Chapter 7: Plane Electromagnetic Waves
and Wave Propagation

T-Ray: Next frontier in Science and Technology

Terahertz wave (or T-ray), which is electromagnetic radiation ina
frequency interval from 0.1 to 10 THz, lies a frequency range with
rich science but limited technology.
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A Note about Oscillatory Behavior:
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Common feature of oscillatory behavior: CNCTEY | o | CNCTY
type 1 type 2
= Oscillations require energy storing mechamsms
energy exchange mechanism(s)
example energy storing ~ energy exchange medium

mechanisms mechanism(s)

mass-spring system %mvz, %kX2 restoring force  mass & spring

LC oscillator % LI 2, %CV 2 QI L, C, & wire
2 2
EM wave 287 , % %—B %—E not required

Organization of Lecture Notes on Ch. 7:

In Jackson, plane waves in dielectric media are treated in Secs. 7.1
and 7.2. Various special cases (plasma medium and high-frequency
limit) are treated in Sec. 7.5. Plane waves in conductors are treated in
Sec. 5.18 [e.g. Egs. (5.163)-(5.169)] and Sec. 8.1 [e.g. Egs. (8.9),
(8.10), (8.12), (8.14), and (8.15)] by methods different from those in
Secs. 7.1 and 7.2.

Here, we will cover these sections in Jackson with a unified
treatment of plane waves in both dielectrics and conductors, and at all
frequencies. Equations in Jackson will be examined in greater detail,
but in somewhat different order. So, in the lecture notes, the three
sections on these materials will be numbered Secs. I, 11, and III rather
than following Jackson’s section numbers. However, Secs. 7.3, 7.4,
7.8, and 7.9 of Jackson will be followed closely in subsequent lecture
notes (and numbered as in Jackson) .

We begin with a derivation of the generalized dielectric constant
&gy, which is applicable to both dielectric and conducting media.




I. Derivation of the Generalized Dielectric
Constant &g, [Sec. 7.5 (part A)]
Dipole Moment of a Single Electron: The equation of motion

for an atomic or molecular electron with mass m and charge —€ in
the presence of an external electric field E(x,t) can be written:

[restoring force due to electron displacement| F(x) f\-restoring
f_/H

force

mx = —eE(x,t)—me—mw&x (7.49)
x: displacement of] |7* electron collision
'the electron from| | t;;e'q.uzncy o f F(X)=F(0)+ F'(0) X+---
its equilibrium ymx - camiping 1o7ree = ==
2l B (rate of change of 0 _medx
position x = 0. electron momentum| | As in Sec. 4.6, we neglect
due to collisions) higher-order terms.

The "binding frquency" @, is the natural oscillation frequency of
the electron if it is set to oscillate about x = 0 under the restoring force
—ma)g. Since cog oc 1/m, the restoring force is independent of m.

I. Derivation of the Generalized Dielectric Constant &/, (continued)
Rewrite (7.49), mx = —eE(x,t) —ymx — ma)gx, as
m(x+yx+ a)gx) =—eE(x,t)
Let* E(x,t) = E(x)e_i“’t and expand E(x) about the equilibrium
position x =0, we obtain E(x) =E(0)+(x-V)E(0)+:--= E(0),
<

of the order of %E(O) if % <1

where A is the scale length of E(x). For example, if E(x) is a wave
field, then A ~ wavelength. By neglecting (x-V)E(0), we have
assumed that the electron displacement is too small for the electron
to see any spatial field variation. Thus, we assume that the electron
is acted on by a spatially uniform field:

E(x,t) ~ E(0)e ',
and it is understood that E(x,t) is given by the real part of the RHS.
*This is equivalent to a Fourier trnasformation to the @ space
and E(x) is a complex quantity called the phasor [see Appendix A]

L. Derivation of the Generalized Dielectric Constant ¢ /&, (continued)

Let x(t) = Xoe_i‘"t and substitute

{x(t) = x et

E(x.t) = E(O)e‘i“" into mM(X+yx+ a)gx) =—eE(x,1),

we obtain m(—a)2 —lwy + a)g)xo =—eE(0) with the solution:

e EQ
07 M —w’—iwy
E(0)eiet
= xO=-f 20, 0

(1) represents the forced oscillation of a simple harmonic oscillator
with natural oscillation frequency @,. The time-dependent x(t) results
in a time-dependent dipole moment at x = 0 given by

p(t) =poe ',
- (V) This reduces to (4.72) in
where Py =-€Xo=m 22 iy | the static limit: & = 0.

I. Derivation of the Generalized Dielectric Constant ¢/¢, (continued)

y e E(0)
E(x,t) =E(0)e™" 0TTm R iy
Rewrite —x e ' and
x(t) Xoe—iwt Do = —ex, = ez E(0)
p(t) =pee 0 07 M iy

In these equations, E(0), x,, and p,, are phasors containing phase
and amplitude information of E(x,t), x(t), and p(t), respectively.
The subscript "0" in x, and p, refers to the fact that the oscillation
is centered at x = 0, where E(x,t) is approximated by a spatially
uniform field E(0)e™"" (its value at x = 0). If the oscillation is
centered at an arbitrary point X, the only difference is that the

electron would see a sptially constant field given by E(x)e_i“’t.
Thus, i L pt)=pe " with p=& EX® (5
us, in general, p(t)=pe with p=T, R iy (7.50)

Note that, in (7.50), x is a spatial variable (not the electron
displacement), and p and E(x) are phasors.




I. Derivation of the Generalized Dielectric Constant ¢/¢, (continued)
The Generalized Dielectric Constant : Assume there are N
molecules per unit volume and Z electrons per molecule. Divide the
electrons of a molecule into groups, each with electron number f i
f j = £), binding frequency @, and collision frequency y; [There
may be one or more free electrons (@; = 0) per molecule.] Then, the
electric polarization (total dipole moment per unit volume) is
2 fi

P(x)=Ny f.p, =Ne L E(x)=¢,y.E(x

1() ZJ: iPij m %wjz—wz—la);/j (X)=¢&p e (f)
a macroscopic (436)| [a spatial
quantity {030, Foe variable

Extending the definitions of the static electric displacement (D)
D(x) =g E(x)+P(x) =¢E(x) (4.34) (4.37)

and permittivity (¢): {

e=¢go(1+ xe) (4.38)
to fields with exp(—iwt) dependence, we obtain D(x)=¢E(x) (2)
e . Ne2 f generalized
with =1+ Ze =14 gm j 0f—0*—iwy | {dielectric constant | (71

I. Derivation of the Generalized Dielectric Constant & /&, (continued)

Divide the electrons in the medium into

For copper, f, ~1
{bound electrons: wj # 0

and 7, ~4x10"/s.

free electrons: w; =0, f; = f, 7 =7,

2 f: Ne2 f
751) = g =g, + NE~ - +1 0
( ) 0 m j (bound) a)f—a)z—la)}/j ma)(?’o_'a))
o % due to free |~ ofe
=&ty electrons (7.56)
_ fONe2 Drude model for the
where o = m(yy—iw) [electrical conductivity} (7.58)

In general, @; > y; (see p. 310). Hence, &, is predominantly real.
When o ~ wj, Imé, becomes large. = resonant absorption

Questions:
1. ¢ > o as w — 0. Hence, the derivation breaks down. Why?

2. What makes the medium dispersive (i.e. € depends on @)?
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1. Derivation of the Generalized Dielectric Constant &/, (continued)
Discussion :

(i) D =¢E implies a linear relation between D and E. The linearity
results from the assumption that the electron displacement X is
sufficient samll so that, in (7.49), f(x)oc x and E(x) can be
approximated by a constant E(0).

(ii) €/&, in (7.51) or (7.56) is a generalized dielectric constant, which
includes contributions from both bound and free electrons. It is
thus applicable to both insulating and conducting materials. In the
wave fields, free electrons oscillate about an equilibrium position
just like the bound electron. Hence, both types of electrons can be
treated on equal footing. The generalized ¢ is an extremely useful
quantity. As will be shown, it allows a unified treatment of EM

waves in both insulating and conducting materials.

1. Derivation of the Generalized Dielectric Constant ¢ /&, (continued)

(iii) Write e = &' +1i&" [¢' =Re(¢), &" =Im(¢g)]. From (7.56), it can
be seen that &” is due to y [i.e. the damping term in (7.49)].
Hence, &" is resposible for the attenuation of EM waves in the
material. For the insulating material, " < &', the attenuation
constant is given by Jackson (7.55) in terms of &". For a good
conductor, &”" > &', the attenuation constant is given by Jackson
(5.164) in terms of o. The attenuation constants in dielectric
and conducting materials will be derived later in this chapter.

