
Chapter 7: Plane Electromagnetic Waves    
and Wave Propagation
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An Historical Perspective:
Faraday：Time-varying magnetic      

field generates electric 
fi ldfield. 

Maxwell：Time-varying electric 
fi ld t tifield generates magnetic 
field.

   Einstein's
special theory
of relativity

Hertz discovered radio waves;
Maxwell's theory accepted                 

 1791  1831  1873  18871879 1905

 of relativityy p

  Faraday    
    born   

  Faraday's law;    
  Maxwell born     

  Maxwell died;
   Einstein born

  Maxwell  
  equations        
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A Note about Oscillatory Behavior:


energy energy     Common feature of oscillatory behavior: type 1 type 2

i h i




ht i

energy storing mechanismsOscillations require energy exchange mechanism(s)

 
energy exchangeenergy storingexample  mechanisms   mecha

2 21 1

mediumnism(s)

i t t i f & ik
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2 2

2 21 1
2 2

,  

mass-spring system restoring force mass & spring

LC oscillator , , & wire

,  

,   Q I L CLI CV

mv kx

22
2 2EM wave not required,    ,  E dB dEB

dt dt


 3

Organization of Lecture Notes on Ch. 7:
In Jackson plane waves in dielectric media are treated in Secs 7 1In Jackson, plane waves in dielectric media are treated in Secs. 7.1

and 7.2. Various special cases (plasma medium and high-frequency
limit) are treated in Sec. 7.5. Plane waves in conductors are treated in
Sec. 5.18 [e.g. Eqs. (5.163)-(5.169)] and Sec. 8.1 [e.g. Eqs. (8.9),
(8.10), (8.12), (8.14), and (8.15)] by methods different from those in
S 7 1 d 7 2Secs. 7.1 and 7.2.

Here, we will cover these sections in Jackson with a unified
treatment of plane waves in both dielectrics and conductors, and at alltreatment of plane waves in both dielectrics and conductors, and at all
frequencies. Equations in Jackson will be examined in greater detail,
but in somewhat different order. So, in the lecture notes, the three
sections on these materials will be numbered Secs. I, II, and III rather
than following Jackson’s section numbers. However, Secs. 7.3, 7.4,
7 8 and 7 9 of Jackson ill be follo ed closel in s bseq ent lect re7.8, and 7.9 of Jackson will be followed closely in subsequent lecture
notes (and numbered as in Jackson) .

We begin with a derivation of the generalized dielectric constantWe begin with a derivation of the generalized dielectric constant
/0, which is applicable to both dielectric and conducting media.
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I. Derivation of the Generalized Dielectric 
Constant /0 [Sec. 7.5 (part A)]

Dipole Moment of a Single Electron: The equation of motion 
for an atomic or molecular electron with mass m and charge –e in 

0   [ (p )]

  restoring( )F x
the presence of an external electric field E(x,t) can be written: 

    restoring force due to electron displacement   restoring  
  force 

x
l t lli i


2
0           ( , )                                              (7.49)    


 m e t m mx E x x x

: electron collision
    frequency
 :  damping forcem



 x

x: displacement of  
the electron from
its equilibrium  ( ) (0) (0)F x F F' x  p g

    (rate of change of
     electron momentum
 due to collisions)

its equilibrium
position x = 0.

 
2
00

As in Sec. 4.6, we neglect
higher-order terms

m x

    due to collisions) higher order terms.

0     The "binding frquency"  is the natural oscillation f requency of 
the electron if it is set to oscillate about 0 under the restoring forcex

2 2
0 0

the electron if it is set to oscillate about 0 under the restoring force
. Since 1/ , the restoring force is independent of . 


 m m m

x
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I. Derivation of the Generalized Dielectric Constant  /0 (continued)

2
0Rewrite (7 49) ( ) asm e t m m    x E x x x  0

2
0

     Rewrite (7.49), ( , ) ,  as 
                        ( ) ( , )

L * ( ) ( ) d d ( ) b h ilib ii t

m e t m m
m e t



 
 


   

x E x x x
x x x E x

E E E

 

     Let* ( , ) = ( )e  and expand ( ) about the equilibrium 
position 0, we obtain  ( ) (0)

i tt 

  
E x E x E x
x E x E ( ) (0) (0),  x E E

of the order of (0)                                                     
where  is the scale length of ( ). For example, if ( ) is a wave

x



E

E x E x
if 1 

x

field, then . By neglectwavelength  ing ( ) (0),  we have
assumed that the electron displacement is too small for the electron 
to see any spatial field variation Thus we assume that the electron

x E

to see any spatial field variation. Thus, we assume that the electron
is acted on by a  fieldspatially uniform :

( ) (0) i tt e E x E                              ( , ) (0) ,
and it is understood that ( , ) is given by the real part of the RHS.

*This is equivalent to a Fourier trnasformation to the space

t e
t



E x E
E x

     This is equivalent to a Fourier trnasformation to the  space
and ( ) is a c


E x omplex quantity called the phasor [see Appendix A] 
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0Let ( ) and substitute i tt ex x
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

0

20
0

     Let ( )  and substitute

( )            into    ( ) ( , ),  
( ) (0)



  




 
   


 

i t

i t

t e

t e m e t
t

x x

x x x x x E x
E E

2 2
0 0

( , ) (0)

we obtain  ( ) (0) with the solution:



  


    

i tt e

m i e

E x E

x E

0
0

(0)                      


  e
m

Ex 2 2

(0)

 


  

i t
i

E
2 2
0

(0)              ( )                                              (1)

(1) represents the oscillation of a simple harmonic oscillator



  


 
  

i te
i

et m

forced

Ex

     (1) represents the  oscillation of a simple harmonic oscillator
with natural oscillation fr

forced
0equency . The time-dependent ( ) results 

in a time-dependent dipole moment at 0 given by



tx

x

2
0

(0)

in a time-dependent dipole moment at 0 given by 
( ) ,  

This reduces to (4 72) in




 i tt e
E

x
                     p p

 2
2 2
0

0 0
(0) This reduces to (4.72) inwhere        the stat   

  
i

ee m
Ep x ic limit: 0.

 
  
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(0)i t e E
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

2 2
0

2

0

0

(0)

(0)

( , ) (0)
     Rewrite  and  ( )

i t

i t

i

i
et e m

t e
e




  




 

    
 
 

E

E

xE x E
x x

2 2
0

0 00

0 0

(0)
( )

     In these equations, (0),  , and  are phasors containing phase

i t
i

eet e m
  


 

     
Ep xp p

E x p0 0q , ( ), , p g p
and amplitude 

p

0 0

information of ( , ),  ( ),  and ( ), respectively.
The subscript "0" in  and  refers to the fact that the oscillation

t t tE x x p
x p

is centered at 0,  where ( , ) is approximated by a spatially 
uniform field 

tx E x
(0)  (its value at 0). If the oscillation is

d bi i h l diff i h h

i te  E x
centered at an arbitrary point , the only difference is that the
electron would see a sptially constant field given by ( ) .i te 

x
E x

2 ( )EThus, in general,  p
2

2 2
0

( )( )  with         (7.50)

Note that in (7 50) is a spatial variable (not the electron

i t
i

et e m


  


 
  E xp p

x     Note that, in (7.50),  is a spatial variable (not the electron 
displacement), and  and ( ) are phasors.

x
p E x
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      Assume there are  
l l i l d l l l i id h

NThe Generalized Dielectric Constant :
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

molecules per unit volume and  electrons per molecule. Divide the
electrons of a molecule into groups, each with electron number  
( )

j

Z
f

f Z binding freq enc and collision freq enc [There ( ) jf Z , binding frequency , and collision frequency  [There 
may be one or more free electrons ( 0) per molecule.] Then, the 
electric polarization (total dipole moment per unit volume) is

 
 

j j

j
electric polarization (total dipole moment per unit volume) is

          ( )P x 2 2 0
2

( ) ( ) 
  

  
 

  
j

j j e
j j

j

j

fNe
m i

N f p E x E x

0 

  


e

jj j ji
a macroscopic
quantity

a spatial
variable

(4.36)(7.50)

0

      Extending the definitions of the static electric displacement ( ) 
( ) ( ) ( ) ( )      (4.34) (4.37)

and permittivity ( ) :
 


  

D
D x E x P x E x


0
and permittivity ( ) :  

(1 )


    e
 

                                           (4.38)
to fields with exp( ) dependence, we obtain  ( ) ( )     (2)

li d
 




 
 f

i t D x E x

0 2 20

2 generalized
with 1 1    (7.51dielectric constant   

  
 

       j
e

j

j

j

fNe
m i

)
9

     Divide the electrons in the medium into For copper 1f 

I. Derivation of the Generalized Dielectric Constant  /0 (continued)

0 0

bound electrons: 0
       free electrons: 0,  ,  


  


   

j

j j jf f

0
13

0

For copper,  1

and 4 10 / .

f

s



 
0 0

0 2 2(bound)

22 0
0

(7.51) ( )

 

      




     

j j j

jj

j

j

f f
f Ne fNe im m ii(bound) 0( )

 

   
b

jj ji

(7.56)
 b i

due to free 
electrons             

2
0
0( )

            (7.56)

Drude model for thewhere          (7.58)electrical conductivity



 



 



    

b

f Ne
m i

i electrons

0( ) electrical conductivity
    In general,  (see p. 310). Hence,  is predominantly real. 
Wh I b

 

  

  
j j b

m i

l t b tiWhen ,  Im  become   j b s large. resonant absorption

1 as 0 Hence the derivation breaks down Why?
: 

 



 
     Questions
1.  as 0. Hence, the derivation breaks down. Why?
2. What makes the medium dispersive (i.e.  depends on )?
 

 
 
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I. Derivation of the Generalized Dielectric Constant  /0 (continued)

Di i      :
(i)  implies a linear relation between  and . The linearity 

l f h i h h l di l i


Discussion
D E D E
results from the assumption that the electron displacement  is 

      sufficient samll so that, in (7.49),  ( )  and
x

f xx  ( ) can be E x

0

      approximated by a constant (0).
(ii) /  in (7.51) or (7.56) is a  dielectric constant, which   generalized

E

includes contributions from both bound and free electrons. It is 
thus applicable to both insulating and conducting materials. In the 

      wave fields, free electrons oscillate about an equilibrium position 
      just like the bound electron. Hence, both types of electrons can be j , yp
      treated on equal footing. The generalized  is an extremely useful 

quantity As will be shown it allows a unified treatment of EM


     quantity. As will be shown, it allows a unified treatment of EM 
     waves in both insulating and conducting materials. 
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I. Derivation of the Generalized Dielectric Constant  /0 (continued)

(iii) W it [ R ( ) I ( )] F (7 56) iti   (iii) Write  [ Re( ),  Im( )]. From (7.56), it can  
 be seen that  is due to  [i.e. the damping term in (7.49)]. 

i      
 
      


 Hence,  is resposible for the attenuation of EM waves in the  
 ma

 
terial. For the insulating material, , the attenuation   

 constant is given by Jackson (7.55) in terms of . For a good 
 conductor, , the attenuation constant is given by Jackson 


 


 

 (5.164) in terms of . The attenuation constants in dielectric 
       and conducting materials will be derived later in this chapter.



