
Chapter 6: Maxwell Equations, Macroscopic p q p
Electromagnetism, Conservation Laws 

6.1 Mawell’s Displacement Current; 
Maxwell Equations

S f h th f ll i t f l
     The Displacement Current :

 
So far, we have the following set of  laws :

              ,  ,  ,  and 0   (6.1)free free t 
          

     
BD H J E B

     Taking the divergence of ,  we obtain
free free

free

t
 H J

0 (6 2)  H J        
0

     0                                                         (6.2)free

  

     H J

         0 if 0

This violates the law of conservation of charge
free t t

  
     J

     This violates the law of conservation of charge.
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6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

Maxwell observed that if we postulate     Maxwell observed that if we postulate 
           ,                                                           (6.5)free t


   DH J

where  is called the displacement current by Maxwell,

then
D t


 DJ

 0        H J D Jthen,  
0

 0,

which is consistent with the conservation of charge.

free freet t


          H J D J

which is consistent with the conservation of charge.                                   
     (6.5) can be written: ,

h i di i ifi
free D  H J J

f ( ) i h i bli h     The immediate significance of (6.5) is that it establishes a new
mechanism to generate the -field, i.e. by a time-varying -field.B E

C I real current

     :Example of  the displacement current

                                                      displacement current in the gap

I real current 
on the wire

sinV t
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6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

     In (6.1), replacing  with , we havefree free t

     D

     The Maxwell Equations :  
H J H J

a new set of equations called the Maxwell equations: 
0

f f t

   B 0 

t



  
  


B
B
E

(6 6)

homogeneous equations

          
free

f t





  
  

D
D

H J

                                                             (6.6)
inhomogeneous equations

free t   H J

      These 4 equations form the basis of all classical electromagnetic 
phenomena. As discussed in Ch. 5, Faraday's law connects  anE d .
As will be shown in Ch. 7, (6.6) lead to EM waves. Thus, Maxwell's

B
, ( ) ,

theory connects "optics" and "electromagnetism". On the other hand,
the Lorentz force equation connects "mechanics" and  f E J Bthe Lorentz force equation, , connects mechanics  and   f E J B
"electromagnetism". 3

Review of Laws & Equations Obtained under Static Conditions :
6.1 Mawell’s Displacement Current; Maxwell Equations (continued)

:Scalar and vector potentials
Review of Laws & Equations Obtained under Static Conditions : 

3
2

0

( )1
4 | |

0       (c)    ,   
       ,(b) d x 





 

             


x
x x

E E
E

0 0
04 | |     (b)   ,

0     (e)   

        

  

x xE

B 30 ( ) ,   


J xB A0 (e)  3
2

0 0

0 ( )
4 | |

,
     ,

    (f)    
d x

   
       


J x
x xA

B J A J

3
3 (pp. 27-30)( )( )1

4

:   
(a)

Physical laws
d      

x x xE x

3

30

0 (pp 178-9)

(pp. 27 30)4 | |
( ) ( )

      (a)    

(d)

d

d




 
  



   

 x x
J x x x

E x

B A x (pp. 178-9)34 | |
       (d)    d  

    x x
B A x  

Which of the above laws/equations still hold true if 0?: tQuestion 
 Which of the above laws/equations still hold true if 0? 

       
: 

         Why?
tQuestion  
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6.1 Mawell’s Displacement Current; Maxwell Equations (continued)
:   Field energy

3

3

1
2
1

       
                                                                  (4.89)

(5 148)
E

gy
W d x

W d

 



E D

B H 31
2                                                                (5.148) 

: 
BW d x

Forces
 B H
   f E J B

3

3
       E

B

d x
d x



 



f E
f J B       

: 
( )

B d x
Boundary conditions

 



f J B

2 1

2 1

( )
                                                   (4.40)

( ) 0
free  


  

D D n
E E n2 1

2 1( ) 0                                         


  B B n          (5.86)
( ) (5 87)


  n H H K2 1( )                                                  (5.87)

 Which of the above equations still hold true if 0? :
free

tQuestion 


  


n H H K

                Why?
t

5

6.2 Vector and Scalar Potentials
F h 2 h M ll i fi d      From the 2 homogeneous Maxwell equations, we may find a

vector potential  and a scalar potential  to represent  and .A E B

     0                                                  (6.7)   B B A

 0 0t
 
 


         BE E A E A      0 0   

    (6.9)
t t

t

t  



      

   

E E A E A

E A
     With (6.7) and (6.9), we write the 2 inhomogeneous Maxwell
equations (for ) in terms of  and  as follows vacuum medum A

2
0

q ( )

                E
0

( )          (6.10)t




    A

 2
2 2 2

2 1 1
0 0 0      

(6 11)
tc t ct    



        EB J A A A

2 1 i 0                                                                                       (6.11)
     Thus, the set of 4 

  J
Maxwell equations for  and  have beenE B

0
2

0
1  in vacuumc  

reduced to 2 coupled equations for  and . A
6

6.2 Vector and Scalar Potentials (continued)

2 
2

2
0

2 1 1
0

     ( )                          (6.10)
     Rewrite          

(6 11)( )
t  






 

     

       

A

A A A J2 2 2 0        (6.11)

     If the potentials  and  satisfy the Lorenz condition:

( )tc t c


    


A A A J

A
           A 2

1 0,                                                        (6.14)

then (6 10) and (6 11) are uncoupled to give the equations:
tc

  

2
2 2

2 1
0

then, (6.10) and (6.11) are uncoupled to give the equations:

                                          
c t







               (6.15)

 0        c t

2
2 2

2 1
0                                                  (6.16)

c t





    A A J

     Equations (6.15) and (6.16), under the Lorenz condition, are 
equivalent in all respects to the Maxwell equations.
     If  and  do not satisfy the Lorentz condition, then through the
gauge transformation discussed below, we may obtain a new set of 

A
g g , y
potentials  and ,  which satisfy the Lorentz condit A ion. 7

6.3 Gauge Transformations, Lorenz Gauge,              
Coulomb Gauge

     Gauge Transformations : 

Coulomb Gauge

                                   (6.7)
     Rewrite (6.7) and (6.9): 

(6 9)

 
   

B A
E A                           (6.9)

     If ( , ) are transformed to ( , ) according
t  

  