Note that both bound and free electrons contribute to &”
[see (7.56)], but contribution from free electrons is usually far
more important than bound electrons (why?). Even the insulating
material contains a small number of free electrons to give the

material a small conductivity.




L. Derivation of the Generalized Dielectric Constant ¢/, (continued)
(iv) ¢ is derived in the w-space for a harmonic field of arbitrary

frequency. Hence, D(w) = e(w)E(w) is a constitutive relation
in w-space valid for all @. For multi-frequency fields, we may
obtain the t-space D through a Fourier transformation

D0 - 1% Do o
=L )
2r

L E(@) E(w)e " dw [# ¢E(1)] 3)

fi . Ne2f
Ne?2 T J 0

s(@)=gy+ R )
0 j (bound) a)Jz—a)z—la)y j mco(jfo—la))

Since E(t) = iwa(a))e_i”td o, we find from (3) that, in
general, D(t) # ¢E(t) because ¢ is a function of w. There are,
however, 2 special cases for which (3) will yield D = ¢E in

t-space, as discussed in (v) and (vi) below.
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L. Derivation of the Generalized Dielectric Constant ¢/, (continued)

(v) Consider a static (@ = 0) electric field E in a dielectric medium
without free electrons (f, = 0), we have

E(o) = [* Ee'dt =E[” e'dt = 27E5(w)

. 2
Ne2 f . Ne“fy
g(w)=¢ey+ Y5 _
(@)= + m '(bg'und) a)‘Jz—a)Z—Ia)y ma)(}/o—la))
a)=0, fO :0_’
Ne2 f
=ftm X 5
J (bound) @j

=&, [& isreal]
Thus, in t-space, we have a static D given by
D= iﬁo@g(a))E(a))e_'wtda) =% b[* 27E5(w)e” ol o
= 8bE,

This recovers the static relation in (4.37) without making any
approximation.

I. Derivation of the Generalized Dielectric Constant ¢/¢, (continued)
(vi) For time-dependent fields in a medium with negligible dispersion
[i.e. £(w) = £(@,)] and negligible loss (i.e. j ~0), we have
D)=L [* D(w)e " do~ ] s(m))[” E(w)e " do = &(a))E(),
f.

2 2
where s(an) =60 +NEx T g Ny U
] C()J —C()O—|(l)]/j ] C()J —(!)0

This explains assumption (1) on p. 259 for the derivation of
(6.107); namely, the macroscopic medium is linear in its electrical
property and it has negligible dispersion and negligible loss. Under
this assumption, we may write D(t) = ¢E(t). Hence, in (6.105), we
have E-4D=¢E-ZE=52E-E=1SE-D.
Questions:

1. Assume an electromagnetic signal is propagating in the medium.
What is the condition on the signal in order for (@) = &(@;)?

2. Why is the assumption of "negligible loss" also required? 5

I. Derivation of the Generalized Dielectric Constant ¢/¢, (continued)

Anote about terminology : In general, the electric permitivity
is a tensor (denote it by &) and we may write

‘n fi2 &3
D=g8-E, where&=|¢&y; &) &

€31 €33 €33

The electrical property

of the medium is if

uniform (or homogeneous) | £ is indept. of x

E11 =€ = €33,




I1. Plane Wave Equations in Dielectrics and
Conductors - A Unified Formalism
Basic Equations :
Macroscopic Maxwell equations: Piree> J free are due to
V-D(x,t) = Ptree (X, 1) free electrgns. They are
V.B(x,)=0 neglected in (7.1).
’ 5 E(x,1), D(x,t), B(x,t), 4)
VXE(x,t) == 5 B(x,1) and H(x,t) here are E, D,
VxH(X,t) = J free (x,1) + £ D(x,t) | B, and H in (7.1).

Equation of continuity (conservation of free charges):

%pfree(xat)"'v"]free(xat) =0 (5)

As discussed earlier, the constitutive relations D = gy E (for bound
electrons) and D = ¢E (for both bound and free electrons) are in
general applicable only in the w-space. Similarly, B= ¢H and J = oE
are also w-space relations. To utilize these relation, we go to the

w-space by assuming harmonic time dependence for the fields. -

II. Plane Wave Equations in Dielectrics and Conductors... (continued)
Assumption 1: harmonic time dependence (@ : real and positive)

E(x,t ' (E |
0 (x) By convention, the LHS is
D(x,t) D(x) the real part of the RHS.
B(x,t B [
H(x,1) H(x) . B h
E(x), B(x) here are E, B
J(x,t) J(x) in (7.2) and (7.3)
p(x.1) L Lp(%) 1
g

real  complex (called the phasor)

V-D(X,1) = Pree (X,1) V-D(X) = Pree(X)
V-B(x,t)=0 — V~B(x)z0_ (6)
V xE(x,t) =—%B(x,t) V xE(x) =1wB(X)

VxH(X,1) = J e (x,1) + 2D(x,t) [V X¥HE) = free () = iwD(x)

%pfree(xat)+v'Jfree(x’t)=0 = — 0P (X)+V T e (x) =0 (7)18

I1. Plane Wave Equations in Dielectrics and Conductors... Ohﬁ’l'S law: (5. 1 59)
Assumption 2 : linear and isotropic medium, i.ejand P. 320
D(x) = &,E(x), B(x) = #H(X), J 106 (x) = oE(x) o1 (= pv).
Note: We have used 2 definitions of D. Here, D = g,E. In (2),
D = ¢E = (¢, +12)E. (D has no physical significance.)

Rewrite (7): —10pfee(X)+V - J e (x) =0

S 0P+ V- TE(X) =0 = pyee(x) = LIED
Hence, V-D(X) = pree (X) = V- £, E(x) = L V- 0E(x)
= V(g +i2)E(X)=0=V-cE(x) =0, )

where & =g, +17 takes the form of the generalized ¢ derived in
(7.51) and (7.56). Similarly, V x H(x) = J f¢e (X) —i@D(x) gives

V xH(x) = oE(x) —iwg, E(x) = —io] &, +1 ZJE(X) = —iwcE(x), (9)
where again ¢, and o are combined in the same manner as in (8).

This gives an alternative derivation of the generalized &. However,
¢ in (7.51) and (7.56) gives the explicit expressions for g, and o. 19

I1. Plane Waves in Dielectrics and Conductors (continued)

Using (8) and (9), we write the macroscopic Maxwell equations
for harmonic fields in a linear and isotropic medium in terms of
phasor fields and the generalized &:

V-¢E(x)=0

V:-B(x)=0

V xE(x) = iwB(x)

V xH(x) = —lweE(x)
Discussion :

(10)

(i) Bound electrons and free electrons are separated in the Maxwell
equations in (4) and (6), where &, contains the effects of bound
electrons and o contains the effects of free electrons.

(i1) Bound electrons and free electrons are combined in the Maxwell
equations in (10), where &(= &, +12) contains the effects of both
bound and free electrons. 20




II. Plane Wave Equations in Dielectrics and Conductors... (continued)

Assumption 3 : uniform medium (i.e. &, ¢ independent of x)

V-eE(x)=0 V-Ex)=0 (11)
V-B(x)=0 V-B(x)=0 (12)
V xE(x) = iwB(x) V xE(x) = ioB(x) 13)
V xH(x) = —iweE(x) V xB(x) = —ioucE(x) (14)

Vx{(13)}:> v2 {E(X)}+ Ligw® {E(X)}=o (15)
(14) B(x) B(x)

(15) has the same form as (7.3), which is derived from the source-
free Maxwell equations [(7.1)] for a non-conducting medium (o = 0).
However, (15) is applicable to both dielectric and conducting media.
In(7.3), € = &,. In (15), £ = &, +12. Solution for (15) and (7.3) takes
the same algebraic steps. But with ¢ = &, +12, the solution for (15)
will be applicable to both dielectric and conducting media. o

I1. Plane Wave Equations in Dielectrics and Conductors... (continued)

E(x)} 3 {Eo}eikx E,, B, here are &, B

B(x)] (B, in (7.8)-(7.12)

v?2 {ﬁg;} + ,uga)z {ggg} =0=> (—k2 + ,uswz){]lig} =0
=k= \/Ea) (dispersion relation) (16)
Note: 1. k*> =k -k; [k’ =k k.

2. k% = \k\z and k # k| unless k is real.

3. k can be complex, but k| is always real and positive.

Assumption 4 : {

k-E;=0 (17)

(11){(13)= |k -Bg =0 on (18)

By =LkxEq = ue 5 0 (19)

Note: (14) gives E, = —w%gk x By, which is implicit in (17)
and (19).