      Note that both bound and free electrons contribute to  
 [see (7.56

 
)], but contribution from free electrons is usually far[ ( )], y

 more important than bound electrons ( ). Even the insulating 
material contains a small number of free electrons to give the

why?
       material contains a small number of free electrons to give the 
       material a small conductivity. 
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(iv) is derived in the -space for a harmonic field of arbitrary 
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

(iv)  is derived in the space for a harmonic field of arbitrary  
      frequency. Hence, ( ) ( ) ( ) is a constitutive relation
      in -space valid for all . For multi-frequency fields, we may

 
   

 
D E

p q y , y
 

1

     obtain the -space  through a Fourier transformation

( ) ( )     i t

t

t e d

D

D D in general



1
2
1

2

         ( ) ( )

                ( ) ( )  [ ( )]                         (3)





 

    








 



 i t

t e d

e d t

D D

E E

in general



0 2 2(bound)

22 0
0

( ) ( )       
   


jj

j

j

f Ne fNe
m m ii

i

1
2          Since ( ) ( ) 
   i tt eE E , we find from (3) that, in

 d

 (bound) 0( )  jj ji

     general, ( ) ( ) because  is a function of . There are,
     however, 2 special cases for which (3) will yield  in 

  





t tD E
D E

     -space, as discussed in (v) and (t vi) below.
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(v) Consider a static ( 0) electric field in a dielectric medium  E
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

0

(v) Consider a static ( 0) electric field  in a dielectric medium 
      without free electrons ( 0),  we have

( ) 2 ( )i t i t

f

e dt e dt 



    




 

E

E E E E

0 2 2
2

           ( ) 2 ( ) 

           ( ) j

e dt e dt
f

i
Ne
m

   

 
  



   

 

 E E E E
2

0
( )i

Ne f
m i    (b 2 2j j jim    

0

ound) 0

2
2

( )

                   j

m i
fNe

m

  

 



 
00,  0f  

 

0 2 (bound)

                      is real.b b

j j
m 

 

1
2 2

          Thus, in -space, we have a static  given by 

                ( ) ( ) bi t
t

e d
 

   


 

D

D E 2 ( ) i te d   


 E2 2 
                   ,

This recovers the static relation in (4.37) without making any
b






E
      This recovers the static relation in (4.37) without making any 
approximation. 
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(vi) For time dependent fields in a medium with negligible dispersion
I. Derivation of the Generalized Dielectric Constant  /0 (continued)

0
1 1

(vi) For time-dependent fields in a medium with negligible dispersion
      [i.e. ( ) ( )] and negligible loss (i.e. 0), we have

( ) ( ) ( ) ( ) ( ) ( )
j

i t i tt d d t 

    
  

 

 D D E E1 1
0 02 2     ( ) ( ) ( ) ( ) ( ) ( ),

     

i t i tt e d e d t 
         

    D D E E
2 2

0 0 02 2 2 2where ( ) j jNe Ne
m m

f f
       0 0 02 2 2 2  0 0

w e e ( )

          This explains assumption (1) on p. 259 for the derivation of
j jj j j

m mi
   

    
 

  

     (6.107); namely, the macroscopic medium is linear in its electrical
     property and it has negligible dispersion and negligible loss. Under

hi i i ( ) ( ) H i (6 105)
 

D E
1

2 2

     this assumption, we may write ( ) ( ). Hence, in (6.105), we
     have .t t t t

t t



   

   


    

D E
E D E E = E E = E D

         Questions  
     1. Assume an electromagnetic signal is propagating in the medium. 

Wh t i th diti th i l i d f ( ) ( )?

:

0         What is the condition on the signal in order for ( ) ( )?
     2. Why is the assumption of "negligible loss" also re

   
quired? 15

I l th l t i iti itA t b t t i l

I. Derivation of the Generalized Dielectric Constant  /0 (continued)

    :  In general, the electric permitivity
is a tensor (denote it by ) and we may write

A note about terminology

 

ε

11 12 13

21 22 23, where 
  
  
 
   
 
 

D ε E ε 

31 32 33

Th l t i l t

    

The electrical property   ifof the medium is 
uniform (or homogeneous) is indept ofε x

            
uniform (or homogeneous)  is indept. of 

linear  is indept. of 
di i i i d t f

ε x
ε E


11 22 33

nondispersive  is indept. of 
,

isotropic 0 if i j


  


 


ε

p 0 if ij i j  
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II. Plane Wave Equations in Dielectrics and 
Conductors - A Unified Formalism

     
     Macroscopic Maxwell equations: 

Basic Equations :  
     ,  are due to  free freeJ

Conductors - A Unified Formalism 

p q
( , ) ( , )
( , ) 0

 
  


freet t
t

D x x
B x

free electrons. They are 
neglected in (7.1).

( ) ( ) ( )

 free free

t t tE D B( , )
                                               (4)( , ) ( , )

( , ) ( , ) ( , )








  
  

t

free

t t
t t t

E x B x
H x J x D x

     ( , ),  ( , ),  ( , ),
and ( , ) here are ,  ,

, and in (7.1).

t t t
t

E x D x B x
H x E D

B H( , ) ( , ) ( , ) 

     E
  free tt t tH x J x D x

quation of continuity (conservation of free charges):
( ) ( ) 0 (5) t tx J x

,  and  in (7.1). B H

( , ) ( , ) 0                (5)
     As discussed earlier, the constitutive relations  (for bound
l t ) d (f b th b





   


free freet

b

t tx J x
D E

D E d d f l t ) ielectrons) and  (for both bD E ound and free electrons) are in
general applicable only in the -space. Similarly,  and 
are also space relations To utilize these relation we go to the

  


 B H J E
are also -space relations. To utilize these relation, we go to the 

-space by assuming harmonic time dep


 endence for the fields.
17

      harmonic time dependence ( :  real and positive)Assumption 1 :
II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

( , )

( , )

( )
( )

t

t
   
   
   

E x

D x

E x
D x

By convention, the LHS is
the real part of the RHS.

( , )

( , )

( )
Let Re  wit

( )
t i t
t

e 
   
   

    
    

B x

H x

B x
H x

h .

the real part of  the RHS.

( , )

( , )

( , )

( )
( )
( )

t

t 

    
    
    
    

J x

x

J x
x

( ), ( ) here are , 
in (7.2) and (7.3)
E x B x E B

( , ) ( )t     x x
                 real      complex (called the phasor) 

( , ) ( , ) ( ) ( )
( , ) 0 ( ) 0

free free
t t
t

      
     

D x x D x x
B x B x


 (6)( , ) ( ) 0

 ( , ) ( , ) ( ) ( )
( ) ( ) (( ) ( ) ( )

t

free

t t i
it t t










    

    

B x
E x B x E x B x

H x J x DH x J x D x )




 x

 (6)

( ) ( ) (( , ) ( , ) ( , ) freefree t
it t t 


  

H x J x DH x J x D x )

 ( , ) ( , ) 0  ( ) ( ) 0  (7)free free free freet t t i 




      

x

x J x x J x 18

II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

      linear and isotropic medium, i.e. Assumption 2 :
Ohm's law: (5.159)
and P. 320

          ( ) ( ),  ( ) ( ),
     : We have used 2 definitions of . Here

( ) ( ) or ( ) 
, . In (2),

. freb

b

e
Note 

   


  J x E x
D D E

D x E x B x H vx

               ( b  D E

( )
     Rewrite (7): ( ) ( ) 0

) . (  has no physical significance ).

free free

i
i







  



E
x J x

DE

1

( )     ( ) ( ) 0 ( )

     Hence, ( ) ( ) ( ) ( ) 
free free

free b i

ii 
  

  

     

     

E xx E x x

D x x E x E x, ( ) ( ) ( ) ( )

     ( ) ( ) 0
free b i

b i







   E x ( ) 0,                                      (8)
h k h f f h li d d i d ii

 E x
where  takes the form of the generalized  derived in 
(7.51) and (7.56). Similarly, ( ) ( ) ( ) gives

b

free

i
i


  


 

  H x J x D x
     ( ) ( ) ( )bi i     H x E x E x ( ) ( ),   (9)
where again  and  are combined in the same manner as in (8).

][ b

b

i i
  

 
  E x E x

     This gives an alternative derivation of the generalized . However,
 in (7.51) and (7.56) gives the expl


 icit expressions for  and .b  19

II. Plane Waves in Dielectrics and Conductors (continued)

Using (8) and (9), we write the macroscopic Maxwell equations     Using (8) and (9), we write the macroscopic Maxwell equations
for harmonic fields in a linear and isotropic medium in terms of 
phasor fields and the generalized : p g

( ) 0
( ) 0

  
  

E x
B x


 ( ) 0

   
( ) (

 
  i

B x
E x B x

                                                     (10)
)

( ) ( )




 iH x E x( ) ( )

:
(i) B d l d f l d i h M ll

   i
      Discussion

H x E x

(i) Bound electrons and free electrons are separated in the Maxwell
equations in (4) and (6), where  cob ntains the effects of bound
l t d t i th ff t f f l telectrons and  contains the effects of free electrons.

(ii) Bound electrons and free electrons are combined in the Maxwell
ti i (10) h ( ) t i th ff



i t f b thequations in (10), where ( ) contains the eff
  b i ects of both

      bound and free electrons. 20



II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

uniform medium (i e independent of ) Assumption 3 : x      uniform medium (i.e. ,   independent of )
( ) 0 ( ) 0                             (11)

( ) 0 ( ) 0 (12)

 
     

 

Assumption 3 : x
E x E x

B B

( ) 0 ( ) 0                             (12)

 
( ) ( )
( ) ( )

i

        


B x B x
E x B x ( ) ( )                   (13)

( ) ( ) ( )
i


 


E x B x
( ) ( )i   H x E x

2 2

( ) ( )            (14)

(13) ( ) ( )
0 (15)

i  

     
       

B x E x

E x E x2 2 0    (15)
(14) ( ) ( )

(15) has the same form as (7 3) which is derived from the so

        
     B x B x

urce     (15) has the same form as (7.3), which is derived from the so

applicable to both dielec

urce-
free Maxwell equatio

tric and conducting media
ns [(7.1)] for a non-conducting medium ( 0). 