E A
A A  to 

       (6.12)
                (6.13)t




  
     

A A : an arbitrary scalar
     function of  and t


x
then  and  will give the same  and , i.e.

t
 



A E B
B A                                                             

               t



 
    

B A
E A

     The transformation defined by (6.12) and (6.13) is called the
gauge transformation. The invariance of  and  under such E B
transformations is called gauge invariance.
  8



Lorenz Gauge :
6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

2

          
     Any set of  and  under the gauge tranformation gives the same



 
 

Lorenz Gauge : 
A


2

2 2 2

2
0

2 1 1
0

( )                        (6.10)
 and . Hence, 

(6.( )
t  






 


      

          

A
E B

A A A J 11)



 2 2 2 0  (6.( )tt cc


    A A A J 11)

     If the original ( , ) do not satisfy the Lorenz condition, we may
h f ti d d d th t th ( ) ti f




  
A

A

2
1

choose a gauge function  and demand that the new ( , ) satisfy:

              0                        tc



  

     

A
A                                     (1)tc 

22 1

     This then uncouples  and  to give the same equations as in
(6 15)

 

   

A

 2 2

2
2 2

1

2 1
0

                            (6.15)
(6.15) and (6.16):      c t








     

  A A 0                         (6.16)





  J2 2c t 0 ( )

     Using   and ,  we obatin from (1) the t






       A A

2
2 2 2

2 1 1equation for :                        (6.18)tc t c
 


        A

9

6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

22 1 1 2
2 2 2

2 1 1     Rewrite (6.18):               (6.18)

If ( ) already satisfy the Lorenz condition a restricted gauge
tc t c

 


       



A

A     If ( , ) already satisfy the Lorenz condition, a restricted gauge 
transformation with  given by the equation:




A

22 1                  
2

2 2
2 1 0                                                     (6.20)

can preserve the Lorenz condition
c t




    

can preserve the Lorenz condition.  
     All ( , ) in this restricted class are said to belong to the Lorenz
ga ge The Loren

A
ga ge is commonl sed beca se it gi es the setgauge. The Lorenz gauge is commonly used because it gives the set 

of equations [(6.15) and (6.16)] which treat  and  on equal 
f i F h ill b h i E (39) d (40) f

A
footings. Furthermore, as will be shown in Eqs. (39) and (40) of 
Ch. 11, (6.15) and (6.16) as well as the Lorenz condition have the
same form in all inertial frames.

10

(also called radiation gauge transverse gaugeCoulomb Gauge :
6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)

      (also called radiation gauge, transverse gauge,
                                    or solenoid gauge)     

Coulomb Gauge :

     In the Coulomb gauge, we have 0                        (6.21) A
2(6 10) (6 22)    then 0

2
2 2 2

2
0

1 1

(6.10)    (6.22)
, 

(6.11) (6.24)            t



 


   


     
A A J2 2 20( ) ( )

     To uncouple  and , we write  and demandl t

tc t c
 


  A J J J

0 [  is called longitudinal or irrotational cur
           l l J J rent]

0 [ is called transverse or solenoidal current]t t


   J J0 [  is called transverse or solenoidal current]

     We may construct  and  from  as follows:
t t

l t

 J J

J J J
31

4
( )

| |
( )

  (6.27)
           

l d x
  

 


   



J x

x x
J

J See proof at the end 
of this section31

4
( )

| |   (6.28)t d x


 


  

J x
x xJ

of this section.
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2i ( ) h l i i
6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)Optional

0
2

3( , )1

     Rewrite (6.22): . The solution is  
 called the instantaneous( ) (6 23)tt d




 

   

    
xx x

0

31

| |

( )

4        ( , )       (6.23)Coulomb potential

In replacing wit

t d

d x


  

  

     

  





x x

J x

x x

J J h and use
4 | |     In , replacing  witl d x      x xJ J

0
2

0
1

h  and use

(6.23) and ,  we obtain  
t

c  




0

02

0
1                    (6.28)ltc

 


  J

22

     Sub.  from (6.28) into 
1 1

l

c

 

J
22

02 2 2
1 1                   ( )               (6.24)

The las

l tt tc c




      A A J J

t term on the RHS of (6 24) is then cancelled by tolJ     The las

2

t term on the RHS of (6.24) is then cancelled by  to
result in an equation for  uncoupled from :

l


J
A

22
02 2

1                                                            (6.30)ttc



   A A J

12



6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)
Optional

     : 
(i) 0 does not lead to time variation of charge densityt t

Discussion
  J J(i) 0  does not lead to time variation of charge density 

 [see (1)]. 
1 contributes only to the near fields

t t

 



J J



2
1 1

1.  contributes only to the near fields.
2. Radiation fields are given by  alone.

(ii)
lr



  
A

b ll i f



2( )
3. Coulor r mb gauge allows separation of 
   "near" and "radiation" fields. 





(iii) The Coulomb gauge is often used when there is no source. 
Then 0 and satisfies the homogeneous equation  A       Then, 0 and  satisfies the homogeneous equation

         

 A

2
22
2

1     0.
c t




  A A

1
with the fields given by

(6 31)

c t





E A B A1   ,                        (6.31)c t

   E A B A
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6.3 Gauge Transformations, Lorenz Gauge, Coulomb Gauge (continued)Optional

31 ( )

: Prove  [in (6.27)] [in (6.28)]  

: (6 28)

l t    Problem

Proof d x

 

  
J x

J J J

J

 
4

3 2 31
4

| |
( ) ( )

| | | |

    :                                       (6.28)

[

tProof d x

d x d x

  
 
 

 

    





x x
J x J x

J

] 4

(A)

| | | |               [ d x d x      x x x x
(B)

]


3 3 31
| |

( ) 1
| | | |
( ) ( )

   (A) ( ) ( )d x d x d x


  
  

               x x
J x
x x x x

J J

J x J x

3 3

0

( ) ( )
| | | |  d x d x  
  
       
J x J x

x x x x
(by the divergence thm )0

2 3 31
| |  (B) ( ) 4 ( ) ( ) 4 ( )d x d x              x xJ x J x x x J x

(by the divergence thm.)