22

II. Plane Wave Equations in Dielectrics and Conductors... (continued)
<S>t = time averaged power flow per unit area (called intensity)

= <E(x,t)x H(x,t)>t

E(x) =E, k™
o] (g
el B e H,=B0- [eKxEo g
=§Re[E (x)xH(x)} / 0= = ﬁT( )
* i(k-k"):
:éRe[\/Elion(kxEo)e'( )X}
B =Ky g
4 * i(k-k*)-
éRe{\/ﬁ[kEo ~Eo (k-Ep) e )X} (20)
- 2 ) | Qi (k—K")- '
zlee{}l[kEo —Eo(k-EO)}e'( ”‘} 20)

Note: (E(x,t)x H(x,t)>t = %RC[E* (x)x H(x)] is derived in

Sec. 6.9 of lecture notes. .

II. Plane Wave Equations in Dielectrics and Conductors... (continued)

Discussion:

(1) Assuming p, ¢ are given, (16)-(19) are conditions imposed on
o, k, Ej, B, by the Maxwell equations.

(i1) The derivation of (16)-(19) only requires u, €, ®, k, E;, and B
to be constants, but not necessarily real (we have assumed o to
be real). Thus, any set of complex constants 1, €, @, k, E;, and
B, can be a valid solution of the Maxwell equations provided
they satisfy (16)-(19) and the boundary conditions (if applicable).

(ii1) The generalized ¢ is in general a complex number. z can also be
a complex number. Either complex & or complex x can lead to
complex solutions for k, E;, and B,,. Even when ¢ and u are real,
boundary conditions (if applicable) can lead to complex solutions
for k, E(, and B, [to be shown in Sec. 7.4, Eq. (48)].

24




1I1. Plane Wave Equations in Dielectrics and Conductors... (continued)
—iot+ik-x

(iv) Under assumptions 1 and 4, the fields (~e
a plane wave; namely, the surface of constant phase is a plane

) are those of

(see following examples). There are 2 types of plane waves
depending on the form of the wave vector k (also called the
propagation constant).

a. Homogeneous plane wave =
Consider the solution:
k =ke, | B, = \/EEO ke,
EO = Eoex Wlth B
B, = Bye, k= uew 0€y

where e,, ey, and e, are real unit vectors, but Ej, B, and k can
all be complex. This clearly satisfies (16)-(19) and is the most
familiar type of plane waves. Any plane perpendicular to the z-axis

is a plane of constant phase.
25

Optlonal II. Plane Wave Equations in Dielectrics and Conductors... (continued)

b. Inhomogeneous plane wave
Consider another solution satisfying (16)-(19):

k =k,e, +ik,e, k? =k -k =k —k? = usa*
EO = onex +iEOZeZ Wlth k'EO = kXEOX _kZEOZ =0 (21)

where ky, K;, Egx, Ey;, and B, are all real constants.

k =k,e, +ik,e, defined here can be converted to the form
k =kn =k(ng +in|) as used on p. 298 of Jackson. Here,
we reserve the notation n for later use as a real unit vector.

The physical meaning of such a solution becomes clear when
we construct the physical quantity E(x,t) from the phasor E(x).

E(x,t) =Re [Eoeik.xe—iwt] _ Re[( Egyey + iEOzez )e—ia)t+ikxx—kzz]

=[Egy cos(at —kyx)e, + Eg, sin(awt - kXX)eZ]e_kZZ 3

Interesting phe

ane a\lav eE}luz}’t]ions in Dielectrics and Conductors... (continued)

Rewrite E(x,t) = [Ey cos(at —k,X) e, + Ey, sin (@t —k,X)e, |~ ka2

This represents a surface wave in the z > 0 half space. It propagates
along the x-direction with an amplitude peaking at z = 0 and decreasing
exponentially along the positive z-direction. The surface wave is also
called an inhomogeneous plane wave (p.298). Any plane perpendicular

to the X-axis is a plane of constant phase.
When a plane wave incident

from a dense medium onto a . surface wave
: air —_—
tenuous medium (e.g. water to 0 ~ater > X
air) is totally reflected from the /\
interface, fields in the tenuous incident reflected
plane wave -  plane wave

medium form such a surface wave
due to boundary conditions at z = 0. This will be discussed in Sec. 7.4.

27

I1. Plane Wave Equations in Dielectrics and Conductors... (continued)

(v) Orthogonality of vectors k, E,, and B, in (17)-(19)

k-Eo=0 E,, By, and k are algebraically
(17)-(19) =1k -B; =0
orthogonal to one another
eX
For the homogeneous plane wave, Ej(= Eye, ), A
B, (=Byey), and k(=ke,) are also geometrically % ke,
orthogonal. Boe,

For the inhomogeneous plane wave, the algebraic orthogonality
of k(= kyey +ik,e,), Eo(= Egyey +IEy,e,), and By (=B e, ) does
not imply geometric orthogonality because k and E, do not have
clear geometric directions. In t-space, we have just shown

E(x,t) =[Egy cos (ot —kX)e, + Eg, sin(wt— kxx)ez]e_kZZ ,
which shows that the wave propagates along the X-direction, but its
E-field also has an X-component. 28




I1. Plane Wave Equations in Dielectrics and Conductors... (continued)
(vi) k-E; =0 does not necessarily imply k - E¢, =0.
(A similar comment is made in Jackson, see footnote on p. 298.)
For the homogeneous plane wave (k =ke,, E, = Ege,),
k . EO = 0
=k-E;=0
, k =k,e, +ik,e,
But for the inhomogeneous plane wave: .
EO = EOXeX + |Eozez
= kXEOX - szOz =0
= kyEox =k;Eo;,
= k‘E; = kXEOX +kZEOZ = 2kZEOZ * 0
Thus, in general, the k - E; term must be kept in (20) [see Egs.
(53) and (54) in Sec. 7.4.]

29

I1. Plane Wave Equations in Dielectrics and Conductors... (continued)

k = e (16)

k-E,=0 17)

(vii) Rewrite (16)-(19): 1} . g _¢ (18)
0 kXEO

By = LkxEq =ue 5 (19)

This set of equations is equivalent to (7.9)-(9.11) in Jackson, with
£ in (7.9)-(7.11) interpreted as the generalized &. The difference is in
notations. In (7.9)-(7.11), n is in general a complex unit vector subject
to the condition n-n =1, which leads to condition (7.15). Here, we treat
k as complex vector [as in (21)] without any additional condition except
for those imposed by the Maxwell equations [(16)-(19)]. Thus, the
complex k is more convenient to use, as has been demonstrated in (21)

and will be seen again in Sec. 7.4.
30

II. Plane Wave Equations in Dielectrics and Conductors... (continued)

Assumption 5: k =kn = (k, +ik;)n |k: complex constant

Then, (17)-(19) can be written el igyesng
n-E,=0 (16), (22)-(24) here are equivalent to | (22)
n-B,=0 (7.9)-(7.11) when nin (7.9)-(7.11) is (23)

a real unit vector and ¢ in (7.9)-(7.11)
By = uenxEq | s interpreted as the generalized . (24)

andk-E, =0 = k-E; =0. Thus, (20) reduces to
2 -2kn-
() = bRe[ |[2 [Eo[ &5 [n (25)

Under assumption 5, the wave vector k has a geometric direction

(m). Hence, (22)-(24) now represent homogeneous plane waves with
geometrically orthogonal k, E, and B,,.

In k = (k, +ik;)n, k(= 27”) gives the wavelength, k; gives the
rate of attenuation, and n gives the direction of wave propagation.

See Chap é.-lgane Wave Equations in Dielectrics and Conductors... (continued)

Definition of impedance and admittance of the medium :

Rewrite B =+/uenxE (24)
In engineering literature, this equation is often written
B E
Hy=—0="""0 (7.11)
y7, Z

where Z = \/g is the impedance of the medium (p. 297). The

admittance of the medium is defined as Y = %=\/% ZandY are
intrinsic properties of the medium.

Let E, = Ejg; and B, = By¢,. Because n, g, and &, are mutually
perpendicular, we have  Z =E,/H,
= Z is the (complex) amplitude ratio of E, and H, in the medium
(The definition is valid even if x, & are complex). In vacuum,

Z=2y=,/"=376.7Q
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II1. Properties of Plane Waves in Dielectrics and
Conductors [A unified treatment of Secs. 5.18, 7.1, 7.2,
7.5, and 8.1 using the generalized ¢in (7.51)]

In Sec. II, under assumptions 1-5, we have obtained the familiar
homogeneous plane-wave equations:

k=\peow [k : wave number or propagation constant] (16)

n-E,=0 (22)

n-B,=0 (23)

B, = uenxE, (24)
2 _-2kin-

), =1 Re[ £ 1?5 |n (25)

for a uniform and isotropic medium, where E,, and B, are (complex)
. . E(Xat) _ E() ik-x—iwt

amplitude constants of the fields: (B (x. t)j = RGKBO e

and n is a (real) direction unit vector of the (complex) wave vector

or propagation vector:  k =kn = (k, +ik;)n 3

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

On the basis of these equations, we consider below 4 radically
different cases which are distinguishable by the wave frequency
and the medium property characterized by the generalized
permittivity:

- 2
Ne? fj . Ne2f,
E=¢&+ > . +1 . (7.51), (7.56)
0 j (bound) a)JZ—a)z—la)y j ma(yy—io)
&y o/

Case 1. Waves in a dielectric medium

Case 2. Waves in a good conductor
Case 3. Waves at optical frequencies and beyond
Case 4. Waves in a plasma

34

Index of refraction n

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)
Case 1: Waves in a dielectric medium [§ 7.1, § 7.2, § 7.5 (Part B)]

fi Ne?
Ne2 j i €
s R _ (7.51)
m j (bound) a)J2 —(()2 - Ia)]/j WO - Ia))

Properties of &
1. In general, << @; (see p.310), hence Ime << Ree.

