B-V-(ExH)
_9oB

2

= [,J-Ed’x=—[ | V-(ExH)+E-§D+H-§4BJd’x  (6.105)
%f_/

rate of conversion of EM energy into
mechanical and thermal energies. W

6.7 Poynting’s Theorem ... (continued)

Rewrite (6.105): [,J-Ed’*x=~[ [V-(ExH)+E-§{D+H-§B Jd*x

The terms E - 8 DandH- 8 ¢ B in the integrand can be interpreted
physically if we make the followmg assumptions:

Assumption 1: The medium is linear with negligible dispersion

and negligible losses.
We can then write (reasons given in Ch. 7 of lecture notes)

D(x,t) = eE(X,1), B(X,t) = uH(X,1)

op-10 B=10
= E-5D= 26,[(E-D), H- 2at(H B). (6)
Assumption 2: The field energy den51ty for static fields
u:E(E-D+B-H) (6.106)

represents the field energy density even for time-dependent fields.
From (6) and (6.106), we have

ou_g. o 0 p _ | rate of change of
ot =B &D+H-5B= [ﬁeld energy density (7

32




6.7 Poynting’s Theorem ... (continued)

Rewrite (6.105): [, J-Ed*x=~[ [ V-(ExH)+E-&D+H-$B[d’x

Sub.a—u for E-QD+H-QB we obtain

[y 3-Ed*x+ [ M d*x+ [ V-(ExH)d’x =0 (6.107)
%‘tuv S=-J-E (6.108)

where, S = Ex H, is called the Poynting vector.

The meaning of S becomes clear if we write (6.107) as
fyd-Ed’x+ [, A d’x+ [, V-(ExH)d’x=0
dE

n
@tEmech  SEfield $5S-nda

= %( Emech + Efield ) = —cﬁSS -nda [Poynting's theorem]  (6.111)

where E, .., 1s the total mechanical/thermal energies inside V (no
particles move in or out of V') and E 4,4 the total field energy inside

V. Then, by conservation of energy, S is the power/unit area. 3

6.7 Poynting’s Theorem ... (continued)

Example 1: power lines
Magnitude of Poynting vector

S . (calculated by C. Y. Kao)

1 f a . .
= - o

7 1 T
)
20 -10 [ 10

) ) cross sectional view
side view
B E B

I . @
| -V E @

Note: S=ExH=(ZE;)x(ZH)[=Z(Ej xH;)]
j J J
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6.7 Poynting’s Theorem ... (continued)

fyd-Ed’x+[, A d x+§sS-nda=0 = [,J-Ed’x+§sS-nda=0
I N

Example 2: a DC circuit

circuit “LV 4 R 7
view: l |
field - T Y
1€ \ \
view: | 5y il TJ (EB ) BV
~ - N\ / h ~—~ 7
/ V - \ ;
[,3-Ed’x<0 Power [,J-Ed"x>0
= ¢;S-nda >0 transmission ¢ S-nda <0
by Poynting
= Power flows vector = Power flows
out of battery. vecto into resistor.
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6.7 Poynting’s Theorem ... (continued)

Conservation of Linear Momentum of Combined System
of Particlesand Fields:
Write down the Maxwell equations in the vacuum medium:

p=¢&V-E Bx2E=-2ExB+Ex2B
J:ﬂionB-gogE

—EEXB—EX(VXE)

—
=f=pE+JIxB =g E(V-E)+Bx2E-c’Bx(VxB)]
=&[E(V-E)~Ex(VxE)+C’B(V-B)-c’Bx(VxB)]-¢ JExB
%/_/

|This term, which equals 0, is added for later manipulation. |

Sub. the expression for the force density f into Newton's 2nd law:

% Prech = Jy Td°X  [Precn : total momentum of all particles in V]
we obtain % Prmech +%jvgo (ExB)d>x

:gojv[E(v-E)—Ex(vXE)+c2|3(v-B)—czsx(vXB)]d3x (6.116)




6.7 Poynting’s Theorem ... (continued)

Rewrite (6.116): woH
%pmech +%jng(ExB)d3x
= & [,[E(V-E)~Ex(VxE)+c’B(V-B)—c’Bx(VxB)Jd*x

Define g = c% ExH [electromagnetic momentum density] (6.118)

= Pield =y gd®x [total electromagnetic momentum in V ]

(6.116) can then be written (see p.261) by divergence thm|
3
S (Prnech + Pieid ) = %f\/@(aﬂ-raﬂd X=9g %Taﬂnﬂda (6.122)

- n
= %(Pmech +Pfieig) = § T-nda (8)

where T = [Taﬂ] is the Maxwell stress tensor defined as

2 2
Top = 0| EqEp+C°B,By— L (E-E+C’B-B)dy | (6.120)

[27

Note: By Newton's law, only % Prech (not % Pfielg ) 1s the force on Y.

6.7 Poynting’s Theorem ... (continued)
Problem 1: A plane wave is incident normally from free space onto a
flat surface and is totally absorbed. Find the force on the surface.