1
4

([t 
     J xJ 3)

| | 4 ( )]               QEDld x        x x J x J J
 

 by (6.27)4 l J

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1.10 Formal Solution of Electrostatic Boundary-Value Problem…(continued)

Formal Solution of Electrostatic Boundary - Value Problem :
Chap.1

0

3( )1
4 | |

     
     The expression ( )  is applicable only tod x




 
  

x
x x

Formal Solution of Electrostatic Boundary - Value Problem :
x

0 | |
unbounded space. By Green's theorem, we may generalize it to an
expression for bounded space with prescribed boundary conditions.

2
0

     Consider a general electrostatic boundary-value problem:
(10)( ) ( ) / with ( ) ( ) for on S       x x x x x
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     In (1.35), let ( ) be the solution of (10) with va

      s dan n   
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
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2
D D Let ( ) G ( , ), where G ( , ) is the Green function

( , ) 4 (
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         (11))  with ( , ) 0 for on D DG G S

     


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     Substitutio
) ( , )

n of ( ) and ( ) into 
D D

  x x (1.35) gives 15
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2 2 3

( )4 ( )     

 [ ( ) ( , ) ( , ) ( )]D Dv G G d x

 

          

xx x

x x x x x x
 

  
      S

0 on

( , )  ( ) ( , ) ( ) [ ]D D
S

Gn nG as d


 
  

      x xx x x x
 0 on 
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     Thus, 
1

we obtain  

4( ) ( ) ( , ) ( )D
D

S

GG d x



      xx x x x x , ) (1.44)da
   

x


04 4( ) ( ) ( , ) ( )DG d x  x x x x x (1.44)

     (1.44) expresses the solution  of the general electrostatic problem

  n dasv  



 

s

in (10) in terms of the solution ( , ) of the point source problem 
in (11) and the boundary value (

DG 


x x
) of  on . To evaluate (1.44), we Ss

first solve (11) for ( , ), then substitute ( , ),  ( ),   into  
(1.44). It is often simpler to solve ( , ) from (11) than solving  

D D s

D

G G
G

   
 

x x x x x
x x( ) p ( , ) ( ) g

directly from (10), 
D

because (11) has the simple b.c. of ( , ) 0 on
Applications of (1 44) can be found in Chs 2 and 3 The problem

DG
S

 x x
. Applications of (1.44) can be found in Chs. 2 and 3. The problem

below gives an application without the need to solve (11) for ( , ).
S
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6.4 Green’s Function for the Wave Equation

2
2 2

2 1

     (6.15) and (6.16) have the basic form:

             4 ( , )                                     (6.32)f t      x2 2 ( , ) ( )

in . We assu ume the space is nbounded (  and solve infi
(6

ni
32) b

te)
tc

free space

f 


h G f i h d W fi b i h G(6.32) by

2

 the Green function method. We first obtain the Green 
function from See next page

2
2 2

2 1 ( , , , ) 4 ( ) ( )                   (6.41)

For a point source in unboundedan

( )
tc

G t t t t 


        x x x x
22 1      For a point source in unbounded

iso
an 

and tropic medi , it u ism
2

2
2 2

2 1 ( )
 convenient

to transform the origins of space and

R R
G RG

G G




 

   
 

      2 2to transform the origins of space and 
time to the source point at  and ,  so

( , , , ) ( , )that depends only upon and

t
G G

t
G t t G RG R




 
   

   
      

x
x x( , , , ) ( , )that  depends only upon  and .

where 

G R

R

    
| |,  ,  and . Thus, (6.41) givest t       x x R x x

2
2 2

2 2
  1 1                         ( , ) ( , ) 4 ( ) ( )   (2 )R cR

RG R G R


     
 

   R
17

2
3.1 Laplace Equation in Spherical CoordinatesChap.3

   2 2
2 2 2 22

2

1 1 1
i i

     ( ) 0   
sin 0r r   

    
  

  

    

x



x   2 2 2 22sin
(

sin
)     Let (x) ( ) ( )U r

r

r r r r

P Q

   

 

  

   r
  22

2 2 2 2 2sin sin

( ) ( ) ( )

sin 0UQ d Qd d
d d d

r
d U UPP
d

Q

PQ r r r   



   


 

2 2
sin sin

sin     Multiply by 

ddr r r

UPQ
r
  

p y y
UPQ Dividing all terms by sin2q, we see that the r-

dependence is isolated within this term. So 

22 21 1

( 1)

sin [ d Ur

 



 

 


2
1(sin )] 0 (3 3)d Qd dP 

p
this term must be a constant. Let it be ( 1).  

2
2 21 1

sinsin  [ d U
U d Prr  


2

2

1(sin )] 0              (3.3)Q
Qd d

d d d

m

P
  





 

The j dependence is isolated within this term mThe j-dependence is isolated within this term, 
so this term must be a constant. Let it be -m2.

18

6.4 Green’s Function for the Wave Equation (continued)

2 21 1R i (2) ( ) ( ) 4 ( ) ( )RG R G R    R22 2
 1 1     Rewrite (2): ( , ) ( , ) 4 ( ) ( ) 

Performing a Fourier transform in , we obtain
R cR

RG R G R


    



 
 

   R

  2
2 2
2

1

     Performing a Fourier transform in ,  we obtain 

  ( , ) ( , ) 4 ( ),                       (6.37)d
R cdR

RG R G R



     R

( , ) ( , )
where

i
cdR

G R G R e              (3)d 






where 

1
2( , ) ( , )                                     (4)

I th li it 0 (6 37) t k th f f th P i ti

i

R

G R G R e d




   



 

    In the limit 0, (6.37) takes the form of the Poisson equation 
with a point source at 0. Hence,

R
c

R

 
  2

2
1 ( , ) 4 ( )d
R dR

RG R    R
lim

0
1( , )                      (6.38)

R
c

RG R






R dR

: Jackson defines /  (p. 243) and denotes ( , ) by 
          ( ) (p. 244). Here, we retain the notation  as an explicitk

Note k c G R
G R

 



( ) (p ) , p

          reminder that ( ,
k

G R ) is an -space quantity. 
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6.4 Green’s Function for the Wave Equation (continued)

 2 21 d   2
2 2
2

1    For 0, (6.37) reduces to: ( , ) ( , ) 0.
i R i Rc c

d
R cdR

R RG R G R
 

 


  