E=¢y+

%/—/
negligible (- f, = 0 or very small)

2. When o is near each  (binding frequency of the j™ group of
electrons), ¢ exhibits resonant behavior in the form of anomalous
dispersion and resonant absorption.

3 As o passes more @j’s, Ree decreases.

Ree

o
e

L 0

=3
»

100 10° 10° 10" 10® 10"

10 10® 10® 107
— —T—T T

LI L

—
O,

»

index of
refraction

of water
f VS Visible !
requency (4000~7000 A)
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I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 1.1: Lossless dielectric (« and ¢ are real. Secs. 7.1 and 7.2)

Plane waves in a dielectric medium governed by Egs. (16), (22)-(25)
are best examplified by the simple case of no medium loss (i.e. & and &
are both real).

Time-averaged quantities:

intensity: time averaged
2 = / E A
(29)=(8); =3zl 0‘ [Poyntlng vector } (7.13)

E(x>=E0e"“", B(x) = By = \[uenx E e
= (u), = time averaged energy density
= J[fE(x)-E"(x)+ | 1B B*(x)]= 8\E0\ (7.14)

These 2 terms are equal [ - By =+/uenxE (24)].
= equipartition of E-field and B-field energies

=(U), Vq, where v d—a):#(:

(7.13) and (7.14) = (S), -n = (u), v, TR




I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Time-dependent fields: T
Let E(X) = Eoeiklx = EOeik.xsl -
e : ) B
B(x) = /usn xE 2™ = \/ usE ™ e,
2

where g, €,, k are mutually perpendicular and
the fields are linearly polarized.

Further let E, =|E,|€'?, then
E(x,1) = Re[Ee* '] = |E,| cos (k- x — wt + 0) g
{B(x,t) = Jue Re[nx Ee* ¥ = [1¢ Ey|cos(k-x—awt+6)e,
4 and g are real. = E(x,t) and B(x,t) are in phase.
S(x,1) = E(x,t) x H(x,t) = instantaneous Poynting vector [(6.109)]
= \/%\EO\Z cos” (k-x—wt+6)n

= At a fixed position, S varies between 0 and the maximum (positive)
value at the frequency 2 w.

g Llg, n=g xg
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1L Properties of Plane Waves in Dielectrics and Conductors (continued)

Two linearly polarized waves can be combined to give

E(x,t) = E;(x,1) + E, (x,1) = (& E, +8&,E, )e** ! (7.19)

(7.19) consists of the following 3 cases:

1. (7.19) is a linearly polarized plane wave if E; and E, are in
phase, i.c. if E; =|E|e" and E, =|E,|e"

2.(7.19) is an elliptically polarized plane wave if E; and E, are
not in phase, i.e. if E; =|E;/e' and E, = \Ez\ei(aw).

3.(7.19) is a circularly polarized plane wave (a special case of

elliptical polarization) if |E;|=|E,|(=|E,|) and ¢ =+7/2. Hence,
E(x,t) = Ey (g, *ig, )e™ >t (7.20)
For an alternative representation, we define €, = ﬁ(sl tig,), (7.22)
where af_r g, =1and 81 -g- =0. Then, (7.19) [not (7.20)] can be written

E(x,t)=(E,g, +E_g_)ek¥ ot (7.24)

IIL. Properties of Plane Waves in Dielectrics and Conductors (continued)

A specific example of circularly polarized wave: y
Rewrite (7.20): E(x,t) = Re [EO (g, Lig, )e'k"‘f'”t} E o
— — —_k _ N
Letg =ey, & =ey, and n = K=¢- We have Ey ey iey)e""""“’t
{Ex (x,1)=E, cos(kZ — ot + 9) negative helicity
— . Yy
E, (x,t) =FE,sin(kz - ot +0) E
Exercise: Show that the instantaneous Poynting X
vector of a circularly polarized plane Eo(e, TToy )elxiot

y)€
positive helicity

Medium property: k =/ uew [(16)] gives the phase velocity (V)

wave is independent of time.

1 = E, where n = [-££ (index of refraction)  (7.5)
Jue Ho&o

Next, we consider plane waves in a lossy dielectric, where the fields
differ only slightly from those in a lossless case dielectric (e.g. E, B are
slightly out of phase). However, as a qualitative difference, the medium
absorbs the wave. So, our emphsis will be on the medium properties. 3°

w
V=—=
k

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 1.2: Lossy dielectric [pand/or ¢ are complex , Sec. 7.5 (Part B)]

K =+ uew can be written: k =Reueo+ilmyuew=p4+19 (7.53)
where f =k, gives (for arbitrary x and &)

the wavelength A = 2Z

—p
the phase velocity v = B~ Royue
the index of refraction n = % =Re,| 4~ [used on p. 314.]
Hoo
To find the meaning of a, we setkj =4 andn=e, in
2 _—2kjnx
(), = hRe[ [£ I, e [n (25)

_ =1 ¢ lw 2 o—az | Intensity (average
=P <S>t "2 Re\/;‘EO‘ ¢ [power/unit area) |’

Hence, « is the power attenuation constant given by

a=—%%P=2ki [=2Im+/puew] [used onp. 314].
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I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

For the common case of weak attenuation, we let
pu=real, e =& +ig" with &' >> &"

oo =V (148 < E (141 £2)

=k =ReJuco+ilm\ usw = ,ug'aﬁ% gg"a) (for real 1 and small &")

B=k =uc'o= ,Lf(l) io % (phase constant) P reduces to the

expression on

1

p. 311 when p=y,,.

V= % ~ N —% (phase velocity)

=S~ Jusc=| ,Lf(’) i (index of refraction)

1 —-az . .
3 \/% \EO\ e “* (intensity)

P=1Re [2]E, e

a =2k; ~|\/7 £ a)—g f (power attenuation constant)  (7.55)

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

&'(Ree) and loss tangent (tand; or %)
of some materials at different frequencies

€leg Loss tangent, 104 /¢’
Material S=108 =108 |f ="10| f = 108 | f = 10* | f = 10%®

Glass, Corning 707 4.00 4.00 4.00 8 12 21
Fused quartz 3.78 3.78 3.78 2 1 1
Ruby mica 5.4 5.4 —_ 3 2 _
Ceramic Alsimag 393 4.95 4.95 4.95 10 10 9.7
Titania 100 100 —_ 3 2.5 —_
Polystyrene 2.56 255 | 2.54 0.7 1 1 43
Neoprene 5.7 34 —_— 950 1600 C—

from Ramo, Whinnery, and Van Duzer, p.334.

" .
In (7.55), %( = tand) ) 1s commonly referred to as the loss tangent. 41 0
I11. Properties of Plane Waves in o jof a0t a0t 0 0B aoh a0 0% 100 w0d w0t II1. Properties of Plane Waves in Dielectrics and Conductors (continued)
Dielectrics and Conductors (continued) g 5 . .
2 Case 2: Waves in a good conductor [Secs. 5.18 and 8.1, applicable
g, A — to waves in metals under the condition 0<<jy,(~4x10'3/s.
- Visible
o e e Bl e e e see p. 312), i.e. for very low frequency (e.g. 60 Hz) up to
A miraculous property of I 1 near terahertz frequencies]
105 =
water: Definition of good conductor:
. . 3 2 f . 2
The index of refraction (to ~ T Uq Ne . Ne“f
, 1(top) - £ B T - 0 (7.51)
and absorption coefficient s M j (bound) @} — " — 1wy ma(y, —lw)
. 2 wop —
(bottom) for liquid waterasa = | PS o
function of frequency inHz £ & =&, In general, yj<wj, see p. 310. @
(Sec. 7.5 (Part E)] g°F e = In general, Re(&,)>>Im(g)
ec. /. art R -
F // ] E 2
10794 / . .0 Ne“ f
e i e g ] =>E=é o=~ (1.58) (7.56)
10“: _L_’/ulev ]1 meV 1e:I§ 1keV 1 1 Mev @ m(7/0 _ Ia))
10':02 ’ 1|o‘ ‘ 110s ’ 110' ‘ x[c“’{ 1[0“I 1Jo‘E 1Iolsl 110“‘ oF 102
43 44