However (15) is
 

applicable to both dielectric and conducting mediaHowever, (15) is . 
In (7.3), . In (15), . Solution for (15) and (7.b b i       3) takes
the same algebraic steps But with the solution for (15)i   the same algebraic steps. But with , the solution f

applicable to both dielectric
or

 and conducting media
 (15)

will be .
b i   

21
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II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

E B here are E  B   
      

0

0

2 2 2 2 0

( )     ( )
( ) ( ) 0 0

ie

k





k xEE x Assumption 4 : B x B
EE x E x

E0, B0 here are E, B

in (7.8)-(7.12)

      2 2 2 2 0

0

( ) ( ) 0 0( ) ( )
(dispersion relation) (16)

k

k

 



      

 

EE x E x
B x B x B

22 *

22

  (dispersion relation)     (16)
     : 1. ;  .  

2 and unless is real
 k

k k

k
Note







 
 

k k k k
k k

 

k
k

              2.  and  unless  is real.
     

k k k k k

0 (17)
         3.  can be complex, but  is always real and positive.k

k E
k

0

0
01

0 (17)
0 (18)(11)-(13)

(19)

 
    

k E
k B

k EB k E 0
0 0

0 0

1

1

                     (19)

: (14) gives which is implicit in (1
k

N teo

    


  

B k E

E k B 7)0 0     : (14) gives , which is implicit in (1N teo  E k B 7) 
               and (19). 22

time averaged power flow per unit area (called intensity)S

II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

 time averaged power flow per unit area (called intensity)

 ( , ) ( , ) 
t

tt t

S

E x H x
0( ) ie  k xE x E

1 Re ( ) ( )   E x H x

0

00
0

( )

 (19)

ie

k


 




 

k x

B
H x H

k EH

real quantities phasors 

 

2

1
0 02

( )1

 Re ( ) ( )

 Re 


  

   
     

i
k e k k x

E x H x

E k E

0 ( )
k 

  

2

2 ( )





  

  i

k

k k

2
0 0 0

E E E

  
 

21
0 0 02

21

( )

(

1

1

Re   (20)
 








    


 

i

i

k e k k x

k

k E E k E

 )




 k x 21

0 0 02
(1Re 

   
ie kk E E k E 

1

)               (20 )

: ( ) ( ) Re[ ( ) ( )] is derived in

  


  Note t t

k x

E x H x E x H x2     : ( , ) ( , ) Re[ ( ) ( )] is derived in
                Sec. 6.9 of lecture notes.

  tNote t tE x H x E x H x
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II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

:Discussion       :
 (i)  Assuming ,  are given, (16)-(19) are conditions imposed on 

by the Maxwell equations

Discussion
 

 k E B0 0

0 0

       , , ,  by the Maxwell equations.
 (ii) The derivation of (16)-(19) only requires , ,  , , , and 


  

k E B
k E B

to be constants but not necessarily real (we have assumed to
0

0

       to be constants, but not necessarily real (we have assumed  to
       be real). Thus, any set of complex constants , ,  , , , and

can be a valid solution of the Maxwell equations


   k E

B provided0        can be a valid solution of the Maxwell equations B provided 
       they satisfy (16)-(19) and the boundary conditions (if applicable).
(iii) The generalized  is in general a complex number.  can also be ( ) g g p
                     a complex number. Either co



0 0

mplex  or complex  can lead to        
       complex solutions for , , and . Even when  and  are real,       

 
 k E B                     boundary conditions (if applicable) can lead to complex solut

0 0

ions 
       for , , and  [to be shown in Sec. 7.4, Eq. (48)]. k E B

24



II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

(iv) Under assumptions 1 and 4, the fields ( ) are those ofi t ie   k x( ) p , ( )
       a plane wave; namely, the surface of constant phase is a plane
       (see following examples). There are 2 types of plane waves ( g p ) yp p
       depending on the form of the wave vector (also called the 
       propagation constant).

k 

        .  
            Consider the solution:

a Homogeneous plane wave 0 xE e

0 0

 
               

z

x

k
E




k e
E e 0 0      with   

B E   
 

 zke

0 0

0

x
BB 0

0 0where , , and are real unit vectors, but , , and can
y

k

E B k


 

  e
e e e

0B ye

0 0       where ,  ,  and  are real unit vectors, but ,  ,  and  can 
       all be complex. This clearly satisfies (16)-(19) and is the most 
       familiar t

x y z E B ke e e

ype of plane waves. Any plane perpendicular to the -axiszyp p y p p p
       is a plane of constant phase.

25

     b. Inhomogeneous plane wave 
II. Plane Wave Equations  in Dielectrics and Conductors… (continued)Optional

2 2 2 2

        Consider another solution satisfying (16)-(19):

x x z z x z

g p

k ik k k k        


k e e k k

0 0 0 0 0 0

0 0 0 0 0

   with 0  
( ) /

x x z z x z

x x z z x x z zE iE k E k E
iB B k E k E






       

     

E e e k E
B e

      (21)

0 0 0 0 0( ) /y y y x z z xiB B k E k E    B e

0 0 0   where ,  ,  ,  ,  and  are all real constants.x z x z yk k E E B

           defined here can be converted to the form
          ( ) as used on p. 298 of Jackson. Here,

x x z z

R I

k ik
k k i

 
  

k e e
k n n n

          we reserve the notation  for later use as a  unit vector.
        The physical meaning of such a solution becomes clear when 

realn

   we construct the physical quantity ( , ) from the phasor ( ).

(

tE x E x

E x  0 0 0, ) Re Re x zi t ik x k zi i t
x x z zt e e E iE e             

k xE e e 

    
0 0 0

0 0cos sin z

x x z z
k z

x x x z x zE t k x E t k x e  
   

   e e 26

k

II. Plane Wave Equations  in Dielectrics and Conductors… (continued)Interesting phenomenon

    0 0     Rewrite ( , ) cos sin
     This represents a surface wave in the 0 half space. It propagates

zk z
x x x z x zt E t k x E t k x e

z
     



E x e e

along the -direction with an amplitude peaking at 0 and decreasing
expon

x z 
entially along the positive -direction. The surface wave is also  z

called an inhomogeneous plane wave (p.298). Any plane perpendicular
to the -axis is a plane of constant phase.

Wh l
x

i id      When a plane wave incident
from a dense medium onto a  
tenuous medium (e g water to

      surface wave       air 
x

 z

0tenuous medium (e.g. water to 
air) is totally reflected from the  
interface fields in the tenuous                incident    reflected

water   x 0

interface, fields in the tenuous  
medium form such a surface wave  
due to boundary conditions at 0. This will be discussed in Sec. 7.4.z 

   incident  
 plane wave   

  
 plane wave   

y

27

(v) Orthogonality of vectors k, E0, and B0 in (17)-(19)
II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

0
0 0

0

0 ,  ,  and  are 
     (17)-(19) 0

           
algebraicallyk E E B k

k B

( ) g y , 0, 0 ( ) ( )

0 xE e

0

0 0

0 0

( ) ( )
orthogonal to one another0

     For the homogeneous plane wave, ( ),  

       
 xE

E B
E e

 zke

B e

0 0

0 0

o t e o oge eous p a e wave, ( ),
( ),  and ( ) are also  

x

y zB k geometrically
e

B e k e
orthogonal.

0B ye

0 0 0 0 0

orthogonal. 
     For the inhomogeneous plane wave, the algebraic orthogonality
of ( ) ( ) and ( ) does    k ik E iE iBk e e E e e B e0 0 0 0 0

0

of ( ),  ( ),  and ( ) does
not imply geometric orthogonality because  and  do not have
cl

    x x z z x x z z y yk ik E iE iBk e e E e e B e
k E

ear geometric directions In -space we have just showntcl
    0 0

ear geometric directions. In -space, we have just shown
( , ) cos sin ,

hi h h th t th t l th di ti b t it
      zk z

x x x z x z

t
t E t k x E t k x e     E x e e

which shows that the wave propagates along the -direction, but its
-field also has an -componen

x
xE t. 28



0 0(vi) 0 does not necessarily imply 0   k E k E
II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

0 0(vi)  0 does not necessarily imply 0.
       (A similar comment is made in Jackson, see footnote on p. 298.)

For the homogeneo s plane a e ( )k E

   k E k E

k e E e0 0

0

        For the homogeneous plane wave ( ,  ),
              0

z xk E 

 

k e E e
k E

       0 0

 But for the inhomogeneous plane wave: x x z zk ik

  
 




k E
k e e

0 0 0

0

g p

       0
x x z zE iE  

 
E e e

k E

0 0

0 0

       0
       

x x z z

x x z z

k E k E
k E k E

  

 

0 0 0 0

0

 2 0

Thus, in general, the term mu
x x z z z zk E k E k E



     



k E

k E st be kept in (20) [see Eqs.0       Thus, in general, the  term muk E st be kept in (20) [see Eqs.
(53) and (54) in Sec. 7.4.]
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II. Plane Wave Equations  in Dielectrics and Conductors… (continued)



0

                                             (16)
0                                              (17)

(vii) Rewrite (16) (19):


 

k
k E





0

0 0
1

(vii) Rewrite (16)-(19): 0                                              (18)



 

 

k B
B k E 0                 (19)


 


 k

k E


        This set of equations is equivalent to (7.9)-(9.11) in Jackson, with
in (7 9)-(7 11) interpreted as the generalized The difference is in 

 k

 in (7.9)-(7.11) interpreted as the generalized . The difference is in 
notations. In (7
 

.9)-(7.11),  is in general a complex unit vector subject
to the condition 1 which leads to condition (7 15) Here we treat

n
n nto the condition 1,  which leads to condition (7.15). Here, we treat

 as complex vector [as in (21)] without any additional condition except
 n n

k
f h i d b h M ll i [(16) (19)] Th hfor those imposed by the Maxwell equations [(16)-(19)]. Thus, the 
complex  is more convenient to use, as has been demonstrated in (21) k
and will be seen again in Sec. 7.4.
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( )ik k ik  Assumption 5 : k n n

II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

: complex constantk       ( )
Then, (17)-(19) can be written

r ik k ik  Assumption 5 : k n n

 (16) (22) (24) h i l

:  complex constant
:  real unit vector

k
n

0

0

0                                                                          (22)
0                                              

 
 

n E
n B                                    (23)





(16), (22)-(24) here are equivalent to
(7.9)-(7.11) when in (7.9)-(7.11) is
a real unit vector and in (7 9) (7 11)

n 

0 0                                                                (24)

and 0 0 Thus (20) reduces to





  



B n E

k E k E

a real unit vector and  in (7.9)-(7.11) 
is interpreted as the generalized .