  2
2 2
2 ( , ) ( , ) 0d RG R RG R  

     ( , )                                                  (5)

    If 1, (5) is also a valid solution for 0 since it

c c
R R

e eG R A B

A B R

  

    reduces 

  22 ( , ) ( , ) 0
cdR

RG R RG R 

, ( )
1to  as 0 [as required by (6.38)]. Hence, for 0,  we have

( ) ( ) ( ) (6 39)
R R R

G R AG R BG R 

 

            ( , ) ( , ) ( , ),                                (6.39)

subject to the condition 1. In (6.39), ( , )
i ce

G R AG R BG R

A B G R


  








 

   (6.40) 
R

Rj ( ), ( , )
1

2

( )

     ( , ) ( , )   [from (4)]
R

i
R

G R G R e d
    

  
1

2
( )( )                        (6.43)

S b f d f i t (6 43) bt i

RR
cc

R
i

Re d

R t t


   
  

 




   

(
(

Sub.  for  and  for  into (6.43), we obtai

)

n

[ ct t
G t

R t t

t





 



  

 
x x

x x

 : retarded Green function)
(6 44)

] G 
 

(
( , ; , )

[ cG t t   xx : retarded Green function
: advanced Green function

)
   (6.44) 

] G
G   
 x x
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6.4 Green’s Function for the Wave Equation (continued)

We have obtained 2 solutions:    We have obtained 2 solutions: 
( )

( , ; , ) (6.44)
[ ]ct t

G t t


 



  

x x
x x



22 1

        ( , ; , )                                            (6.44)
for the equation: 

( ) ( ) ( )( )

G t t

 

 

   

x xx x

( )
2

2 2
2 1 ( , , , ) 4 ( ) ( )               ( )

tc
G t t t t 


        x x x x        (6.41)

The solution indicates that an effect observed at ( , ) isG t x     The solution  indicates that an effect observed at ( , ) is
caused by the action of a point source a distance  away at an  

time / . This is a physical solution

G t

earlier t t c


   

x
x x

x x because time / . This is a physical solutionearlier t t cx x because
the time of the cause ( ) precedes the time of the effect ( ). For 
the solution, however, the time of the cause ( )

t t
G t t c


   x xthe  solution, however, the time of the cause ( )

would be  the time of the effect ( ). This is not physicall
G t t c

after t
 x x

y 
possible Thus "causality" requires that we reject the solutionGpossible. Thus, causality  requires that we reject the  solution
and set 1,  0 in (5) or (6.39). Then, the physical solution of 

( )[ ]t t

G
A B


 



 
x x( )

(6.41) is .
[ ]ct t

G G
  

   x x 21

6.4 Green’s Function for the Wave Equation (continued)

2
2 2

2 1

     Going back to the basic form of (6.15) and (6.16):

4 ( , ) (6.32)f t      x2 2           4 ( , )                                              (6.32)

         This equation has a distributed source ( , ). Sin
tc

f t

f t

  


 x

x ce we already


 

have the solution  for a point source at ( , ),  the solution for 
 in (6.32) is, by the principle of linear superposition, 

( )

G t

f


  

 

x

 3 ( , )
  ( , ) ( , , , ) ( , ) retf t

t d x dt G t t f t   
      

 
x

x x x x
x

3    (6.47)d x





x x
x

 
                           = [ ( )] /
where the notation  implies that quantities in the brackets 

c

ret

t t    x x x x
  p q

(including the position vector ) are to be evaluated at the retarded 
ti

ret
x

me: We can verify that (6 47) is the solution byt t c   x xti
3

me: . We can verify that (6.47) is the solution by
sub. ( , ) ( , , , ) ( , )  into (6.32) and use (6.41).

t t c
t G t t f t d x dt 



       

x x
x x x x

     [see M&W, pp. 278-280 for an alternative derivation of (6.47)]
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6.4 Green’s Function for the Wave Equation (continued)

     :   
     (i) Rewrite (6.47):   

Discussion

  3( , )
                     ( , )                                      (6.47)retf t

t d x
 




x
x

x x
     (6.47) is valid for unbounded space (see p. 244, bottom). 

x x
If there

are boundary surfaces boundary conditions must be considered inare boundary surfaces, boundary conditions must be considered in
order to account for sources on the boundary. A similar situation can
be found in electrostatics where the solutionbe found in electrostatics, where the solution 

            
0

1
4

( ) 3
| |         ( )                                            (1.23)d x
 
   
x

x xx
0

31 1

4 | |

is valid for unbounded space, while the solution
( ) ( ) ( ) ( ) ( ) (1 44G d G d



       

 x x

)
0

31 1
4 4   ( ) ( ) ( , ) ( ) ( , )    (1.44D Dnv sG d x G da  


         x x x x x x x )

applies to a finite volume with boundary effects accounted for by theapplies to a finite volume with boundary effects accounted for by the 
second term on the RHS. 
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6.4 Green’s Function for the Wave Equation (continued)

(ii) R it th G f ti [ ( )] /G t t   x x     (ii) Rewrite the Green function:  [ ( )] /
     This is the signal observed at ( , ) due to the action of a delta 

cG t t
t

     x x
x

function source at ( , ). Such a source has equal components int x  all 
frequencies. If the medium is dispersive (i.e. wave speed varys with
the frequency), components of the signal will propagate at different
speeds and reach  at different times. Thus, the signal obsx erved at  x

+
will be a pulse of finite duration, rather than a delta function of time 
as in . This explains why the solution for  is valid only for theG Gp y y
free space or a non-dispersive medium [see p. 243 (top) and p. 245] 
in which all the wave components propagate toward  at the samexp p p g
speed and consequently reach  at the same instant of time.