Frequency (Hz)




111. Properties of Plane Waves in Dielectrics and Conductors (continued)

Up to low terahertz region, we have o < y,
(7o 1s of the order of 4 x 103 /s). Hence,

= When v <y, o ~real
and is independent of @.
(n: free electron density)

Ne?fy,  Ne?f, _ pe?
T m{p—io) T 7om ~ yom

Ine=¢,+ic/w [(7.56)], o/ @w> Im(g,). So we may assume &,

to be real. A good conductor is defined by: C‘%b > 1 (26)

&y ~ &9 = 8.85x107'% farad/m

Quantitative | Coopper = 3-9% 107 /Q-m, & grapnire = 6x10%/Q-m

examples: | Osea water ~ 6/ Q-m, O yroung *107°-3.5x107% /Q-m

_ o |60 Hz for household current

"2z |0.3-300 GHz for microwaves

Question: Why is it dangerous if an electrical appliance falls into
your bath tub? i

f

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Fields in a good conductor: For a good conductor (a%b > 1), we

1

have e = (ep+12)> ~(i9) 75 (1+1) ié:(e

=k= ,ugao:,/'u%m(lﬂ) I (for forward wave) (5.164)
3 [5 : skin depth }

o=

ﬁ

where 6= ,/250 L is real by assumption. (3.165) and (3.8)

Let E), = Epe,, n=e,. Then, H; = \/%anO = \/Eez x Epey = \/%Eoey

flex-] k- ot
E(x,t) :Eoelkx ot _ Eoelkz thex _Ee 56( ol )ex o7
= {H(x,1) =Hoeik'x_iwt Z\/EEOe glkz-iot

\/2;(1+|)Ee5e( “)t)ey (28)

(27) and (28) are equivalent to (8.11) and (8.9).
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II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

Skin Depth. The skin depth 5 is defined as the distance from the surface
of a plane conductor at which the electric and magnetic fields have decreased to 1/e
of their values at the surface.

Ll

P
o~
—

M L-Magnesiom

E
-
£ S
[l
£ =
£ =
& .

1079,

1%102 sx10%  pap® 5x10%  1pe1p® 5x10%

Frequency, megocycles

Skin depth as a function of frequency for a few common metals. (From
T. Moreno, “AMicrowave Transmission Design Datn,” McGraw-Hill Book Compeony,

g;;mlza:';qs'} _[0.85 cmat f =60 Hz (household current)
DICS: Ocopper 917 1075 emat f =10'° Hz (microwave) 47

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Discussion :

_Z j[Z—mt
E(x,t) = Eje o6 (5 w)ex 27)

H I . _Z i(%—a)t)
(x,t)_\/ZN:w(IH)EOe Se e, (28
= Inside the good conductor, the wave has a wavelength of

A =276 and it damps by a factor of 1/e over a distance of .

(i) E and H in a good conductor are 45° out of phase.

(i11) The fields in a good conductor are similar to those in a lossy
dielectric in that they both represent an attenuated plane wave
with k, E, H, mutually orthogonal. However, at the same
frequency, the wavelength is much shorter and the attenuation
constant much greater in the conductor than in the dielectric.

(i) Rewrite
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I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Examples: Letf = % =10"" Hz (typical microwave frequency)

glass(ﬁzl, i'z4 ‘9—%2 1x107%) copper (5z7><10_5 cm)

€0

A=2715 ~4.4x10~* cm

A= ~1.5 cm (Case 1.2)

7Z'
V Fw
a=27~88x10" em™ (7.55) |a=-}%P =2~45x10° em”

(iv) A wave incident from the outside into a good conductor (at any
incident angle) will propagate and attenuate inside the
conductor approximately along the normal to the surface (see
Jackson Sec. 8.1). The reason is shown in the figure below.

X
air conductor

Y SREEN
//\/ﬁl ~ —‘— ~ <>k,
/\\___) = Wave propagates appr0x1mately along z.
57 ) 49

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

Hence, we may approximately write the wave fields inside the
conductor as (27) and (28), i.e. E and H are parallel to the surface,
even if the wave is incident at an oblique angle into the conductor.

Question: Does it make sense to use power lines of very large

diameter (e.g.10 cm) in order to conduct higher
current and hence transmit more power?
(v) The 2 homogeneous Maxwell equations require that E; and B,
be continuous across the conductor surface.
E,, H,(since & # 0, what happen to the surface current K?)

E(0,)=E0_) _ &
H||(O+):H||(0_) s

conductor

z

0
Note: The current density in a good conductor is finite unless

0 =0 (or o =, i.e. the current flows on the surface). 50

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)
Surface current K ona good conductor :
If o # 0, the "surface" current K is not exactly on the surface,
It is concentrated over a depth of ~ one skin depth. K (unit: A/ m)
is an integrated value of J (unit: A/ m? ) over the penetration depth.

, —l+i
Ko =] Jdz =0 Edz=cEpe ' [“e 9 ‘dze, K eﬁ/
%/_J

it _ 5 _ () _ (4 (I
E=Ege 5e(5w)ex(27) _H_T_\/% Hy .
o (1+1)Ege e, = —e, x H(z = 0) = —e ZxH”(z—O) (29)

2,ua)

(29) here is (8.14) in Jackson; "—e," in (29) is "n" in (8.14).
(29) shows that the surface current K on a good conductor
depends only on the H; on its surface. Physically, K is the
response of the conductor in order to shield its inside from H,

(Faraday’s law). Hence, Ky is determined entirely by H;.
51

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Time - averaged power loss on the surface of a good conductor:
dRyss  power going into conductor
= =(S(z=0)), -e
Sz, %g
74

da unit area of conductor surface

= 1Re| E(z=0)xH"(z=0)] ¢, N
(27) (28) z
\/;\E(O)\ = \/;\E”(O)\ [E(0) Le, (30)

(27), (28) = [E;(0) = \/E H,(0) 31)

dPIoss 1 [uw 2 | useful form to explain
Sub. 31) into (30) = — "= da %‘HII(O)‘ [induction heating

- [2 [~
5= \ts| =1 a)5\H”(O)\ /m (8.12)
%% HII(O)‘ 200 Kt ‘ (8.15)

2
= ‘HH incident (0) + Hy refiected (0)‘

)




I11. Properties of Plane Waves in Dielectrics and Conductors (continued)
dR,ss/da in (8.12), obtained by the Poynting vector method, can be
shown to be exactly the Ohmic power dissipated inside the conductor.
Presistive = 0hmic power in the conductor/unit volume

_ %RG[J.E*] _ %O-‘E‘z I:)resistive
| 2675 2%
=10Eg["e ¢ =JuwHy"e ¢ (5.169)
@7 (28) R REZD
dPIoss - ; 7 o _%Z \ 2 | same as
F:Io Presistivedzzfluw‘HO‘ Io € dz:zlua)é"Ho‘ |:(8'12) :|

Questions: 1. Why does a microwave oven save energy?
2. How would you design an induction cooker? high x and &
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111. Properties of Plane Waves in Dielectrics and Conductors (continued)

Definitions: surface impedance Z,surface resistance Rg,and

surface reactance X of metal

(27+29) = K :@(Hi)EH(O):;fiE”(O):EH(O) {Zs:ratio of }

ZS E”(O) tO Keff
where Zg = 1;‘ [Jackson p. 356, bottom] is called the surface
o .
Z, =R, —iX,

impedance. We may write
P Y {Where Ry = Xg = 55

[surface resistance|  [surface reactance]
Example: Ry of copper = 0.026 Q2 at 10 GHz

The surface impedance Zg is an intrinsic property (rather than surface
property) of metal. It is in fact the impedance of a good conductor:

ZS:/ oo w1010
&(metal) \/%(IH) 20 0o o

HO

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)
Case 3: Waves at optical frequencies and beyond [Sec. 7.5 (Part D)]
Case 3.1: @>> y, but @ < @ for all or some of the bound electrons
[a subcase of Sec. 7.5 (Part D), pp. 313-4, total reflection of
light off the mirror and ultraviolet transparency of metals)

Ne2 Z fJ n . N62 fO

E=6)+ - i - (7.51)
M j bound) 0] —” —iwy; Ma(yy —iw)
%f—/
&p o Ne2 f()
In general, y j<wj, see p. 310. me?
= In general, Re(&,)>>Im(g,) (. @>>yp)

The free electron term is predominantly imaginary when @ <<y,
But, as shown above, when @ >>y,, it becomes predominantly real,
a qualitative departure from Case 2. This radically changes the
metal response to EM waves. Examples are given below and in
Case 3.2. Question: What is the physical reason for the free electron
term to become predominantly real when @ >>y,? 55

I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

Let n = Nf;, be the free electron density in the conductor
(fy ~1, i.e. each atom in the conductor contains on average
approximately one free electron, see p.312), we obtain from

(7.51)
E =& —%8
—¢<b 2 0

where o, is the plasma frequency of the conduction electrons
2 rle2
wp = [See bottom of p.313.]
m * 80

and we have replaced m in (7.51) with the effective mass m* of
the conduction electrons to account for the effects of binding.
For simplicity, we assume &, to be real by neglecting the weak
damping effects of bound electrons.
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II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

Sub. ¢ =g, —a)lfz)go/a)2 into K =

=4 /L[(gb - wpgo w

Hence, K is either real (propagation without attenuation) or purely
imaginary (evanescent fields) depending on the wave frequency.