0 0
2 21

02

and 0 0. Thus, (20) reduces to

 Re             i
t

ke


 

    

   
n x

k E k E

S E n                             (25) 
     Under assumption 5, the wave vector has a geometric direction 
( ). Hence, (22)-(24) now represent  plane waves with homogeneous

k 
n

0

( ) , ( ) ( ) p p
orthogonal ,  ,  an

g
geometrically k E 0

2

d . 
     In ( ) ,  ( ) gives the wavelength,  gives ther i r ik ik k k

  

B
k n( ) , ( ) g ves e w ve e g , g ves e

rate of attenuation, and  gives the direction of wave propagation.
r i r ik ik k k

n
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II. Plane Wave Equations  in Dielectrics and Conductors… (continued)

:Definition of impedance and admittance of the medium
See Chap. 6.9

0 0

     : 
     Rewrite                                                      (24)

In engineering literature this equation is often written

Definition of  impedance and admittance of  the medium
 B n E

     In engineering literature, this equation is often written

0 0
0                      ,                                             (7.11)

Z


 
B n EH

1
where  is the impedance of the medium (p. 297). The

Z
Z 






1admittance of the medium is defined as Y = . Z and Y areZ
i




 properties of the medium.ntrinsic
0 0 1 0 0 2 1 2

0 0

     Let  and . Because , , and  are mutually
perpendicular, we have       /

E B
Z E H

 


E ε B ε n ε ε

0 0 is the (complex) amplitude ratio of  and  in the medium  
(T

Z E H
he definition is valid even if ,   are complex). In vacuum,  

0
00         376.7 Z Z 
   
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III. Properties of Plane Waves in Dielectrics and
Conductors [A unified treatment of Secs. 5.18, 7.1, 7.2,Conductors [A unified treatment of Secs. 5.18, 7.1, 7.2, 
7.5, and 8.1 using the generalized  in (7.51)]

     In Sec. II, under assumptions 1-5, we have obtained the familiar 

 
homogeneous plane-wave equation

, p ,
:   

 :  wave number or propagation constant     (16)

s

k k


 
0

: w ve u be o p op g o co s ( 6)
0                             

k k
 n E

0

                                               (22)
0                                                                             (23) n B



       0

0 0

( )
                                                     B n E

2 21
0

              (24)
Re (25)ike  



    

n xS E n02

0 0

Re                                          (25)

for a uniform and isotropic medium, where  and  are (complex)
t e

   
S E n

E B
E( )     Eamplitude constants of the fields:  E 0

0

d i ( l) di ti it t f th ( l ) t

( , ) Re( , )
i i tt

t e              
k xEx

B x B
and  is a (real) direction unit vector of the (complex) wave vector
or propagation vector:      ( )r ik k ik  

n
k n n 33

O th b i f th ti id b l 4 di ll

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

On the basis of these equations, we consider below 4 radically
different cases which are distinguishable by the wave frequency
and the medium property characterized by the generalizedand the medium property characterized by the generalized
permittivity:

22 f Ne f
0 2 2 (bound)

22 0
0

      (7.51), (7.56)( )
 

      
     jj

j

j

f Ne fNe im m ii

Case 1 Waves in a dielectric medium

 b

Case 1. Waves in a dielectric medium
Case 2. Waves in a good conductor
Case 3. Waves at optical frequencies and beyondp q y
Case 4. Waves in a plasma
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 1: Wa es in a dielectric medi m [§ 7 1 § 7 2 § 7 5 (Part B)]Case 1: Waves in a dielectric medium [§ 7.1, § 7.2, § 7.5 (Part B)]
2

0
0 2 2

2
( )

    jf Ne fi
i

Ne
m    (7.51)

Properties of : 

0 2 2 (bound) 0( )      j j j m iim ( )


0negligible ( 0 or very small) f 

1. In general, j << j  (see p.310), hence Im<< Re.
2. When  is near each j (binding frequency of the jth group of 

l ) hibi b h i i h f f lelectrons),  exhibits resonant behavior in the form of anomalous 
dispersion and resonant absorption.

3 A ’ R d3 As  passes more j’s, Re decreases. 
Re

index of
 refraction
 of water

Im
of water 
     
frequency

vs
0
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 1.1: Lossless dielectric ( and  are real. Secs. 7.1 and 7.2)
     Plane waves in a dielectric medium governed by Eqs. (16), (22)-(25)
are best examplified by the simple case of no medium loss (i.e.  and  

( )

are both real).
- :             Time averaged quantities

     2
0

1
2

intensity: time averaged       (25)   (7.13)Poynting vectort



     
S E n

0 0 0           ( ) ,  ( )
      time averaged energy density

i i i

t

e e e
u

     

 

k x k x k xE x E B x B n E

1 1
4

g gy y
                  ( ) ( )[

t

   E x E x 2
02( ) ( )               (7.14)]  B x B x E


              

0 0              These 2 terms are equal [  (24)].
             equipartition of E-field and B-field energies

 


B n E

d     (7.13) and (7.14 1) ,  where  ( )g gt t
du v v
dk k
 

     S n
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

     - :Time dependent fields

0 0 1( )
     Let 

( )

i i

i i

p f
e E e

e E e 

 

 

  




k x k x

k x k x
E x E ε

B x n E ε0 0 2

1 2

( )
where ,  ,  are mutually perpendicular and 
the fields are linearly polarized

e E e   B x n E ε
ε ε k

0 0

the fields are linearly polarized.
     Further let , tiE E e 

 
hen

i i t
k x

1 1 1 1,    ε ε n ε ε

 
 

0 0 1

0 0 2

( , ) Re[ ] cos
    

( , ) Re[ ] cos

i i t

i i t

t e E t

t e E t





 

   

 

 

     


     

k x

k x

E x E k x ε

B x n E k x ε
      and  are real. ( , ) and ( , ) are in phase.
     ( , ) ( , ) ( , ) instantaneous Poynting vec

t t
t t t

 



  

E x B x
S x E x H x tor [(6.109)]( , ) ( , ) ( , ) y g

 2 2
0

[( )]

 cos                                       

At fi d iti i b t 0 d th i ( iti )

E t
     



k x n

SAt a fixed position,  varies between 0 and the maximum (positive)
     value at the frequency 2 .
 S
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

     Two linearly polarized waves can be combined to give 
 1 2 1 1 2 2    ( , ) ( , ) ( , )             (7.19)

(7.19) consists of the following 3 cases:

     i i tt t t E E e k xE x E x E x ε ε
     (7.19) consists of the following 3 cases:
     1. (7.19) is a linearly pol 1 2

1 1 2 2

arized plane wave if  and  are in 
phase i e if and  i iE E e E E e

E E

 

1 1 2 2

1 2

phase, i.e. if   and  
      2. (7.19) is an elliptically polarized plane wave if  and  are

t i h i if d   ii

E E e E E e

E E E E

E E
 

1 1 2 2not in phase, i.e.  if  and  .
    

    iiE E e E E e
 3. (7.19) is a circularly polarized plane wave (a special case of 

lli i l l i i ) if ( ) d 2 HE E E1 2 0

0 1 2

elliptical polarization) if ( ) and 2. Hence,

   ( , ) ( )                                                 

 
 

   

  i i t

E E E

t E i e k xE x ε ε  (7.20)
1

1 22
* *

     For an alternative representation, we define ( ),  (7.22)

where 1 and 0. Then, (7.19) [not (7.20)] can be written 


  

 

   

iε ε

    , ( ) [ ( )]

         ( , ) ( )                 
  

 
    


i i tt E E e k xE x ε ε                              (7.24) 38

    : A specific example of  circularly polarized wave
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

 y

 0

1 2

1 2Re     Rewrite (7.20): ( , )

Let and We have

i ti

k

t i e  

   

 



k x

k
E x

ε e ε e n e

E ε ε

i i tk x

E
x

 
 

1 2

0

     Let , , and . We have
( , ) cos
( ) sin

x y z

x

k
E t E kz t
E t E kz t

 
 

  
  

ε e ε e n e
x
x 

  y

                                                       0( )
   negative helicity

i i t
x yE i e   k xe e

 0( , ) sinyE t E kz t
     Ex re

   x 
: Show that the instantaneous Poynting

vector of a circularly polarized plane
cise

i i tk

E
x

                     vector of a circularly polarized plane 
                     wave is independent of time.

: [(16)] gives the phasMedium property k  e velocity ( )v

                                                 0( )
   positive helicity

i i t
x yE i e   k xe e

:  [(16)] gives the phas     Medium property k 

0 0

e velocity ( )
1 , where   (index of refraction)   (7.5)

v
cv n

k n

 




   
0 0

     Next, we consider plane waves in a lossy dielectric, where the fields
differ only slightly from those in a lossless case diele

k n

ctric (e.g. , areE  B y g y ( g
slightly out of phase). However, as a qualitative difference, the medium
absorbs the wave. So, our emphsis will be on the medium properties. 39

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 1.2: Lossy dielectric [μand/or  are complex , Sec. 7.5 (Part B)]

2    can be written:  Re Im   (7.53)
where gives (for arbitrary and )

k k i i
k

   
  

    

2
where  gives (for arbitrary  and )

the wavelength 
rk




  






 1

Re
the phase velocity       

the index of refraction Re used on

v

cn





 

   p 314




 0 0

the index of refraction Re     used on n v     

2
2

p. 314.

      To find the meaning of , we set  and  in i z
k

k 


 

 

n e
2 21

02

21

        Re                                                  (25) 

intensity (averaR

i
t

z

ke

P 










   
n xS E n

S E ge  1
02

y (  Re   z
tP e 

   S n E g ,power/unit area)
      Hence,  is the  attenuation constant given bypower

 
  

 1        2  [ 2 Im ]    used on p. 314 .izP P k 
   
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     For the common case of , we letweak attenuation
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

   
1
2

,
        ,  with 

1 1

real i

i i 
     

   


      

        2

2

1 1

Re Im  (for real  and small )ik i

i i



   

       

     

       2

rk



  
0 0

   (phase constant)c

 

   



reduces to the
expression on

1 (phase velocity)  c
nv



 



  





p. 311 when μ=μ0.