(iii) The relation between observer's time and the r
x

etarded time     (iii) The relation between observer s time and the retarded time, 
( ) / ,  indicates that a signal from the charge travels

at speed toward the observer independent of the motion of the
t t t c

c
   x r

at speed  toward the observer, independent of the motion of the
charge (Einstein's postulate 2).

c
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 ( )f t x
6.4 Green’s Function for the Wave Equation (continued)

  3( , )
     (iv) The solution in (47):   ( , )         (47)retf t

t d x 


x
x

x x
is due to the source . More generally, we may add to this solution
a complementary function ( , ), which is any solution of tin

f
t x he 

2
2 2

2 1

homogeneous wave equation:

                                    0   2 2
2

2 2
2 1     Thus, in general, the solution of  4 ( , )

t

t

c

c
f t

 

  





    x

  3( , )
can be written    ( , ) ( , )    ret

in
f t

t t d x 
 

 


x
x x

x x
        (6.45)

x x

 
     For example, ( , ) can be a plane wave incident on a dielectricin t

 
x

  3( , )
object while  is the wave generated by the inducedretf t

d x
 




x
x x

currents and charges in the dielectric object (treated in Ch. 9). 25

6.5 Retarded Solution for the Fields…
2

2 2
2 1

0            (6.15)
Rewrite c t

 


     
 2

2 2
2 1

0

     Rewrite  
                                          (6.16)

Each Cartesian component of (6 15) and (6 16) is in the form of
c t





    A A J

     Each Cartesian component of (6.15) and (6.16) is in the form of 
(6.32). Ass +uming free space and superposing the Green function  
f ll i t i th di t ib t d d bt i

G
J

 
from all points in the distributed sources  and , we obtain

( )( ) 1 t t tt



  
           

x x

J

xx   0 3

0

( , )( , ) 1
( , ) 4 ( , )

ct t tt
d x dt

t t

  
 

                
 

xx
A x x x J x

1     0 3

0

( , )1 ,            (6.48)
4 ( )

t
d x R

R t
 

 
        


x

x x
J x04 ( , )

:  and  reduce to (1.17) and (5.32), respectively, in the
i li i i h d i d d f i

retR t

     Note

  



J x

A
               static limit, i.e. when  and  are independent of time J .
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6.5 Retarded Solution for the Fields… (continued)

The fields and can be expressed in terms of and We mayE B A     The fields  and  can be expressed in terms of  and . We may
also express  and  directly in terms of ,   by converting the
Maxwell equations into equations for and in the form of (6.32).


E B A

E B J
E BMaxwell equations into equations for  and  in the form of (6.32).E B

0
0
   

   

E
B

 

1

 
0 Maxwell equations    in free spacet




 

    
     

B
E B

2

2

1
0 0 0 0

2 1

  

  ( )
ct t   



 
 

  


    
          

B J E J E

E B E E J E2 2

2
0

0

2 11 1

             ( )
ct t t

 


 

  
          E B E E J E

 1 ( )
2
2

2 0 0
2 1

0
1 1    tc t    


      E JE  

2

2

1
0

1

 

     (6.49)tc

t

 



    



B J E

J

2

2 2
2

0
2 1

0

          

    ( )
c

c

t

t









    

     

B J E

B B J B

2 2
22 1

0                                 (6.50)
c t




    B B J
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6.5 Retarded Solution for the Fields… (continued)

(6 49) and (6 50) are in the same form as (6 32) Assuming infinite

 

    (6.49) and (6.50) are in the same form as (6.32). Assuming infinite 
space and apply the Green function , we obtainG

   J  2
1

31( , )
c c

t t
tt d x dt

               
 

x x J

E x
0

1

( , )
4

1 1








  x x

3 (6 51)d x   
J1

0
    

4 cR



  

 
2    (6.51)

ret
d x

t


 
  

  



x x  30( , )
4

ct t
t d x dt




         
 

x x J
B x

x x

  30

4
1    (6.52)

4 retd x
R





   

x x

J
4

     (6.51) and (6.52) can be converted into the Jefimenko formulae 
[see (6 55) and (6 56)] which

R

explicitly show the reduction to the[see (6.55) and (6.56)], which explicitly show the reduction to the 
static equations (1.5) and (5.14). 28



10 2 2 Jefimenko’s Equations
Griffith

10.2.2 Jefimenko s Equations
Retarded potentials: 

( ) ( )1  J0

0

( , ) ( , )1( , )    and   ( , )
4 4

r rt tV t d t d  
 

 
   

r J rr A r
r r

A
2

0

1 ˆ ˆ[ ]
4

V d
c
  


  

r r
r r

V
t


  


AE

04 c r r

0 0( , )( )r rt td d  
         

J rA J( )
4 4r

d d
t t t

 
    r r

1 ˆ ˆ   J 0
2

0

1 [ ]
4 4

d d
c

   
 

    
JE



r r
r r r

2 2
0

1 ˆ ˆ[ ]
4

d
c c

  


  
Jr r

r r r
29The time-dependent generalization of Coulomb’s law.

Jefimenko’s Equations (ii)
Griffith

Jefimenko s Equations (ii)
Retarded potentials: 

( ) ( )1  J0

0

( , ) ( , )1( , )    and   ( , )
4 4

r rt tV t d t d  
 

 
   

r J rr A r
r r

0 0( , ) 1 1[ ]
4 4

rt d d  
 


         

J rB A J J
r r r4 4 r r r

2

1 1 ˆ   and   ( )ˆ
c

     J J rr

The time-dependent generalization of 

c r r

0 1[ ] ˆd



JB J p g

the Biot-Savart law.
0

2[ ]  ˆ
4

d
c





  B J

rr
r

These two equations are of limited utility, but they provide a 
i f i f l h h

30
satisfying sense of closure to the theory.

6.7 Poynting’s Theorem and Conservation of Energy and 
Momentum for a System of Particles and Electromagnetic FieldsMomentum for a System of Particles and Electromagnetic Fields

3 3dw dW dwdw d d x d x       f f v f v



The rate of work done by the field on charged particles insideE

,  ,   dw d d x d x
dt dt dt

    f f v f v

     The rate of work done by the -field on charged particles inside
a volume  is given by    V

E

( ) J H D

3 3 3 3    
( )d x d x d x d x            f v v E J E E H E D

( )  f E v B t

  J H D

  ( )v v v v td x d x d x d x       f v v E J E E H E D
    t


        H E E H H B E H

 3 3d d   J E E H E D H B (6 105)

t
t





B

 3 3   v v t td x d x 
              J E E H E D H B


      (6.105)

rate of conversion of EM energy into
31

rate of conversion of EM energy into 
mechanical and thermal energies.