2
Whena)<\/7 @y, & <0 and k=i,fy(%—gb)a)=i\k\.Then,

UE®, We obtain

E=E e e, = Ee Kt te (33)
_ e _ el ak[z-iet
HT_\/;eszr\/:Eoe e, (34)

@] Ve =\-le=i|e]
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IIL. Properties of Plane Waves in Dielectrics and Conductors (continued)

E=E,e ¥ in(33)and H = i\/EEOe_kZ_ia’tey in (34) are
evanescent fields which fall off exponentially inside the conductor.
They do not constitute a propagating wave. This is because E and
H are 90° out of phase. Hence, Re[E x H*] = 0 = No power flow
into the conductor. Thus, an incident wave will be totally reflected
from the conductor surface, with (33) and (34) representing the
shallow fringe fields inside the conductor. This is the principle of
“light reflection off the mirror”. By comparison, for microwave
reflection off a good conductor (Case 2), E and H are 45° out of
phase in the conductor = Some power flows into the conductor.

At higher frequencies (0 > /&y / &y0p), € =&, —@ go/a) > 0.
Hence, k(=+/uew) becomes real. The wave can then propagate
freely. This is the principle of “ultraviolet transparency of metals”.

Question: Why can the wave propagate without attenuation in
a conductor? (see discussion at the end of Case 3.2.)
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IIL. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 3.2: w>>y and @ >> @, for all electrons in the medium
[a subcase of Sec. 7.5 (Part D), p. 313, applicable to X-ray
frequencies and beyond]

Under the conditions @ >> (including y) and @ >>@j;, we may

JJ

neglect 3 and @; in (7.51),
2 f. 2
fosy N v ] viNetho (7.51)
M j (bound) a) - a) - Ia)]/J ma(y, — i)
5 ~— ’:‘nze (use (Z”) fi=2)
£ _1-B s 7.59
= 80 @ 2 ( )
2 _ Nze2 | NZ is the density of all electrons
where @p = me [(bound and free) in the medium. (7.60)
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I11. Properties of Plane Waves in Dielectrics and Conductors (continued)

2
Sub. &=1- ; into K = /e and assume u = 14, we obtain
1/¢? )
2 2 2
K* = s’ = posy (1= )

o; (7.61)

Although (7.61) predicts evanescent fields
for o < @, the validity of (7.61) requires @
>>y and @ >> @ for all the electrons in the

= o’ =k*c*+

medium. This in turn requires @ >>a,. Hence,

k is always real and the wave is always a

propagating wave in the medium under the 7
p

validity condition for (7.61).
The above treatment for Case 3.2 applies to
both dielectric and conducting media.
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I11. Properties of Plane Waves in Dielectrics and Conductors (continued)
Discussion: To examine the physical reason why we may neglect
collisions and binding forces in (7.51) under the conditions @ >>
and @ >>aj;, we go back to the equation of motion for the electrons:

M(X+ 7% +o}x) =—eE(x,1) (7.49)
By assuming E(x,t) = E(O)e_iwt, we obtain [see Eq. (1)]
e E(0)e _ e iwE(0)e '
x=-2 FOR o g EOE
a)j—a) —Ia)}/j a)j—a) —Ia)]/j

Thus, when @ >>y; and @;, we have x(t) o« 1/w?* and x(t)

II1. Properties of Plane Waves in Dielectrics and Conductors (continued)

Case 4: Waves in plasmas [a subcase of Sec. 7.5 (Part D), p. 313]

The plasma is a partially ionized (e.g. ionosphere) or fully
ionized (e.g. fusion plasmas) gas. In general, effects of neutral
gas (if present) and collisions can both be neglected. Ion motion
can also be neglected at sufficiently high frequencies. Then,

2
_ . Ne? A Ne 7.51
E=¢y+ X = +1 - (7.51)
W -0 —ioy;  Mo(y -iw)
\_—/——/

2
negligible sze ;0 (70—0)
Mo

oc 1/ . This implies that, for the same E(0), thi COlllSlO;lal damping e a)% same equation as (7.59) but 15
force (Myjx oc 1/ @) and the binding force (Mwjx o« 1/w”) decrease = g @t with a much smaller o, (35)
with @creasmg ® and become negligible e;t a sufﬁczlently large . where @y, is the plasma frequency defined as
Exercise : TExplam myjxocl/@" and ma). jxocl/w quahtatlvlely2 > _ne? | N=Nfy=plasma electron density, normally 36
from the simple case of constant acceleration a: v =at and x=;at". wp = oM | much smaller than the density of solids. (36)
61 62
I1L. Properties of Plane Waves in Dielectrics and Conductors (continued) I11. Properties of Plane Waves in Dielectrics and Conductors (continued)
2 : 2 2.2, 2
o . =
Sub. gio =1-—0 into k =+/pew, we obtain Rewrite o” =k°c” + @y (37)
®

I/C2 2
——
k? = uew® = s, (l—%)a)2 (u = 4, for plasmas)

same equation as (7.61) but
= o — K2 + 02 [ q (7.61)

with a much smaller a)% } (37

p
(37) is the well known dispersion @
relation for electromagnetic waves in a
plasma in the absence of an externally <,

applied static magnetic field. (Sec. 7.6 >k
considers the dispersion relation for a magnetized plasma.) When o
is extremely large (such as the gamma ray), all materials have a
dispersion relation given by (37) (Case 3.2). But for the plasma, (37)
is valid for all frequencies (e.g. MHz).
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For < @,, K is purely imaginary (k =i|k|) and hence E and H
are evanescent fields given by (33) and (34):

E = Eoe—\k\z—la)tex “H= i\/\%\EOe—\k\z—la)tey

As in the case of light reflection off the mirror, an incident wave
wave will be totally reflected [Shortwave broadcasting exploits the
reflection of radio waves (~10 MHz) off the ionosphere].

For @ >, k is real. Hence, the wave will propagate in the plasma,
but with a phase velocity greater than the speed of light [as can be seen
from (37)]. This implies that the plasma has an index of refraction (n)

2 )
less than 1. From (35), we have 2~ =1 —w—g <1.Thus,
0 [0
i = = | M <o,
with u = 1, we have n Lo <1, as expected. Py
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7.3 Reflection and Refraction of Electromagnetic
Waves at a Plane Interface Between Dielectrics

Model: z o B =B
k'xE’
e, B' =./u's x

r

refracted wave (assumed)

o r
[ v HE
Heln = \//1050] ) x

_ [ue
M, & [n = /1080] =
E Bt k i W~ E'= Ejelk et
y k"xE"
B=\/u8kEE B" = ue o

incident wave (a given linearly reflected wave (assumed)

polarized homogeneous plane wave)
Note: In Case 1.2 of Part Il n =& =Re | #° . Here,n= | .
Hoéo Hoco
Kinematic properties: relations between angles of incidence,
reflection, and refraction
Dynamic properties: intensity, phase, and polarization relations

7.3 Reflection and Refraction... (continued)
Kinematic Properties :
Boundary conditions for the fields at z = 0 have the form:

Xe Ye Ze atany X and Y,
where X, Y, and Z are functions of the fields [see (7.37)]. Since

H H N4
ikyx Aikyx  JikgX
b b

ikxx+ikyy+ ik;x+ik;’,y= ikyx-+ikyy

e e e
Otherwise, we will have the trivial condition X =Y =Z =0. For the
same reason, ky, =ky =kj. Hence, k, k", and k' lie in the same plane.

are linearly independent, we must have k, =ky =k;.