Solution: Consider the volume enclosed by S. On the left side, we have
n=-¢€,= (Oa 07_1)

~=E
E=(E,,E,,0)) |instantaneous WS
B = (B By 0) fields on the Ne— 228V 4 ’
AP Py left surface —~2 apfield =0
2 2R2 2 22
Ex +C’By —1(E°+c’B®) E,E, +c¢’B,B, 0 0
T-n=g¢g, E,E +Cc’ByB, Ej+c’By-1(E*+c’B*) 0 0

0 0 ~L(E*+¢’BY) ||

_1 2, A2p2 _1 2, 1
=560(E7+c"B7)e, =5(5E" + )e = &, |area ofleft surface|

5 2
%(Pmech +Pielg )= 955T'nda =F= ﬁ Prech = Q(EOE +‘LTO)Aez

instantaneous F_1 2
= {radiation pressure} A2 (8oE"+

2 .
%O)ez :%eZ [S : Poynting Vector]

instantaneous energy density 38

6.7 Poynting’s Theorem ... (continued)

Alternative solution to problem 1:

Assume the plane wave has a finite cross section A and a finite
length. We may then enclose the full extent of the wave within surface
S (see figure). There is no field on the surface. Hence, for volume V,

d o= _ electromagnetic
gt (Pmech +Pfierg) = 953 T-nda=0 |nomentum density| V S

/3
= F = § Prech = = § Priets == §¢ [y 997,
Whereg:C%ExH:CizPez [by (6.118) and (6.109)]

Because the wave travels at speed ¢ and it is totally absorbed, the
electromagnetic momentum Py g 1n V decreases at the rate gcA.
1
F=¢PAe,
—\F

2 2
K:%Pez =1(20E” + 1 B)e,

Note: This method does not require the absorbing material to be flat.
Question: The radiation pressure is due to the Jx B force. Howy,

6.7 Poynting’s Theorem ... (continued)

Problem 2: A spherical particle in the outer space with radius r,
mass M, and density p,= 3.5x103 kg/m? absorbs all the sunlight it
intercepts. For what value of r does the sun’s radiation force (Fg)
on the particle balance the sun’s gravitational force (Fg).

time-averaged radiation
Solution: _{pressure (see prob. 1)=1/c¢

I: sunlight intensity
(average power/unit
area) at the particle

= e E2 4 B2 2 \ar? _ Psm’z Pg: total power radiated
R™ 2 0 Mo [ C  47R%c by sun (3.9x1020 W)

G: gravitational const. (6.67x10-'' Nm?/kg?) SC i AmED (0 S

M.: sun’s mass (1.99x10% kg)

_GMgM _GMs 4713 py,

RZ RZ 3
3P
l67Ccpy,GMg

s Dustpath e ___

e (il syl

Fs

Fo=Fs=r= =1.7x10"m

omet’s
path

> . > 7
=>Fsi=Fg if r<=1.7x10""m
G R
< < from Haliday, Resnick, and Walker




6.9 Poynting’s Theorem for Harmonic Fields; Field
Definitions of Impedance and Admittance

Phasors :
In linear equations, harmonic quantities can be represented
by complex variables as follows:

E(x,t) E(x)

D(x,1) D(x)

BOCH | _ o | /BOO | o
H(x,t) H(X)

J(x,1) J(X)

p(X,1) | Lo(X) i
H_/

real  complex (called the phasor)

It is assumed that the LHS is given by the real part of the RHS.
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6.9 Poynting’s Theorem for Harmonic Fields... (continued)

Representation of Time-Averaged Quantities by Phasors:

To express nonlinear quantities by phasors, such as the product
of 2 harmonic quantities, we write the quantities as

E(x,t) = Re[E(x)e™" "] = L[E(x)e "' + E* (x)e'”']
J(x,t) =Re[I(x)e" "] = 1[I(x)e 7' + I* (x)e'']
Then,
J(x.t)-E(x,t)
= 1[I () E(X) + (%) - E*(x) + I(x)- E(x)e " + 3% (x)-E* (x)e* ']
= IRe[J"(X)-E(X) + J(x)-E(x)e "]
and the time average can be written in terms of phasors as
(I, 1)-E(x,1)), = 1 Re[I(X)-E(X)], assuming w is real ~ (9)
Similary, (E(X,t)x H(X,t)), =1 Re[E(X)" x H(X)] (10)

2

6.9 Poynting’s Theorem for Harmonic Fields... (continued)

Maxwell Equations in Terms of Phasors :
In terms of phasors, the Maxwell equations can be written:
V-B(x,t)=0 V-B(X)=0
VxE(X,t) =-%B(x.t) V x E(X) = iwB(X)
V-D(x,t) = p(X,1) V-D(x) = p(X)
VxHX )=+ DXt [VxH(X)=J(X)—ioD(x)
Complex Poynting's Theorem :
Using the phasor representation of Maxwell equations, we obtain
ioB

* *
~V-(ExH")+H"-VxE
f_/%

L[, 3% Ed*x=1[ [E-VxH" -iwE D ]d’x
=%IV[—V-(E>< H*)—iw(E-D* —B-H*)]d3x (6.131)
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6.9 Poynting’s Theorem for Harmonic Fields... (continued)