 3 3   

6.7 Poynting’s Theorem … (continued)

 3 3  Rewrite (6.105): 

The terms  and  in the integrand can be interpreted
v v t t

t t

d x d x    

     

 
 

 
 

           
 

 J E E H E D H B

E D H B g p
physically if aswe make the following :

: The
sumptions

t t

Assumption 1

 

medium is withlinear negligible dispersion     : The Assumption 1 medium is  with 
                            and .

We can then write (reasons given in Ch. 7 of lecture notes)

linear negligible dispersion
negligible losses

1

     We can then write (reasons given in Ch. 7 of lecture notes)
 ( , ) ( , ),  ( , ) ( , )t t t t 

 
 D x E x B x H x

E D    1 (6) E D H B H B1
2 t

 
  E D    1

2,  .                 (6)

: The field energy density for static fields
t t t

Assu     mption 2

 
     E D H B H B

 1
2

gy y
         (6.106)

represents the field energy density even for - fields
u

time dependen

p

t
   E D B H

represents the field energy density even for -  fields.
  

time dependent
   From (6) and (6.106), we have

t f h f rate of change of                             (7) field energy densityt tt
u  

 



        
E D H B
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 3 3Rewrite (6 105): d x d x       J E E H E D H B
6.7 Poynting’s Theorem … (continued)

     Rewrite (6.105): 

    Sub.  for ,  we obtain
v v t t

t tt

d x d x

 u
 
 

 
 




           
  

 J E E H E D H B

E D H B

 3 3 3              0             (6.107)v v v

t tt

td x d x d xu
 






        J E E H

                    t
u
    S J E                                          (6.108)

where is called the Poynting vector S E H

3 3

where, , is called the .  
     The meaning of  becomes clear if we write (6.107) as

Poynting vector

u

 

 

S E H  
S

  3
ndaV

3 3       
d d

mech fi ldd d

v v t
E E

ud x d x
  J E

   3 0v
das

d x



    
S n

E H




   Vmech fielddt dtE E

  Poynting's theore  [ ]     (6.111)mmech field s
d
dt

das

E E da



    

S n

S n
where  is the total mechanical/thermal energies inside  (no
particles move in or out of ) and  

mech

field

E V
V E the total field energy insidep ) field gy

. Then, by conservation of energy,  is the power/unit area.V S 33

6.7 Poynting’s Theorem … (continued)

E l 1 liExample 1: power lines
Magnitude of Poynting vector

(calculated by C Y Kao)   (calculated by C. Y. Kao)



side view BB
cross sectional view

+VI
 VV

E B B 

( )[ ( )]N S E H ( E ) H E H

VI E

: ( )[ ( )]j j j j
j j j

Note       S E H = ( E ) H E  H
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6.7 Poynting’s Theorem … (continued)

Example 2: a DC circuit 
steady state

3 3 30 0v v v
u
td x d x d xs sda da
            J E J ES n S n 

I

V   R
I

I 
             circuit 
             view:

J

I 

field J J E ,E  B  E             field   
             view:

3                  0        v d x
d

 


J E3        
         0        v d x  J E Power

transmission    0
   Power flows

s da  


 S n   0

   Power flows
s da  


 S n transmission    

by Poynting
vector          into resistor.         out of battery. vector
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6.7 Poynting’s Theorem … (continued)

Conservation of Linear Momentum of Combined System
        

Write down the Maxwell equations in the vacuum medium:

     Conservation of Linear Momentum of Combined System
of Particles and Fields :  

0
1

     Write down the Maxwell equations in the vacuum medium:
 



  


E
t t t
  
       B E E B E B

 

00
1 

t  




   
J B E


 2


 t


     E B E E

 0[ t  
        f E J B E E B E  

       2
0 0

2

2[ ]

]

   tc

c

c  
          

  

 E E E E B B E B

B B

B B       0 0

                       

[ ]

This term, which equals 0, is added for later manipulation.
t

     Sub. the expression for the force density  into Newtonf
 3

's 2nd law:
        : total momentum of all particles in .   mech mech

d
vdt d x V P f P 

  3
0

p

we obtain 
mech mech

mech

vdt
d d

vdt dt d x 



P E B

       2 2 3
0    (6.116)v c c d x              E E E E B B B B
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Rewrite (6.116):  H
6.7 Poynting’s Theorem … (continued)

0
0

3

    Rewrite (6.116):                                       
        ( )mech

d d
vdt dt d x


 

H
P E B

       0

1

2 2 3        

Define ][electromagnetic momentum density

  [ ]v c c d x



         
g E H

E E E E B B B B

(6 118)2
1    Define ]     [electromagnetic momentum density
c

 g E H
3

(6.118)

      [total electromagnetic momentum in ]field v d x V  P g

3
     (6.116) can then be written (see p.261) 

(6 122)

g ]

( )

field v

d T d T d



 

g

P P

by divergence thm.
3                  (6.122)( )

(

mech field x
d

v sdt

d

T d x T n da
   

 

   

 

 P P

P P



(8)) d T n



nda  ( mech fie

d
dt P P                                                    (8)

where is the Maxwell stress tensor defined as

)ld s da

T

 

   

 T n

T


    daV

2 21
0 2

where  is the Maxwell stress tensor defined as

             (6.120)( )

T

T E E c B B c


      

  
       

T

E E B B

: By Newto   Note
 

n's law, only  (not ) is the force on .mech field
d d
dt dt VP P
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: A plane wave is incident normally from free space onto a Problem 1
6.7 Poynting’s Theorem … (continued)

p y p
            flat surface and is totally absorbed. Find the force on the surface.