Without loss of generality, we choose a convenient coordinate
system in which ky, = k; = k;, =0. Then, k, k", and k' all lie in the

X - Z plane, which we call the plane of incidence.
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Reflection and Refraction... (continued) 7

| k’
Assume ¢, &', u, and g’ (hence n and n') are all e,
k =ksinie, +kcosie, e [ = %] r
real numbers. Let 1k" =ksinr'e, —kcosr'e, : X
D : metn= 12 ]
k'=k'sinre, +k'cosre, #o
k”
k=Juew=2n |c=1/ s, _
(16) :> ! ! ’ !/ { ILlO 0 ! !
K'=Ju'e'o=2n nz\/,ug/,uogo, n =\/,u5 !ty
i=r" (angle of incidence = angle of reflection)
k, =k, =k! = B ' '
T sin K (Shell's law) (7.36)
A note on Jackson (7.33):
kK k? %k and k # k|
{ , . .= Ingeneral, {k canbe complex, but [K| is
k" =k k always real and positive.

Thus, Jackson's formula k = k| in (7.33) is valid only when k is real.6 ;

Reflection and Refraction... (continued)

Dynamic Properties :

Information concerning the intensity, phase, and polarization is
contained in the complex E, Ej,, and E{;. The intensity, phase, and
polarization of reflected and refracted waves with respect to those of
the incident wave can be obtained from the boundary conditions at z = 0:

D, continuous = [¢(E,+E{)—¢'Ej]-e, =0 (39)
B, continuous = [kxE, +Kk"xEfj —k'xE;]-e, =0 (40)
E, continuous = [E, + Eq —Ej]xe, =0 (41)
H, continuous = [i(kXEo +Kk"xE{) —i(k’be )xe, =0 (42)

Note: (1) Here, ¢, &', u, and 4’ (hence n and n') are in general
complex numbers (see first paragraph of Jackson, p. 306.) We
assume that £ (or &') is the generalized electric permittivity. Hence,
the results derived below apply to any media (including metal).

(2) For a complex n (or n'), the phase velocity is the speed of light
divided by Re[n]. [See lecture notes, the equation before (25)]. 68




Reflection and Refraction... (continued) Reflection and Refraction... (continued)

Casel: E, L plane of incidence (the X - z plar;e) 42) = i(kx Eoe, —k,Eqe, ) xe, +i(kx Ele, +K,Ele, ) xe,
llz’zzklé(:exxiklf;ezz e, : K 1 ~u (kxEoe, =k, Eée_x)xel :_0
k" =k.e, —k,e, . E :>Zkz(EO_E(’)’)_ik£E(,)=0 k, =kcosi=2ncosi
Fo = Eocy z”; - ” = 1 (E,—Ef)cosi— " Ef cosr=0kZ:kcosr:§ncosr (44)
E = Epey B K/ TS B u\=0 T F0 i =0
Ej = Ege, E E” Eo _ 2ncosi

(39) is automatically satisfied. . 3) By ncosi+ ﬁ\/ n'? —n?sin?i

(40) = (kyEge, —k,Epe, )-e, + (k. Ege, +k,Ege, ) e, (44)} £ ncosi N e (7.39)

~(kEge, ~kiEge )¢, =0 NN oy

=Ey+Ej—E;=0 (43) 0 ncos|+ﬁ N —-n~sin”I

(41) also gives (43).
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Reflection and Refraction... (continued)

Reflection and Refraction... (continued) L N
For normal incidence (i =r = 0), (7.39) reduces to

Case 2: E, || plane of incidence , 56 2 R 2n z
k =k(sinie, +cosie, ) e ke By 14 [# #=# n+n’ e, ; “
k' =k'(sinre, +cosre,) o el oy (45) /15, v i £ )
k" =k"(sinie, —cosie, ) M, & X B B - o X
X z Y k Eo He o n-n" ue | . 5 [<F
e . B A £ == . v reference
E, =Ej(—cosie, + sin ie, ) /T Eo 14 [t p=p n+n 2| S polarization
E{ =Ey(—cosre, +sinre, ) B (46) He for (7.39
" _en . o . and (7.41) reduces to or (7.39)
Ef = Eg(cosie, +sinie, ) K : z
. . E, 2 2n "k .
Sub. (45) and (46) into (39)-(42) yields E. = >, e
- ! = Z .
Eo _ 2nn’ cosi 0 d%*—l g AN i e r B
- . - X
Bo  “n?cosi+nvn? —n?sin?i ue' u, & k - (7.42)
H Eo _\ue -1 n'—n e -
2 S (7.41) R v Wl B | 8\ | polarization
E; ﬁn' cosi—nvn'“ —n-sin”i 0 %+1 A=A N for (7.41)
5o _ k" or (/.
Eo  “n2cosi+nvn?—n?sin?i These two limiting results are identical and show that, if n’ > n,
H 71 72

there is a phase reversal of the reflected wave at the interface.




Reflection and Refraction... (continued)

self-study

The results for normal incidence (i = r = 0) can be expressed in terms
of the impedance of the two media [The impedance of the medium is
defined on p. 297 and in the lecture notes following (7.11)]:

self-study

7.3 Reflection and Refraction... (continued)

Discussion: Sources of electromagnetic fields in dielectrics

The source-free macroscopic Maxwell equations [(7.1)] can be
converted into the microscopic form as follows:

Z (lower medium) = \/% z
Z' (upper medium) = \/g € - -

Thus, (7.39) reduces to u, &' ; «
Ey _ 27 g WA B
Eo 7'+ 7 R reference
£ 717 S polarization
—0_=_= | for (7.39)
E, Z'+Z

If the lower medium is vacuum and the upper medium is copper,
Z=272,=376.7 Q [lecture notes following (7.11)]
Z'=27,~(0.026-10.026) Q for copper at 10 GHz [(32)]

Thus, E"/ E, = —1, i.e. almost all of the incident wave will be

we have

reflected with a phase reversal of the reflected wave at the interface. 7

V-B=0
V-B=0 OB |[Jackson p.156 and
OB VXE:_E lecture notes Ch. 4
VxE=—— | D=gE+P v.p 0 l
ot .

D= 1 V. E=———=—py |Ipal [lecture
v-D O@D H:;OB_M g & notes, Ch. 4]
VXH:E oF 'é’f,

VxB= ey —+ ttg VM + 1y —
/looat Ho Y X VE+ Ly
Jm [(5.79)]

= Hogo ot Hodwm + Hod pol
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self-study

We see from the microscopic Maxwell equations that, upon action

7.3 Reflection and Refraction... (continued)

by the electromagnetic fields, bound electrons of atoms/molecules in a
dielectric (& # &, 1 # 1,) will produce polarization charge and current
densities (p,, and J,) and magnetization current density (Jy),
through which the dielectric will generate its own fields. In the
macroscopic Maxwell equations, oy, oo, and Jy are hidden in D and
H, but the fields they generate will appear in the solutions. For
example, as a wave is incident from a vacuum into an ¢ #&, medium, it
will induce pyq and Jyo (Oye = 0 inside a uniform medium, whereas
Jpo 1s always present). py, and Jy,, are the sources which generate the
reflected wave and cause refraction of the transmitted wave.

Similarly, in the case of a charged particle traveling in a dielectric
medium at a speed greater than the speed of light in that medium, the
Ppor and J g induced by the fields of the charged particle will generate

the Cherenkov radiation (treated in Jackson, Sec. 13.4). s

7.4. Polarization by Reflection and Total
Internal Reflection

Brewster's Angleig: (for E || plane of incidence)

Ey 2nn’cosi

Eo 5 n'% cosi+ n\/n'2 —n%sin?i

Re write ) ; (7.41)
E; %n'z cosi—nVn'? —n?sin’i

2

Eo 5 n'> cosi+ n\/n’z —n’sin
Assume ¢, &', u, and 4’ (hence n and n') are all real numbers.
Let 1= u'. We see that, if i =iz, where ig satisfies

n'% cosig = ny/n"? —n*sin?ig

then Ej =0, i.e. there will be no reflected wave. Consequently, upon
reflection at the incident angle i = i5, waves with mixed polarization
become linearly polarized with E,, L plane of incidence. 76




7.4. Polarization by Reflection and Total Internal Reflection (continued)

Calculation of ig :

Rewrite "% cosig =nyn'? —n*sin’ iy

= n" cos? iy =n’ (n'2 —n? sin’ iB)
=n" (l—sin2 ig ) =n’n? —n*sin’ig
= (n4 —n’4)sin2 ig =n" (n2 —n'2)

)
—sinig =" —
B 2 - .

n? +n"
= tanig = - n (7.43)
n
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7.4. Polarization by Reflection and Total Internal Reflection (continued)

Total Internal Reflection: (occurs only when n > n’)
Assume ¢, ¢', i, and 4’ (hence n and n') are all real and n > n'.