0 0

   (index of refraction)c
vn c 

 

 

 



  








2 21 1
0 02 2

2    (power attenuation constant)      (7.55)

Re   (i

i

z z

k i

P e e 




 
 


   

 





  

 E E ntensity)







 0 02 2 ( 

( tan ) l

y)

     In (7.55),  is commonly referred to as the oss tan  gent.l









 41

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

(R ) d l t t (t )  (Re ) and loss tangent (tan  or )
 of some materials at different frequencies


    l

from Ramo Whinnery and Van Duzer p 334               from Ramo, Whinnery, and Van Duzer, p.334.     
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III. Properties of Plane Waves in 
Dielectrics and Conductors (continued)

A miraculous property of 
water:

The index of refraction (top) 
and absorption coefficient 
(bottom) for liquid water as a 
function of frequency in Hz

[Sec. 7.5 (Part E)] [Sec. 7.5 (Part E)] 
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

C 2 W i d d [S 5 18 d 8 1 li blCase 2: Waves in a good conductor [Secs. 5.18 and  8.1, applicable   
to waves in metals under the condition ω<<0(~4´1013/s. 
see p 312) i e for very low frequency (e g 60 Hz) up to

D fi iti f d d t

see p. 312), i.e. for very low frequency (e.g. 60 Hz) up to 
near terahertz frequencies]

22
0

0

    :

j

Definition of  good conductor

f Ne fNe i     (7 51)0 2 2 (bound) 0

                            

         
( )j j j

b

i
m m ii



 
    

  
 


       (7.51)



In general, , see p. 310.
 In ge Reneral, ) m( ( I )

j j

b

b

b

 
 

 
 
 


 



  
             (7.56)b i 


  

2
0

0
 (7.58)

( )
Ne f

m i


 


0
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Up to we havelow terahertz region  

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

2 2

0
13

0

2 0

Up to , we have  
(  is of the order of 4 10 / s). Hence,

When real

low terahertz region

f f

 


 


  



2 2
0 0

00

2

0

0
( )

When ,  real
        and is independent of .

    ( : free electron density)
Ne f Ne f

mm i
ne

m n  










  
    

  



 / Im( )
A good conductor  is defined by

     In /  [(7.56)], . So we may assume 
to be real.                     (26):  1

b bb

b

i    



   


12
0

7
8.85 10  farad/m
5 9 10 /Ω-m

b

b
 


 

 


46 10 /Ω-mhi




 Q i i 5.9 10 /Ω m, 
                     

copper  


3 2

 

6 10 /Ω m
6 /Ω-m, 10 -3.5 10 /Ω-m

60 Hz for household current

graphite

sea water ground


 



 
 

   



Quantitative
examples:

60  Hz for household current
0.3 300 GHz for microwaves2

: Why is it dangerous if an electrical appliance falls iQuestion

f 


  
 

nto    : Why is it dangerous if an electrical appliance falls i Question nto 
                      your bath tub?
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: For a good conductor ( 1), weFields in a good conductor 
 

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

 
1 1
2 2

2

        : For a good conductor ( 1), we

   have  1( ) ( )b

b
Fields in a good conductor

i i i  
  



     



 
1 1
2 2 2 1

2
( ) 1ii e i


  

 

2

1
2         1  (for forward wave)        (5.164)ik i

  


     

 
2

( )

2 :  skin dep
   where

t
    

h
   


           (5.165) and (8.8) is real by assumption.

 
  

 
0 0 0 0 0 0   Let ,  . Then, 

z

x z z x yE E E  
        E e n e H n E e e e

  
0 0 0( , ) (27)

( )

         
zz i

x x
i i t ikz i t

i i t

t
t e E e E e e

t e E

 

 

  

 


  



k x

k x

E x E e e

H x H e ikz i te 




 0 0( , )    yt e E  H x H e

   
02 1 (28)

zz i t

e

i E e e   



   e  02          1 (28)

     (27) and (28) are equivalent to (8.11) and (8.9).

                                  yi E e e  e

46

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

0 85 60 H (h h ld )f
5 10

0.85 cm at 60 Hz (household current)
Examples:   

7 10  cm at 10  Hz (microwave)copper
f

f
 

    47

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

:Discussion
 

0

:

( , )                           (27)
(i) Rewrite

zz i
x

t
     Discussion

t E e e 
 




 

E x e

   
02

  (i) Rewrite       
( , ) 1        (28)

zz i
y

t
t i E e e  


 


  H x e

 Inside the good conductor, the wave has a wavelength of
  2    


  and it damps .by a factor of  1/  over a distance of e 
o and  in a good conductor are 45 (i  out of phasei) .E H

(iii) The fields in a good conductor are similar to those in a lossy
dielectric in that they both represent an attenuated plane wave
with k, E, H, mutually orthogonal. However, at the same
frequency, the wavelength is much shorter and the attenuation
constant much greater in the conductor than in the dielectric.
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)
10

2:  Let 10  Hz  (typical microwave frequency)         Examples f  

 0 0

2

4 5

( yp q y)

glass ( 1,  4,  2.1 10 ) copper 7 10  cm

p f 

  
     

     

4

4 1

2 2

2

1.5 cm  (Case 1.2) 2 4.4 10  cm 
  

   




    

3 1d4 -12 8.8 10  cm  (7.5 
 
  3 -11 25) 4.5 10  cmdP

P dz     

(iv) A wave incident from the outside into a good conductor (at any(iv) A wave incident from the outside into a good conductor (at any
incident angle) will propagate and attenuate inside the
conductor approximately along the normal to the surface (see

11
x

E
E xk 



     air    conductor
   x



Jackson Sec. 8.1). The reason is shown in the figure below.

  1 1
x

z x

E x
E

E z
               

k k










   

    

   
      

      Wave propagates approximately .along z
   z 49

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Hence, we may approximately write the wave fields inside the, y pp y
conductor as (27) and (28), i.e. E and H are parallel to the surface,
even if the wave is incident at an oblique angle into the conductor.

Question: Does it make sense to use power lines of very large
diameter (e.g.10 cm) in order to conduct higher    

d h i ?
(v) The 2 homogeneous Maxwell equations require that  and  

b i h d f
BE 

current and hence transmit more power?

       be continuous across the conductor surface.
since 0,  what happen to the surface current ?,  ( )E H   K 

i d
              

(0 ) (0 )   
(0 ) (0 )
 

 




 

 

E E
H H

air      conductor      

  
z   

0
Th d i i d d i fi i lN : The current density in a good conductor is finite unless

          0 (or ,  i.e. the current flows on the surface).   
Note
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  :  eff     Surface current on a good conductorK
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

     If 0, the "surface" current  is not exactly on the surface,
It is concentrated over a depth of one skin depth.  (unit: / )

 


eff

eff

eff

f g

A m
K

K

K
x 

is an integrate
eff

1

2d value of  (unit: / ) over the penetration depth. 

      
ii t z

A m

d d E d

J

K J E    effK

H 
 


0 0 00
     

i t
eff xdz dz E e dzeK J E e

(1 ) (1 )i i      (27)
zz i t

E e e   
E e H 

z 0

02 (1 ) ( 0) ( 0)  (29)


         
i t

x z zi E e z ze e H e H

1 2 2i 
 

0  (27)xE e e E e

02 ( ) ( ) ( ) ( )

     (29) here is (8.14) in Jackson; " " in (29)




x z z

ze  is " " in (8.14).n
(29) shows that the surface current K on a good conductor(29) shows that the surface current Keff on a good conductor

depends only on the H|| on its surface. Physically, Keff is the
response of the conductor in order to shield its inside from H||response of the conductor in order to shield its inside from H||
(Faraday’s law). Hence, Keff is determined entirely by H||.
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:   Time - averaged power loss on the surface of  a good conductor
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

   t S
power going into conductor 

unit area of conductor surface
( 0) zt

lossdP z
da

   S e

z e
1
2

221 1

    Re ( 0) ( 0) zz z      E H e

 
(27), (28)

221 1
2 2 2 2    (0) (0)   

   EE   (0)            (30)

(27) (28) (0) (0) (31)

z





 

E e

E H

21
2 2

(27), (28) (0) (0)   (31)

useful form to explainSub. (31) into (30) (0)  induction heating
lossdP

d







 

     

E H

H

 

2 2

21
4

( ) ( ) ( ) induction heating 

                            (0)                   

da 



  

 H



            (8.12)2
 

(29)
21 1

2
21 1

2                                        (8.15)(0) eff  H K

(29)

22
  : If there is reflection, (0) (0) (0)incident reflectedNote  HH H  52



     /  in (8.12), obtained by the Poynting vector method, can belossdP da
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Ohmic power 
(

dissip
),

ated inside 
y y g

the conducto
,

shown to be exactly the . 
  ohmic power in the conductor/unit volume

r
loss

resistiveP 
 resistiveP1

2  R
2 2

21
2

2 21 1

e
z z
 



 

   J E E

2

2 21 1
0 02 2              (5.169)e e   E H

(27) (28) H0 = H||(z = 0)

0 0

22 21 1
0 02 4

same as  (8.12)
z

loss
resistive

dP P dz e dz
da

           H H

 1. Why does a microwave oven save energy?       
        

:Questions
         2. How would you design an induction cooke high  ar? nd 
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

     : surface impedance surface resistance andssDefinitions  Z ,  R , p
                         of metalsurface reactance

(0) : ratio of

s

s

sf , ,
  X

Z  E
2 (1 ) (0)

(0) : ratio of( 29) (0)  (0) to 1
27 eff

s

s eff
i Z

E Ki Z



  
      

  K E
E

E







1 iwh  1ere  Jackson p. 356, bottom  is called the surface 

impedance We may write (32)

s

s s s

iZ
Z R iX


 

impedance. We may write ,                  (32)1where s sR X 
  

surface resistance surface reactance
:  of copper 0.026  at 10 GHz

The surface impe
s      Example R  

dance is (rather than surfacean intrinsic propertyZ

surface resistance surface reactance

     The surface impedance  is  (rather than surface 
property) of metal. It is in fact the impedance of a good conductor:

1

an intrinsic property

1

sZ

ii   

  2
2

1          Z .   
(metal) 1

1
s

ii
i 

 


 


 


 
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 3: Waves at optical frequencies and beyond [Sec. 7.5 (Part D)]p q y [ ( )]
Case 3.1:  >> 0 but < j for all or some of the bound electrons 

[a subcase of Sec. 7.5 (Part D), pp. 313-4, total reflection of 
light off the mirror and ultraviolet transparency of metals)

2
02

(7 51)jf Ne fiNe    

2
0

0 2 2 (bound) 0
     (7.51)

( )

b

j j j

Ne f

i
m iim



 
    

  
  
0

2

0 (  )In general, Re( ) Im( )
In general, , see p. 310.

 

b
j j

b b

f
m
 

 
 

 
  
 






 

The free electron term is predominantly imaginary when  <<0.

But, as shown above, when  >>0, it becomes predominantly real,
a qualitative departure from Case 2. This radically changes the
metal response to EM waves. Examples are given below and in
Case 3.2. Question: What is the physical reason for the free electron
term to become predominantly real when  >>0? 55

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

0

0

     Let  be the free electron density in the conductor   
( 1, i.e. each atom in the conductor contains on average 

i l f l 312) b i f

n Nf
f




2

approximately one free electron, see p.312), we obtain from 
(7.51)


2 0
p

b



   

where is the plasma frequency of the conduction electrons

 
2

2

where  is the plasma frequency of the conduction electrons 

See bottom of p.313.
*

p

p
ne

m







0*

and we have replaced  in (7.51) with the effective mass *  of  
the conduction electrons to account for the

m
m m



effects of bindingthe conduction electrons to account for the effects of binding. 
For simplicity, we assume  to be real by neglecting the weak 
damping effects of bound electrons. 

b
p g
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

2

2 2
0    Sub. /  into , we obtainb p k       

0
2

2
       

Hence is either real (propagation without attenuation) or purely

( )p
bk

k

 


   

    Hence,  is either real (propagation without attenuation) or purely  
imaginary (evanescent fields) depending on the wave frequenc

k

2

y. 