Rewrite (6.131):

L[, Ed’x=1[ [-V-(ExH")-ie(E-D" -B-H")]d’x (6.131)
This equation gives the complex Poynting theorem:

L], 3" Ed’x+2iw], (W, — Wy, ) d>x+ S nda=0 (6.134)

where S= % ExH" [called the complex Poynting vector] (6.132)

and the real part of S is the time-averaged power [see (10)].
In (6.134), w, and W, are defined as

* 2
W =,E-D"=4E| {The real part of W, (W, ) is the time
% 2 1
W, = % B.H* = % H averaged E (B) field energy density.
If ¢ and y are both real, the real part of (6.134) gives
1f,Re[J"-E]d x+§J Re[S-n]da =0,

which is the counterpart of (6.107) applicable to constant-amplitude
harmonic fields (for which the field energy remains constant).

} (6.133)
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6.9 Poynting’s Theorem for Harmonic Fields... (continued)

Field Definition of Impedance : )

We now apply the complex Poynting's theorem Vil' 5
to a 2-terminal circuit. Draw a closed surface S
surrounding the circuit. Let I; be the input current,  general circuit

V; be the input voltage, and let the input energy ' s
flow be confined to a small area S;. Then, Vil
% Ii*Vi :—J.SiS'nda (6135) (el N

and the complex Poynting's theorem [(6.134)]
L], 37 -Ed*x+ 2iaf, (W, — Wy, ) d X+, S -nda = 0 can be written:

) : 2
TV =13 ~Ed3x+2|a)jv(we—Wm)d3x+jsfsis'nda=%\li\ Z,
%r_/

S

n

a specific example

2

where Z is the impedance of the circuit defined as
Vi b
I

=R—-iX (R: resistance, X : reactance) (6.137) (6.138),;

\1radiation loss |
[IVJ* -Ed X+ 4iof, (W, —Wm)d3x+2js_Si S-nda}

6.9 Poynting’s Theorem for Harmonic Fields... (continued)

Rewrite:

Z E\I/i :IZDVJ* Edx+dio], (W —wp ) d x+2f S-nda}
i Ii

Assume J = oE and o, &, u are all real.

Special case: {Neglect the radiation loss term: [, . S-nda
|

A general definition of the impedance
of a circuit in terms of the power loss
i1 and the field energy in the circuit

P= %IO“E‘z d3x [ohmic loss]
where {W,, = [w,d’x [B-field energy]
W, = [w,d’x [E-field energy]
and W,, >W, = positive reactance; W, <W, = negative reactance.

This expression for Z is useful for microwave circuit studies.
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Homework of Chap. 6

Problems: 8, 10, 11, 15, 19

Quiz: Dec. 21,2010
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Optionglg Derivation of the Equations of Macroscopic
Electromagnetism

We limit the scope of our consideration of Sec. 6.6 to a general
discussion of the averaging method and the derivation of (6.65).

Microscopically, the matter is composed of electrons and
nuclei, in which the spatial variations of charge/current distribution
functions and electromagnetic field functions occur over the atomic
distances (of the order of 10-1° m). These functions can be regarded
as sums of delta functions. However, macroscopic instruments only
measure the averaged quantity. Hence there is a need to develop an
averaging method to reduce microscopically fluctuating functions
to macroscopically smooth functions, and thereby obtain a set of
macroscopic Maxwell equations.

48




Optional

6.6 Derivation of the Equations of Macroscopic Electromagnetism (continued)

If we replace each delta function,

e.g. 0(X—Xp), in the microscopic « L >
distribution function (of charges, etc.) S(X—X)
with a smooth function f (X — X)) (see ,"F/ f(Xx=X,)
figure) subject to the condition e s > X

jf(x—xo)d3x:1 %0
and if the width L of f (X —X,)) is much greater than the atomic
distances (e.g. L = 1078 m), then the sum of many such functions
(each representing a delta function in the microscopic distribution
function) will become a smooth function representing the spatially
averaged microscopic distribution function. This is the method

used in Sec. 6.6 for the derivation of macroscopic equations.
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Optional

6.6 Derivation of the Equations of Macroscopic Electromagnetism (continued)

We may look at the above averaging procedure as follows. A
delta function (X —X,) generates a smooth function f (X —X).
Thus, for a distribution function F(X) composed of a large number
of point sources (delta functions), the response [denoted by (F(x))]
will be the superposition of the responses from all points:

(F(x))=] f (x—=x¢)F(xy)d 3Xg..... spatial average of F (X)
In the integrand, replacing X, with X—X', we obtain (6.65):
(F(x))=] f(X)F(x=x")d>x, (6.65)
where f (X) is now a smooth function centered at X = 0.
As an example, we let F(X) = 6(X—X) and sub. it into (6.65)
(8(x=%g)) =] F(XNS(X—X( — x)dx' = f(x—x,)
Thus, we have recovered our assumption that the delta function
0(X—Xg) generates a smooth function f (X—X,) centered at X,,.
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