k =ksinie, +Kkcosie, z K’
Le i
k'=Kk'sinre, +k'cosre, n
r
I
Snell's law, Sini — N [(736), can  p,s'n
sinr X
,E,n
be written: sin r = Sl d
sinl,’ K/
; . _l O , kll
where i, =sin ﬁ [<90°, -n>n'].
Thus, if i > iy, we have See p. 27
sinr=310L 51 = cosr=[1—-sin?r]"? = [(Sm')z—l]l/2
m |0 T Slnl
<
— The propagation factor (e’ ) of the refracted wave behaves as
- . ) (sml )2 1] 1/2 7 ik’smb sml X
elk X _ elk (xsinr+zcosr) _ e sinig e sini (7.46)
surface wave 8

Self-StUdY7,4, Polarization by Reflection and Total Internal Reflection (continued)

Wave vector and fields of the refracted wave:
(sml )2 1]1/2 Z jk’-sinl sml X

Rewrite (7.46): '™ = sinlo sinlp
We see that k' (of the refracted wave) may be expressed as
=kye, +ikJe, (48)
where k| = k'ssllr?l' k=K' Sslgll' —1]"? and both k, and k are real

and positive quantities determined by the incident angle i. Note that
(48) satisfies (16), i.e. k'-k'= k'2 k'2 k'? = ,u'g’co2
Consider the case with Ej, || plane of incidence and write
E, = Ejye, +1E(,€, (49)
k'"-E{ =0 [(17)] = kyEjx —Ej,k; =0 (50)

Then, 1 —k'x E; ki Ef,+k5 EL
B, =/u's o 0 [(19)] = By =i—0L20%e  (51)

(48)-(51) give the surface wave solution discussed earlier in (21). 7

Self_study 7.4. Polarization by Reflection and Total Internal Reflection (continued)

Poynting vector : (Consider E, || plane of incidence as an example)
: . 1 1 ' e AR i(k'-k"™)x
Rewrite (20"): (S), = 20)Re{ﬂ,[k E{(k'"-Ej )Je }

—kle, +ikje, = el K KX _g2k:2 (52)
E{, = E{.e, +iE),e, = k'-Ef =k, E{, +k,Ej, =2k Ej,  (53)
Sub. (52), (53), k' =ke, +ik;e,, and E; = Ej,e, + iE(’)ZeZ into (20")

=|E [ +IES, k2 \E /K2 [from (50)]

1 ’ '—J? ' —2k'Z _ k '—’% —2k’Z
<S>t —7,[kx —2k z 2a),u z e,

—2k Z 2 2 2k z
Za)lu EOZ‘ k/2 EOZ‘ ]e eX 260#"(’ EOZ‘ (k k )e eX

2
2 2 52K32, 2 g-2K2, =k
= s Bl e e, = 50|y, e (54)

= Power flows along the X-direction. There is no power flowing from
the z < 0 region into the z > 0 region = total reflection as expected. so




7.8 Superposition of Waves in One Dimension; Group Velocity
Superposition of 2 Waves: Consider 2 waves (Fig. 1), cos(at —K;X)
and cos(m,t —k,X), in a dispersive medium characterized by @ = o(k).
Assume @; = ®, and k; = k,, then kﬂ ~ % gives the approximate
phase velocity (v,,,) of the superposed wave (Fig.2). The difference in
wavelengths results in alternating regions of constructive/destructive
interferences, or spatial modulations of the superposed wave (Fig. 2).
In addition, because of the difference in phase velocities, regions of
constructive interference, which carry the field energy, will be at
different positions at different times, moving at the group velocity (V).

cos@t =k = MMMV,
Fig. 1
cos(@t=k - VWM

constructive  destructive
Vg interference ¥ interference

Fig. 2

cos(ayt —k;X)

+cos(m,t — Kk, X) "

7.8 Superposition of Waves in One Dimension; Group Velocity (continued)
The above qualitative picture can be analyzed as follows.
cos(ayt — K, X) + cos(@,t —k,X)

o~ ki—k o+ ky+k )
=2 COS( -5 X) COS( -5 X) constructive  destructive
—Vy interference »Jz _interference

~ 2cos(A5% t - Tkz X)cos(wt —kx),
EEE———

A (B) Vo Fig 2
ig.
where @ =" (~ @ ~ »,) and k =¥(z ki =k, ).

Factor (A) is the envelope function of the modulated wave (Fig. 2)
which divides the wave into packets, each propagating at the speed
aze _o-—o, do
_ 2 h U@ .
Vg = Kk gk, e (group velocity)
2
Factor (B) gives the phase speed of the wave within each packet,
@

Vph = K (phase velocity) o

7.8 Superposition of Waves in One Dimension; Group Velocity (continued)
Superposition of an Infinite Number of Waves: When an
infinite number of waves (centered around @, k, with a spread Ak,
see Fig. 4) are superposed, interferences can result in cancellation
everywhere except for a region of length Ax (Fig. 3), where the
waves are constructively superposed into a wave packet.

Nw ;
HED =~ Uy Er Hogo®@ ="~ : \ legi
Phase velocity: v, = w_¢ ; ’ (7.88)
k n
. da) C Ak
Group velocity: vy =—=———— 7.89
PRI T T nv adn/do) N\ ke 7
A !
Group delay: 7, = — L _dk_dg :
T do do o=

g
Can a wave packet propagate at the group velocity faster than
the speed of light? -

7.8 Superposition of Waves in One Dimension; Group Velocity (continued)

Discussion :
(1) The pulse shape give by (7.85) is undistorted in time. However, if

high order terms (e.g. ii—g’) are included in the expansion of (k)
[(7.83)], the pulse will broaden with time.

Reason: Vg = Vg (k) = Avg = dkg Ak = gig’ Ak

d’w i
=1If i 0, there is a spread in v

—
o~ ——
(i1) AKAX > % = A shorter wave packet has a greater spread in k (and
Vg ). Hence, it broadens faster than a longer pluse

(iii) Wave packets in vacuum remain undistorted (@ = Kc = d o S0 =0).
The following section gives a more rigorous treatment of the wave
packet including pulse broadening. 84




7.9 lustration of the Spreading of a Pulse as It
Propagates in a Dispersive Medium

Rigorously, the real quantity u(X,t), which we expressed in (7.80)
B ikx—io(k)t I
as - [~ Ak)e dk, should be written*:
_1.1 (® ikx—i(k)t
u(x,t) = z@f—w Ak)e dk +c.c. (7.90)

Assume (i) o, k are both real, i.e. no dissipation.
(ii) The medium is isotropic, hence w(—k) = @(k).

7.9 Ilustration of the Spreading of a Pulse... (continued)

u(x,0) = A(k)e"*dk +1 Sl Ax(k)e " dk

LEL
-1

U0 =317, —|a)(k)A(k)e'kXdk+ jfowia)(k)A*(k)e‘ikXdk

:jfowe"kxu(x,O)dx [ A(k)e'(kk)xdkdx

_11
NGY
+

ij-oo ey = 5(y) I_w.[_wA*(k)e_l(k+k ) dkdx
27"

£[A(k)+ A*(— k)] (56)

Su(xh =31 j A(k)e'kx‘i"’(k)tdk +h 7 AR (el
ikx—iw(k)t o _—ikX g _r N '
1 % —ikx+iw(k)t w(k")
I io(k)A*(k)e dk (56)- ey 57 [by assumption (i) |
*Note: In (7.90), A(k) 1s not the Fourier transform of u(x,t). Hence, _
the "reality condition" A(k) = A*(—K) [see Sec. 2.8 of lecture = Ak) = \/—J‘ e [U(X 0)+ a;(lk) Su(x, 0)} dx (7.91)
notes] is not applicable. e 86
7.9 Illustration of the Spreading of a Pulse... (continued) 7.9 Tlustration of the Spreading of a Pulse... (continued)
2 = u(x,t) :;\/;_jfw A(k)e™1eMtgk 4 c.c.
u(x,0)= exp(— —5)coskx | N (7.92) 4 g g 22
212 initial conditions L o o ——(k—ko)? —7(k+k0)2 ikx— |vt(1+—)
Example: au(x,O) ~0 (7.93) = o Relle +e le dk
dv 2
2 9_d“w_,5220 (x—vaZkt)? a2k 2
(k) =v[1+ —a * ] dk  dk2 _ (7.95) 1 o exple laovt |- exp[ikgx—iv(l L2 )t]
= Expect spreading of pulse. — ~Red (1+1321)2 2L0(1+527) (7.98)
2 L T a wave packet propagating forward

= Ak) = \/_j e M u(x, 0)+ﬁa—u(x ,0)]dx

R koXxdx

J—I_w
:;{exp[(—;)(k—ko )2]+exp[(—L2)(k Tk, )2]} (7.94)
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+ (kg = —k,) < awave packet propagating backward

koL >>1 kLS 1
where L is a function

of t given by (7.99):
2 a2
L =[12+ @]~ NG




Superluminal Effect
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Homework of Chap. 7

Problems: 2, 3, 4, 6, 13,
14,19, 20, 21, 28

Optional: 1, 22, 23, 27,
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