0
2

2
0      When , 0 and  . Then,

(33)

( )p

b p b

k z i tikz i t

k i i k

E E

 






     

 

    

E 0 0

0

                                 (33)
   

(34)

k z i tikz i t
x x

k z i t

E e E e

i E e



 



 

  

   

E e e

H e E e0                               (34)z yi E e    H e E e

(24) i    
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in (33) and in (34) arek z i t k z i tE e i E e    E e H e

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

evanescent fields which fall off exponentially inside the conductor.
They do not constitute a propagating wave This is because E and

0 0 in (33) and  in (34) arex yE e i E e E e H e

They do not constitute a propagating wave. This is because E and
H are 90° out of phase. Hence, Re[E × H*] = 0  No power flow
into the conductor. Thus, an incident wave will be totally reflectedinto the conductor. Thus, an incident wave will be totally reflected
from the conductor surface, with (33) and (34) representing the
shallow fringe fields inside the conductor. This is the principle of
“light reflection off the mirror”. By comparison, for microwave
reflection off a good conductor (Case 2), E and H are 45° out of
phase in the conductor  Some power flows into the conductor.

2 2
0 0At higher frequencies ( / ),  / 0.b p b p           

ence, k becomes real. The wave can then propagate
freely. This is the principle of “ultraviolet transparency of metals”.

( )

 Why can the wave propagate without attenuation in
                 a conductor? (see discussion at the end of Case 3.2

:
.)

Question
58

C 3 2 >> d >> f ll l t i th di

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 3.2: >>j and  >> j for all electrons in the medium
[a subcase of Sec. 7.5 (Part D), p. 313, applicable to X-ray 
f i d b d]frequencies and beyond]

Under the conditions  >>j (including 0) and  >>j, we may
neglect  and  in (7 51)

22
0 (7 51)    jf Ne fNe i

neglect j and j in (7.51),

2

0 2 2 (bound) 0

(use )

     (7.51)
( )

 
    







  
 


NZ

j j j

e f Z

i
m m ii

2 ( )
2

2

0

                            (use )
1 ,       (7.59)







 

  

NZ
jm j allp

e f Z

22
0

is the density of allwhere    p
NZe
m

NZ  electrons       (7.60)(bound and free) in the medium. 
 
  
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

2

2
2

2

00
1/ 2

Sub. 1  into  and assume , we obtainp

c

k




   



   


2 2 2

0 0 2

2 2 2 2

 1      

(7 61)

( )pk

k


   


  

Although (7.61) predicts evanescent fields

2 2 2 2 (7.61)pk c   

for  < p, the validity of (7.61) requires 
>>j and   j for all the electrons in the

di Thi i i H
   medium. This in turn requires  >>p. Hence,

k is always real and the wave is always a
propagating a e in the medi m nder thepropagating wave in the medium under the
validity condition for (7.61).

The above treatment for Case 3 2 applies to

   p
 k

The above treatment for Case 3.2 applies to
both dielectric and conducting media.
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Discussion: To examine the physical reason why we may neglect
III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Discussion: To examine the physical reason why we may neglect 
collisions and binding forces in (7.51) under the conditions  >>j
and  >>j, we go back to the equation of motion for the electrons:

2              ( ) ( , )                                  (7.49)

B i ( ) (0) bt i [ E (1)]

 


    j j
i t

m e t

t

x x x E x

E E

j g q

2 2

      By assuming ( , ) (0) , we obtain [see Eq. (1)]

(0) (0)        ( )    ( )



  



   

i t

i t i t
t e

e e e i et t

E x E
E Ex x 2 22 2( ) ( )

    j j jm mi 2 2

2      Thus,  when  and , we have ( ) 1/  and ( ) 

 

   

 

  
j

j j

i

t tx x

2 2
1/ . This implies that, for the same (0), the collisional damping 

force ( 1/ ) and the binding force ( 1/ ) decrease


   


 

j j

j jm m
E

x x
wi

j j

2 2
th increasing  and become negligible at a sufficiently large .

: Explain " 1/ " and " 1/ " qualitatively
 

    j jExercise m m x x
21

2from the simple case of constant acceleration :  and . 
j j

a v at x at
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 4: Waves in plasmas [a subcase of Sec 7 5 (Part D) p 313]Case 4: Waves in plasmas [a subcase of Sec. 7.5 (Part D), p. 313]
The plasma is a partially ionized (e.g. ionosphere) or fully

ionized (e g fusion plasmas) gas In general effects of neutralionized (e.g. fusion plasmas) gas. In general, effects of neutral
gas (if present) and collisions can both be neglected. Ion motion
can also be neglected at sufficiently high frequencies. Then,

0 2 2(bound)

2
       

  
  j

j

f

i
Ne
m

2
0

0
       (7.51)

( )  



Ne fi

m i (bound)   j j jim
2

0
02

0

negligible  ( 0)

( )




  

 


Ne f
m

m i

m

2

2

0
same equation as (7.59) but    1                        (35)with a much smaller  

p

p





 

 
     

22 0

 where  is the plasma frequency defined as
plasma electron density normally

p

p

n Nf


 

  22 0
0

plasma electron density, normally   much p
ne

m
n Nf

  
   (36)smaller than the density of solids. 
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III. Properties of Plane Waves in Dielectrics and Conductors (continued)

2

2
2

2

1/ 2
0

    Sub. 1  into  , we obtainp

c

k





    


2

2
2 2 2

0 0 0

2 2 2 2

1   (  for plasmas)

same equation as (7 61) but

( )pk



        

 

 

2 2 2 2
2

same equation as (7.61) but
          (37)with a much smaller  p

p
k c  

      
  (37) is the well known dispersion

relation for electromagnetic waves in a

  p
 k

plasma in the absence of an externally
applied static magnetic field. (Sec. 7.6

id th di i l ti f ti d l ) Whconsiders the dispersion relation for a magnetized plasma.) When ω
is extremely large (such as the gamma ray), all materials have a
dispersion relation given by (37) (Case 3 2) But for the plasma (37)dispersion relation given by (37) (Case 3.2). But for the plasma, (37)
is valid for all frequencies (e.g. MHz). 63

2 2 2 2R it (37)k

III. Properties of Plane Waves in Dielectrics and Conductors (continued)

2 2 2 2

p

    Rewrite                                                            (37)
      For  < ,  is purely imaginary (  = | | ) and hence  and 

fi ld i b (33) d (34)

 
 

  pk c
k k i k E H

are evanescent fields given by (33) and (34):

0 0            ;    


    k z i t k z i t
x yE e i E eE e H e0 0

     As in the case of light reflection off the mirror, an incident wave 
wave will be totally reflected [Shortwave broadcasting exploits the 

x y

y [ g p
reflection of radio waves (~10 MHz) off the ionosphere]. 
     For  > ,  is real. Hence, the wave will propagate in the plasma, p k
but with a phase velocity greater than the speed of light [as can be seen
from (37)]

p

2
. This implies that the plasma has an index of refraction ( ) n

   
2

2

0
less than 1. From (35), we have 1 < 1. Thus,





   p

   p  k0 00with ,  we have  < 1, as expected.
   n
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7.3 Reflection and Refraction of Electromagnetic
Waves at a Plane Interface Between DielectricsWaves at a a e te ace etwee e ect cs

0


 

  
  

i i te

'

k xE E
k EBe

Model: z

refracted wave (assumed)
 

k
B

0 0
[ ]' '', ' n'  

   

ze

i ik

0 0 

0 0
[ ],  n 

   

0




 
  


 i i te

k

k xE
k EB

E
0

i i te

k





 




k xE E
k EB

reflected wave (assumed)
k

incident wave (a given linearly
polarized homogeneous plane wave)

k


Kinematic properties: relations between angles of incidence, 
0 0 0 0

    :  In  1.2 of Part III, Re . Here, .cNote Case n nv    
   

p p g ,
reflection, and refraction

Dynamic properties: intensity, phase, and polarization relations 65

7.3 Reflection and Refraction… (continued)

     Kinematic Properties :
     Boundary conditions for the fields at 0 have the form: 

at any and     



 x y x y x yik x ik y ik x ik y ik x ik y

z

Xe Ye Ze x y at any  and ,
where , , and  are functions of the fields [see (7.3

 y y yXe Ye Ze x y
X Y Z 7)]. Since 

li l i d d t t h   x x xik x ik x ik x k k k, ,  are linearly independent, we must have .
Otherwise, we will have the trivial condition  0. For the 
same reason Hence and lie

  
  

    

x x xik x ik x ik x
x x xe e e k k k

X Y Z
k k k k k k in the same planesame reason, . Hence, ,  ,  and  lie y y yk k k k k k  in the same plane. 

     Without loss of generality, we choose a convenient coordinate 
system in which 0 Then and all lie in the     k k k k k ksystem in which 0. Then, ,  ,  and  all lie in the

-  plane, which we call the plane of incidence
  y y yk k k

x z
k k k

.
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n
k

e
z

Assume and (hence and ) are alln n     
Reflection and Refraction… (continued)

0 0
[ ]' '', ' n' 

   

n

r

x

ze     Assume ,  ,  , and  (hence  and ) are all
sin cos

real numbers. Let sin cos
x z

x z

n n
k i k i
k r k r

   
 

    

k e e
k e e

ki
r0 0

[ ],  n 
   

k

real numbers. Let sin cos  
sin cos

1/

x z

x z

k r k r
k r k r

k n


    



k e e
k e e

 0 0

0 0 0

1/ ,  
(16)  

/ ,  /
c

c

k n c

k n n n





  

         

    
          0

 
 
  

sin
sin

  (angle of incidence angle of reflection)
      

   (Snell's law)                    (7.36)x x x i
r

i r
k k k k n

nk

        

2

sin ( ) ( )

:
r nk

     A note on Jackson (7.33)



22 andk k  


k k2

2 *      In generak 



  


k k
k k k

 and 
l,  can be complex, but  is   

always real and positive.

k k
k
  





k k
k

y p

     Thus, Jackson's formula  in (7.33) is valid only when  is real. k


 k k
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Reflection and Refraction… (continued)

    Dynamic Properties :

0 0 0

Information concerning the , , and  is
contained in the complex , , and . The intensity, phase, and 

l i ti f fl t d d f t

intensity  phase   polarization
 

    
E E E

d ith t t th fpolarization of reflected and refract

 

ed waves with respect to those of
the incident wave can be obtained from the boundary conditions at 0:

continuous [ ] 0 (39)
z

D  


   E E E e  0 0 0

0 0

 continuous [ ] 0                           (39)
 continuous [

zD
B

 



    
    

E E E e
k E k E 0 ] 0                 (40)z


     


k E e
  

   
0 0 0

1 1
0 00 0

continuous [ ] 0                                    (41)
 continuous [ ] 0    (42)

z

z

E
H  

      
           

E E E e
k E k E k E e





: (1) Here, ,  ,  , a     Note
 

  


 nd  (hence  and ) are in general
complex numbers (see first paragraph of Jackson, p. 306.) We 

n n 

assume that  (or ) is the generalized electric permittivity. Hence, 
the results derived below apply

  
 to any media (including metal).