: Consider the volume enclosed by . On th
 
 Solution S e left side, we havey ,
       0,0, 1

instantaneous, ,0
( )

( )
z

E E
   

  

n e
E SE

       , ,0
      fields on the , ,0 left surface

( )
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x y

x y

E E
B B

 
     

E
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  
0  0field

d
dt P
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2 2 22 2 2 21
2

0

                        0( )x x x y x yE c BE c B E E c B B

E E
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2 2 2 2 1 2 2 2
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 00( )c B B E c B E c B   

  
  
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1
2

2 2 2
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                0
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B
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 
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0
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221

1 ]

( ) ( )d d Bda E A

 

 P P T n F P e




area of left surface

0
21

02

21
0

2 : vector

 

instantaneous

( ) ( )

( )

mech field mech z
d d

sdt dt

Poynting

B

S

da E A

BE







     

     
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
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e e


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  :  vectorradiation pressure  ( ) z z PoyntingA cE      
    Se e


    instantaneous energy density 38

6.7 Poynting’s Theorem … (continued)

Alternative solution to problem 1:Alternative solution to problem 1:
Assume the plane wave has a finite cross section A and a finite 

length. We may then enclose the full extent of the wave within surface

0( ) 
d dP P T Selectromagnetic

length. We may then enclose the full extent of the wave within surface 
S (see figure). There is no field on the surface. Hence, for volume V,

3

    0  

,

( )   

     





mech field

mech field

d
sdt

v
d d d
dt dt dt

da

d x

P P T n

F P P g z

SV
g

momentum density

2 2
1 1

,

where    [by (6.118) and (6.109)]  

mech field

z

vdt dt dt

c c
P

g

g E H e
 z

     Because the wave travels at speed  and it is totally absorbed, the 
electromag

c
netic momentum  in  decreases at the rate . field V cAP gg

2 21 1

1

1  
( )

   

field

zc PA
P E B

g
F e
F e e

0
1 1

02
1

: This method does not require the absorbing material to be flat.

( )   z zc P E BA
   Note

F e e

    The radiation pressur:Question e is due to the  force. How?J B 39

Problem 2: A spherical particle in the outer space with radius r,
6.7 Poynting’s Theorem … (continued)

Problem 2: A spherical particle in the outer space with radius r,
mass M, and density M = 3.5x103 kg/m3 absorbs all the sunlight it
intercepts. For what value of r does the sun’s radiation force (FR)R
on the particle balance the sun’s gravitational force (FG).

I: sunlight intensity time-averaged radiation 

22 2 221

     :    

SP r

Solution

IB 


g y
(average power/unit 
area) at the particle

P : total power radiated

g
pressure (see prob. 1) /   I c

0

22 2
0 2

21
2 4

S
R

t

P r
R c

I rBF E r c



     PS: total power radiated 
by sun (3.9x1026 W)

R: distance to sunG: gravitational const (6 67x10-11 Nm2/kg2)

34 MS SGM M GM r 

G: gravitational const. (6.67x10 Nm /kg )
MS: sun’s mass (1.99x1030 kg)

7

2 2
3

4
3

1 7 10

M

S

G
S S

P

GM M GM r
R R

F

F F

 



 

 

time averaged radiation pressure /I c

7

7

16
1.7 10

> >

S
R G

m Sc GM
F F r m

 
    

 
 

from Haliday, Resnick, and Walker

7=    if  =  1.7 10
< <G RF F r m 

  
  40



6.9 Poynting’s Theorem for Harmonic Fields; Field 

Phasors :

Definitions of Impedance and Admittance
     
     In linear equations, harmonic quantities can be represented 
by complex variables as follows:

Phasors :

( , )

by complex variables as follows:        
( )t 

 
E x E x  

  ( , )

( , )

(

R

t

t

 
 
 
 

D x

B x

D x)
( ) i t

  
  
  
  

B x( , )

( , )

( )

            Re
t

t

 
 

 
 

H x

J x

( )
( )

( )

i te  
  
  
  

H x
J x( , )

( , )

t

t

 
 
 

J x

x

( )
( )

  
  
  

J x
x

                 real      complex (called the phasor)

It is assumed th the LHS is given by the real parat t of the HR S     It is assumed th the LHS is given by the real parat . 
 

t of the
        

H
 

 
 

R S
41
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6.9 Poynting’s Theorem for Harmonic Fields… (continued)

    -
     To express nonlinear quantities by phasors, such as the product
f 2 h i i i i h i i

Representation of Time Averaged Quantities by Phasors :

of 2 harmonic quantities, we write the quantities as 

( , ) Re ( )[ ]i tt e E x E x 1
2 ( ) ( )[ ]i t i te e   E x E x2

1
2( , ) Re ( ) ( ) ( )[ ] [ ]i t i t i tt e e e      J x J x J x J x

    Then,  
     ( , ) ( , )t tJ x E x

2 21
4

21

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

R ( ) ( ) ( ) ( )

[ ]

[ ]

i t i t

i t

e e 



    

 

       J x E x J x E x J x E x J x E x

J E J E 21
2 Re ( ) ( ) ( ) ( )

and the ti
[ ]i te     J x E x J x E x

me average can be written in terms of phasors as
1
2

*1

    ( , ) ( , ) Re ( ) ( )  assuming  is real     (9)[ ],

[ ]
tt t   J x E x J x E x

*1
2    Similary, ( , ) ( , ) Re ( ) ( )                 (10)[ ]tt t  E x H x E x H x
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6.9 Poynting’s Theorem for Harmonic Fields… (continued)

     In terms of phasors, the Maxwell equations can be written:
     Maxwell Equations in Terms of Phasors :

 
( , ) 0 ( ) 0
( ) ( ) ( )

t
t t

     
   

B x B x
E x B x E x ( )i


  B x( , ) ( , ) ( )

( , ) ( , )
( ) ( ) ( )

t t
t t

t





    


E x B x E x
D x x

( )
( ) ( )

i


 
  


B x
D x x

 ( , ) ( , ) ( , )t t tt

   H x J x D x ( ) ( ) ( )

     

i   H x J x D x

Complex Poynting's Theorem :
     Using the phasor representation of Maxwell equations, we obtain 

iB

p y g



31

                         ( )
i

 



    
B

E H H E
31  


31

2 v d x   J E 31
2

31 ( ) ( ) (6 131)

[ ]v i d x

i d x





 

  

  

         





E H E D

E H E D B H2 ( ) ( )   (6.131)v i d x          E H E D B H
43

Rewrite (6 131):
6.9 Poynting’s Theorem for Harmonic Fields… (continued)

3 31 1
2 2

     Rewrite (6.131):   
    ( ) ( )    (6.131)[ ]v vd x i d x            J E E H E D B H

 3 31
2

     This equation gives the complex Poynting theorem:
    2 0    (6.134)e mv v sd x i w w d x da        J E S n 2

1
2

( )

where  
e mv v s

 

  
S E H [called the complex Poynting vector]        (6.132)

d th l t f i th ti d [ (10)]Sand the real part of  is the time-averaged power [see (10)]. 
     In (6.134),  and  are defined ase mw w