    (2) For a complex (or ), the phase velocity is the speed of light
divided by Re[ ]. [See lecture notes, the equation before (25)].

n n
n


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l f i id (th l )C 1 E

Reflection and Refraction… (continued)

 z
0:  plane of incidence (the -  plane)

x x z z

Case 1 x z
k k


 
  

E
k e e

  

zex x z z

x x z z

k k
k k

   
   

k e e
k e e

,  
,   x0 0

0 0

y

y

E
E

 
  


E e
E e

0 0

(39) is automatically satisfied.

y

yE  E e

   0 0 0 0

(39) is automatically satisfied.
(40) x z z x z x z z x zk E k E k E k E

k E

      



e e e e e e

  0k E e e e0xk E 0

0 0 0

0
 0 (43)

(41) l i (43)

z z x zk E
E E E

   
    

e e e

(41) also gives (43).
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Reflection and Refraction… (continued)

   

 

1 1
0 0 0 0

1
0 0

(42)  

0

x z z x z x z z x z

x z z x z

k E k E k E k E

k E k E
 



      

     

e e e e e e

e e e 
 

0 0
1 1

0 0 0

0

 0
x z z x z

z z

k k

k E E k E


 



     

e e e

cos cos
cos cos

z ck k i n i
k k





 

  

 0 0 0 cos cos 0         (44)n nE E i E r 

    

cos cosz ck k r n r   

0
2 2 20

2 cos

cos sin
(43)

E n i
E n i n n i






 







0

(43)
(44) cosn i nE







 
2 2 2

                                  (7.39)
sinn i








0

0E


2 2 2cos sinn i n n i



 
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Reflection and Refraction… (continued)

: plane of incidenceCase 2 E 
 
 

0:  plane of incidence 
sin cos

i (45)
x z

Case 2
k i i
k

 
   

E
k e e
k e e


 z

e 
 
 

   sin cos                                                              (45)
sin cos

i

x z

x z

k r r
k i i
E

  
   

k e e
k e e
E

 x
,    
,   

ze

 0 0

0 0

cos sin
   cos sin

x z

x

E i i
E r r

  
   

E e e
E e e 

 
                                              (46)

i
z

E i i




  E  0 0 cos sin

Sub. (45) and (46) into (39)-(42) yields
x zE i i   

 

E e e

 0
2 2 2 20

2 cos

cos sin

E nn i
E n i n n n i



 


  






2 2 2 2
0

  
cos sinn i n n n iE




   



                                            (7.41)




 20 cosE n i n




  2 2 2sinn n i


 71

     For normal incidence ( 0), (7.39) reduces to 
2 2

i r
E

 


Reflection and Refraction… (continued)

0

0

2 2      
1

E n
E n n

 



   


 z

ze  

0

                                                               (47)
1E n n




 







  
 

,   
,    x

reference
0

      
1

and (

E n n
 




 
7 41) reduces to

reference 
polarization
for (7.39)

  

and (

0

0

7.41) reduces to 
2 2      

1

E n
E n n
   



 z

ze  0 1
                                                           (7.42)

1

E n n

E n n


 












 
 x

,    
,   

z

f

 

0

0

1
       

1

E n n
E n n

 

 





 
  

reference 
polarization
for (7.41)

  

     These two limiting results are identi


cal and show that, if ,  
there is a phase reversal of the reflected wave at the interface.

n n 
( )
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     The results for normal incidence ( 0) can be expressed in termsi r 
Reflection and Refraction… (continued)self-study

of the impedance of the two media [The impedance of the medium is
defined on p. 297 and in the lecture notes following (7.11)]:

  z

ze
   

 (lower medium)
      

(upper medium)

Z

Z






 


 
,   

,    x

z

0

 (upper medium)
     Thus, (7.39) reduces to 

2

Z

E Z

 

  0

0

0

2    
          

E Z
E Z Z
E Z Z

   
   

reference 
polarization
f (7 39)0

0
   

     If the lower medium is vacuum and the upper medium is copper,

E Z Z
E Z Z

 
 

for (7.39)

pp pp ,

we  0 376.7   [lecture notes following (7.11)] have (0.026 0.026)  for copper at 10 GHz [(32)]s

Z Z
Z Z i
  
    

0     Thus, / 1,  i.e. almost all of the incident wave will be 
reflected with a phase reversal

E E  
 of the reflected wave at the interface. 73

: Sources of electromagnetic fields in dielectricsDiscussion

7.3 Reflection and Refraction… (continued)self-study
     : Sources of electromagnetic fields in dielectrics
     The source-free macroscopic Maxwell equations [(7.1)] can be 
converted into the microscopic form as follows:

Discussion

converted into the microscopic form as follows: 

0 B
0 

 
B

B Jackson p 156 and0

t

 


  


B
BE 0 1

t 

           
D E P

BE

P

Jackson p.156 and 
lecture notes Ch. 4

0
t

  



D
0

1  0 0

1 pol



  

                

H B M
PE

DH E P

 [lecture 
notes, Ch. 4]

polJ


0 0 0 0

t
t t

   
         

  

H E PB M
[(5.79)]MJ

0 0 0 0M polt
   

  

E J J

 [(5.79)]MJ
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7.3 Reflection and Refraction… (continued)

We see from the microscopic Maxwell equations that, upon action
self-study

p q , p
by the electromagnetic fields, bound electrons of atoms/molecules in a
dielectric ( ≠0, ≠0) will produce polarization charge and current
densities (pol and Jpol) and magnetization current density (JM),
through which the dielectric will generate its own fields. In the
macroscopic Maxwell equations, pol, Jpol, and JM are hidden in D and
H, but the fields they generate will appear in the solutions. For

l i i id f i di iexample, as a wave is incident from a vacuum into an  ≠0 medium, it
will induce pol and Jpol (pol = 0 inside a uniform medium, whereas
J i l t) d J th hi h t thJpol is always present). pol and Jpol are the sources which generate the
reflected wave and cause refraction of the transmitted wave.

Similarly in the case of a charged particle traveling in a dielectricSimilarly, in the case of a charged particle traveling in a dielectric
medium at a speed greater than the speed of light in that medium, the
 l and J l induced by the fields of the charged particle will generatepol and Jpol induced by the fields of the charged particle will generate
the Cherenkov radiation (treated in Jackson, Sec. 13.4).

75

7.4. Polarization by Reflection and Total 
Internal ReflectionInternal Reflection

0:  (for plane of incidence) 

2E i 
B     Brewster's Angle i E 

0
2 2 2 20

2 cos

cos sin

E nn i
E n i n n n i



     
2 2 2 2

0
2 2 2 2

     Re write                         (7.41)
cos sinn i n n n iE

E







     2 2 2 20 cos sin

   

E n i n n n i



  

  Assume ,  ,  , and  (hence  and ) are all real numbers. n n     

2 2 2 2

, , , ( )
     Let . We see that, if , where   satisfies 

cos sin

B Bi i i

n i n n n i

 
  

                   cos sin                                       B Bn i n n n i 

0then 0,  i.e. there will be no reflected wave. Consequently, upon
fl ti t th i id t l ith i d l i ti

E
i i

 

0

reflection at the incident angle , waves with mixed polarization 
become linearly polarized with plane of incidence.

Bi i
E 76



7.4. Polarization by Reflection and Total Internal Reflection (continued)

2 2 2 2

      :BCalculation of i

 
2 2 2 2

4 2 2 2 2 2
     Rewrite         cos sin                
       cos sin

B B

B B

n i n n n i
n i n n n i

  
    
 4 2 2 2 4 2 1 sin sinB Bn i n n n i    

   4 4 2 2 2 2

2

 sin Bn n i n n n

n

     



n

2
2 2 sin B
ni

n n
n

 



     Bi
  n

  n tan       B
ni
n

        (7.43)
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     : (occurs only when ) n nTotal Internal Reflection
7.4. Polarization by Reflection and Total Internal Reflection (continued)

kz
     Assume ,  ,  , and  (hence  and ) are all real and .

sin cos
Let

      
 


x z

n n n n
k i k ik e e

 , ,n   

n
r

     Let  
sin cos

     Snell's law, sin
sin

     x zk r k r
i
r

k e e

[(7.36)], can n
n

 , ,n 
, ,

k ki
i

x, sinr

0

[( )],

be written: sin , sin
sinr

n
i
i k ki

0
1 o

0

where sin  [ 90 ,  ].
     Thus, if ,  we have

   



 i n n
i i

n
n

See p. 27

0 0

0
2 1/2 2 1/2

0

, ,

        sin 1   cos [1 sin ] 1sin sin
sin sin[( ) ]



      r r r ii i
i i

 0
The propagation fact




2 1/2sin[ 1]i( i )
sin
i( )

or ( ) of the refracted wave behaves as

  

i

i
i iik

i
ikk z x

e k x

k 0 0
[ 1]sin( sin cos ) sin( )

surface wave
               (7.46)   

i iik x r z r ik z
e e e ek x  
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7.4. Polarization by Reflection and Total Internal Reflection (continued)

:Wave vector and fields of the refracted wave
self-study

2 1/2
0 0

sin[ 1]sin
sin
sin( )

     :

     Rewrite (7.46): 
  


i

i i i i
ikk z x

Wave vector and fields of  the refracted wave

e e e
 k x

     We see that  (of the refracted wave) may be expressed as
                    

k
                                                          (48)   x x z zk ikk e e

0 0

2 1/2sin sin
sin sinwhere , [( ) 1]  and both  and  are real

and positive quantities determined by the inc

       i i
x z x zi ik k k k k k

ident angle . Note that ip q y
2 2 2 2

0

g
(48) satisfies (16), i.e. .

Consider the case with plane of incidence and write
            

 
x zk k kk k

E0

0 0 0

     Consider the case with plane of incidence and write
                                               



x x z zE iE
E

E e e                             (49)

0 [(17)] 0 (50)      k E E kk E0 0 0

0 0 0
0 0

0 [(17)]  0                             (50)
Then,   

 [(19)]        (51)      

         


        

x x z z

x zz x
y

k E k E

k E E k

i

k E
k EB B e0 0[( )] ( )

     (48)-(51) give the sur

  yk
face wave solution discussed earlier in (21). 79

7.4. Polarization by Reflection and Total Internal Reflection (continued)

0:  (Consider plane of incidence as an example)     Poynting vector E 
self-study

 
0

2
0 0 0

( )1 1
2

( p p )

     Rewrite (20 ): Re ( )t
i

y g

e




   

         

k k xS k E E k E



2( )                             z
x x z z

ki zk ik e e
         k k xk e e

0 0 0 0 0 0 0

              (52)

          2      (53)x x z z x x z z x xE iE k E k E k E                E e e k E

2 2

0 0 0 0 0 0 0

0 0 0

+

( )
     Sub. (52), (53),  , and  into (20 )

x x z z x x z z x x

x x z z x x z z

E E

k ik E iE
 

         k e e E e e
22 2 from (50)/ [ ]Ek k 0 0+                             x zE E

 0

2 2 2 2
0 0 0 0

2 2

= from (50)

1
2 2

                         / [ ] 

[ 2 ] [ ]

z

z z

z x

x
x x x x z x xt

k k

E

z zk

k k

k k E e E E e 
  

         S E e e
2

2
2 2 2 2 2

0 0 0
2 21

2 2

2 2

      [ ] ( )z zx z
xx

t

z z x z x z
k kk z z

k
k
k

E E e E k k e 

 
  

  



       e e x

2k
x

2 2 2
0 0

2 2
2 2                                  (54)z z

z x z xx x
k kz z

k k
k E e E e

   



 

   e e

Power flows along the -direction. There is no power flowing from
     the 0 region into the 0 region total re

x
z z


   flection as expected. 80



7.8 Superposition of Waves in One Dimension; Group Velocity
1 1: Consider 2 waves (Fig 1) cos( )t k x Superposition of 2 Waves

1 2

1 1

2 2

1 2 1 2

    : Consider 2 waves (Fig. 1), cos( )
and cos( ),  in a dispersive medium characterized by ( ).
Assume and , then gives the approximatek k

t k x
t k x k

k k  


  
 

 
  

Superposition of 2 Waves

1 21 2 1 2Assume  and , then  gives the approximate
phase 

k kk k 
velocity ( ) of the superposed wave (Fig.2). The difference in

wavelengths results in alternating regions of constructive/destructive
phv

wavelengths results in alternating regions of constructive/destructive
interferences, or spatial modulations of the superposed wave (Fig. 2).
In addition, because of the difference in phase velocities, regions of , p , g
constructive interference, which carry the field energy, will be at
different positions at different times, moving at the group velocity ( ).gv

1 1cos( )     
cos( )

t k x
t k x





 

 
Fig. 1


2 2cos( )    

cos( )

t k x

t k x





 

gv
constructive
interference 

destructive
interference

 1 1
2 2

cos( )
cos( )

t k x
t k x





 
Fig. 2

phv
      
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7.8 Superposition of Waves in One Dimension; Group Velocity (continued)

The above qualitative picture can be analyzed as follows

1 2 1 2 1 2 1 2

1 1 2 2

     The above qualitative picture can be analyzed as follows.
   cos( ) cos( )

2 ( ) ( )k k k k

t k x t k x
   

 
   

  

gv
constructive
interference 

destructive
interference
      

1 2 1 2 1 2 1 2

1 2 1 2

2 2 2 2

2 2

2cos cos

2cos cos( ) ,

( ) ( )

( )

k k k k

k k

t x t x

t x t kx

   

  

 

 

  

   

Fig. 2phv


1 2

2 2
(B)(A)

where    



   1 2
1 2 1 2and k kk k k     2where     1 2 1 22 and .

     Factor (A) is the envelope function of the modulated wave (Fig. 2),
which divides the wave into packets each propagating at the speed

k k k   

1 2
2 1 2

which divides the wave into packets, each propagating at the speed

(groupg k k
dv

 
  




    velocity)
1 2 1 22

(g pg k k k k dk 
y)

     Factor (B) gives the phase speed of the wave within each packet, 

(phase velocity)phv
k



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7.8 Superposition of Waves in One Dimension; Group Velocity (continued)

Superposition of an Infinite Number of Waves: When an
infinite number of waves (centered around 0, k0 with a spread k,
see Fig. 4) are superposed, interferences can result in cancellation

h t f i f l th  (Fi 3) h theverywhere except for a region of length x (Fig. 3), where the
waves are constructively superposed into a wave packet.

0 0r r
nk
c
       

Phase velocity:                                                           (7.88)p

c
cv

k n
d


 

Group velocity:                                    (7.89)
( )g

d cv
dk n dn d


 
 



gGroup delay: L
v

 
g

dkL d
d d


 

 

Can a wave packet propagate at the group velocity faster than 
the speed of light? 83

7.8 Superposition of Waves in One Dimension; Group Velocity (continued)

:Discussion

2
if

high order terms (e g

    :
(i) The pulse shape give by (7.85) is undistorted . However, 

in the expansion of ( )) are incl
in time

udedd

Discussion

k 

 

2    high order terms (e.g.  in the expansion of ( )
     [(7.83)], the pulse will bro

 ) are incl
wad ien 

uded
dk

k

2
.   

( )

th time
gdv dk k k2

2

2
2

    Reason: ( )

If 0,  there is a spread in 

g
g g g

g

dv d
dk dk

d
dk

v v k v k k

v





      

 2 , p gdk


1
2(ii)  A shorter wave packet has a greater spread in  (and  

). Hence, it broadens faster than ag

k x k
v

   
longer pluse.    ). Hence, it broadens faster than agv

2
2

 longer pluse. 

(iii) Wave packets in vacuum remain undistorted ( 0).d
dk

kc    

 The following section gives a more rigorous treatment of the wave 
packet including pulse broadening. 84



7.9 Illustration of the Spreading of a Pulse as It 
Propagates in a Dispersive MediumPropagates in a Dispersive Medium

( )1

    Rigorously, the real quantity ( , ),  which we expressed in (7.80)

( ) h ld b i *ikx i k t

u x t

k dk
 ( )1

2
( )1 1

2 2

as ( ) ,  should be written*: 

       ( , ) ( ) . .                          (7.90)

ikx i k t

ikx i k t

A k e dk

u x t A k e dk c c















 



2 2

    
 

The medium is isotropic hen
 Assume (i) ,   are both real, i.e. no dissipation.          

(ii) ce ( ) ( )
k

k k 


 
( ) ( )1 1 1 1

2 22 2

The medium is isotropic, hen      (ii) .
 ( , ) ( ) *( )

ce ( ) ( )
ikx i k t ikx i k tu x t A k e dk A k e dk

k k
 

 

 
 
 

     
( )ik i k1 1

2 2
  ( , )t u x t i




   ( )

( )1 1

( ) ( )

( ) *( )

ikx i k t

ikx i k t

k A k e dk

i k A k e dk












 



2 2

( ) is not the Fourier t

( ) ( )

* : In (7.90), . Hence,  
th " l t diti " ( ) *( ) [ S

ransform of
2 8 f l t

)
i

 ( ,A k u x

i k A k e dk

Note
A k A k

t


 

            the "real ty condition" ( ) *( ) [see Sec. 2.8 of lectui rA k A k  e
            notes] is not applicable. 85

7.9 Illustration of the Spreading of a Pulse… (continued)

1 1 1 1
2 22 2

1 1 1 1

( ,0) ( ) *( )

( 0) ( ) ( ) ( ) ( )

ikx ikx

ikx ikx

u x A k e dk A k e dk

i k A k dk i k A k dk
 

 
 

 



 

  



 

 1 1 1 1
2 22 2

( )1 1
2

( ,0) ( ) ( ) ( ) ( )

( ,0) ( )

ikx ikx
t

ik x i k k x

u x i k A k e dk i k A k e dk

e u x dx A k e dkdx

 
  

 

  




  

  

 

 

  2 2
( )1 1

2 2

( ,0) ( )

        *( ) i k k x

e u x dx A k e dkdx

A k e dkdx




  


 





  
 
 1 ( )ixye dx y  

 2
2

2

       ( ) *( )                              (56)
ik

A k A k

  

   
2

( )e dx y


 

2
2

( )

 ( ,0) ( ) ( ) ( ) ( )   (57)[ ]  ik x
t

k

e u x dx i k A k i k A k



 


 




        

1

1
( )(56) (57)

( ) ( 0) ( 0)ikx i

i k

A k e u x u x dx


  



   (7 91)

by assumption (ii)

1
( )2

( ) ( ,0) ( ,0)      i
k tA k e u x u x dx 




                   (7.91)
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7.9 Illustration of the Spreading of a Pulse… (continued)

2

02( ,0) exp cos                                      (7.92)
2

( ) 
xu x k x
L



 initial conditions


2

: ( ,0) 0                                                             (7.93)




L
Example u x

t







22 0gdv d

initial conditions


2 2
( ) 1                                

2
[ ]   

a kk                   (7.95)



22
2

Expect spreading of pulse.

0 



  g d
dk dk

a

1( ) ( ,0) ( ,0)
( )2

[ ]





 
  

 ikx iA k e u x u x dx
k t

2 2/2
0

1 cos
2




   ikx x Le e k xdx

   
2 2

2 2
0 02 2 2

exp ( ) exp ( )         (7.94)[ ] [ ]
 

      
 

L L Lk k k k
 
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7.9 Illustration of the Spreading of a Pulse… (continued)

( )1 1 ikx i k t


2 2 2 2
2 2

( )

( ) ( ) (1 )

1 1( , ) ( ) . . 
2 2

ikx i k t

L L a kk k k k ikx i t

u x t A k e dk c c

L











 

  

0 0

2 2 2 2

( ) ( ) (1 )
2 2 2        Re

2 2
[ ]

k k k k ikx i tL e e e dk






     
 

 



2

2

12
2

2

2 2 2 2
0 0

02

( )
(1 )

22 (1 )

1 exp exp
1 (1 )Re
2

[ ][ ]
ia t

L
ia t

L

x a k t a kik x i t
L 





  



 
    (7.98)



0 0

2
 ( )

LL

k k

 

  

( )



 a wave packet propagating forward
a wave packet propagating backward




   
where  is a function
of given by (7 99):

L
t

1
2

22 2

of  given by (7.99):

( ) ( )                 [ ]L
a t

t

L t L  
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Superluminal Effect

89

Experimental results

90

Homework of Chap. 7  

Problems: 2, 3, 4, 6, 13,Problems: 2, 3, 4, 6, 13, 

14, 19, 20, 21, 28

Optional: 1 22 23 27Optional: 1, 22, 23, 27, 
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