S

21
4 4

21

The real partew E

w H





   


 

E D

B H
 of  ( ) is the time  (6.133)averaged E (B) field energy density.

e mw w 
  1

4 4mw H   B H g ( ) gy y

     If  and  are both real, the real part of (6.134) gives  

 

31
2 Re[ ] Re[ ] 0,

which is the counterpart of (6.107
v sd x da     J E S n

) applicable to constant-amplitudewhich is the counterpart of (6.107) applicable to constant amplitude 
harmonic fields (for which the field energy remains constant). 44



Field Definition of Impedance :
6.9 Poynting’s Theorem for Harmonic Fields… (continued)

     
     We now apply the complex Poynting's theorem 
to a 2-terminal circuit Draw a closed surface S

Field Definition of Impedance : 
iSiV

iI S
Z

to a 2-terminal circuit. Draw a closed surface  
surrounding the circuit. Let  be the input current, 

be the in
i

i

S
I

V put voltage and let the input energy
           n
general circuit

 be the iniV

1

put voltage, and let the input energy 
flow be confined to a small area . Then,

(6 135)
i

i i

S
I V da    S n

iSiV
iI S

L
C R

31

2                                  (6.135)
and the complex Poynting's theorem [(6.134)]

Sii iI V da







 S n

  3 b i 

                n
a specific example

31
2 2 ev d x i w    J E  

 

3

23 31 1 1
2 2 2

0 can be written: 

2 ,S S

m

i i e m i

v sw d x da

I V d x i w w d x da I Z 

  

      

 

  

S n

J E S n


 2 2 2   2 ,

where  is the impedance of the circuit defined as
S Sii i e m iv vI V d x i w w d x da I Z

Z

    J E S n


radiation loss
 2

3 31   4 2 S Si
i

i i
e mv v

V
I I

Z d x i w w d x da 
          J E S n

  
i i

            :  resistance, :  reactance     (6.137) (6.138)R iX R X  45

6.9 Poynting’s Theorem for Harmonic Fields… (continued)

 3 31
     Rewrite:  

4 2iVZ d x i w w d x da          J E S n 2     4 2
                

Assume  and ,  ,  are all real.

S Sii i
e mv vI I

Z d x i w w d x da

   


    



  J E S n

J E , ,
     : Neglect the radiation loss term: S Si

Special case da





   S n

A general definition of the impedance 2 4 ( mP i WZ 
  2

A general definition of the impedance)   of a circuit in terms of the power loss
and the field energy in the circuit

e

i

W
I

   
  

2 31
2

and the field energy in the circuit

  [ohmic loss]

iI

P E d x

  

 
 2

3

3
where   [ -field energy]

[ f
m mW w d x

W w d x


 B

E ield energy]




   [ -fe eW w d x E ield energy]

and positive reactance; negative reactance.m e m eW W W W



   



     This expression for  is useful for microwave circuit studies.Z
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Homework of Chap. 6  

Problems: 8, 10, 11, 15, 19

Quiz: Dec 21 2010Quiz:  Dec. 21, 2010
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6.6 Derivation of the Equations of Macroscopic 
Electromagnetism

Optional

Electromagnetism
We limit the scope of our consideration of Sec. 6.6 to a generalp g

discussion of the averaging method and the derivation of (6.65).
Microscopically the matter is composed of electrons andMicroscopically, the matter is composed of electrons and

nuclei, in which the spatial variations of charge/current distribution
f nctions and electromagnetic field f nctions occ r o er the atomicfunctions and electromagnetic field functions occur over the atomic
distances (of the order of 10-10 m). These functions can be regarded

f d lt f ti H i i t t las sums of delta functions. However, macroscopic instruments only
measure the averaged quantity. Hence there is a need to develop an
averaging method to reduce microscopically fluctuating functions
to macroscopically smooth functions, and thereby obtain a set of
macroscopic Maxwell equations.
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6.6 Derivation of the Equations of Macroscopic Electromagnetism (continued)
Optional

L 0

If we replace each delta function, 
e.g. ( ),  in the microscopic  x x   L 

0( )   x x

( )f x x

0

0

g ( ), p
distribution function (of charges, etc.)
with a smooth function ( ) (seef x x 0( )  f x x

 x 
0x

0

3

with a smooth function ( ) (see  
figure) subject to the condition 

f x x

0x3
0( ) 1  

and if

f d x  x x

the width of ( ) is much greater than the atomicL f x xand if 0
8

the width  of ( ) is much greater than the atomic 
distances (e.g. 10  m), then the sum of many such functions 

L f
L 





x x

(each representing a delta function in the microscopic distribution
function) will become a smooth function representing the spatially ) p g p y
averaged microscopic distribution function. This is the method 
used in Sec 6 6 for the derivation of macroscopic equationsused in Sec. 6.6 for the derivation of macroscopic equations.
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6.6 Derivation of the Equations of Macroscopic Electromagnetism (continued)

W l k t th b i d f ll A

Optional

0 0

We may look at the above averaging procedure as follows. A 
delta function ( ) generates a smooth function ( ).
Th f di t ib ti f ti ( ) d f l b

  f
F

x x x x
Thus, for a distribution function ( ) composed of a large number
of point sources 

F x
(delta functions),  the response [denoted by ( ) ] 

ill b th iti f th f ll i t
F x

3
0 0 0

will be the superposition of the responses from all points:
  ( ) ( ) ( ) ..... spatial average of ( ) F f F d x Fx x x x x

0     In the integrand, replacing  witx
3

h ,  we obtain (6.65):
( ) ( ) ( ) (6 65)



   F f F d x
x x

x x x x  ( ) ( ) ( ) ,                                       (6.65)
where ( ) is now a smooth function centered at 0.

l l ( ) ( ) d b i i


F f F d x
f

x x x x
x x

( )0     As an example, we let ( ) ( ) and sub. it i F x x x
3

0 0 0

nto (6.65)
        ( ) ( ) ( ) ( )         f d x fx x x x x x x x0 0 0

0 0 0

( ) ( ) ( ) ( )
     Thus, we have recovered our assumption that the delta function 

( ) generates a smooth function ( ) centered at  

 f f

fx x x x x0 0 0( ) generates a smooth function  ( ) centered at . fx x x x x
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