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1. Textbook and Contents of the Course:

J. D. Jackson, “Classical Electrodynamics”, 3rd edition, Chapters

8-11, 14.

Other books will be referenced in the lecture notes when needed.
2. Conduct of Class :

Lecture notes will be projected sequentially on the screen
during the class. Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skipped.
Questions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes before
attending classes (important!).

3. Grading Policy: Midterm (40%); Final (40%); Quiz x 4 (20%)
and extra points (10%). The overall score will be normalized to
reflect an average consistent with other courses.

. Lecture Notes: Starting from basic equations, the lecture notes
follow Jackson closely with algebraic details filled in.

Equations numbered in the format of (8.7), (8.9)... refer to
Jackson. Supplementary equations derived in lecture notes, which
will later be referenced, are numbered (1), (2)... [restarting from
(1) in each chapter.] Equations in Appendices A, B...of each
chapter are numbered (A.1), (A.2)...and (B.1), (B.2)...

Page numbers cited in the text (e.g. p. 395) refer to Jackson.
Section numbers (e.g. Sec. 8.1) refer to Jackson (except for
sections in Ch. 11). Main topics within each section are
highlighted by boldfaced characters. Some words are typed in
italicized characters for attention. Technical terms which are
introduced for the first time are underlined.

Chapter 8: Waveguides, Resonant Cavities,
and Optical Fibers

8.1 Fields at the Surface of and Within a Good Conductor*

Notations: H, E: fields outside the conductor; H-, E: fields inside
the conductor; n : a unit vector L to conductor surface; &:a
normal coordinate into the conductor.

/05 €c> He

Assume: (i) fields ~ e ' N .

.. . ov
(i1) good but not perfect conductor, i.e. H, E %H., E,

o # o, but a%b > 1 [See Ch. 7 of lecture notes, Eq. (24)].

(iif) H; (£ = 0) is known.
Find: E_ (&), H ($), and power loss, etc. in terms of H (& =0)

*The main results in Sec. 8.1 [ (8.9), (8.10), (8.12), (8.14), and (8.15)] have
been derived with a much simpler method in Ch. 7 of lecture notes. [See
contents following Eq. (26)]. So, we will not cover this section in classes.




8.1 Fields at the Surface of and Within a Good Conductor (continued)

Calculationof E.(&), H.(&): In the conductor, we have

VxE, = _Q B, =iouH, | good conductor assumption| (1)
!
VxH, _J+5D =oE, —iwg,E, = oE, (2)
V=_no |Ina good conductor, fields vary rapidly along the 3)
o¢ | normal to the surface, see Ch. 7 of lecture notes.
EC~—in><a‘3§H 4)
1, 2),3)= :
H,. ~ aa.»; E. 0= /¢ = skin depth | (5)
Sub. (4) into (5) o (n xH,)+2 (n xH.)=0 (8.7)
_S g

b.c. at &=0: Hy(0) = H(0)

:anc<§>~anc<0>e Seo

< i & oo
= H ()= H,(0)e °e =H,(0)e %e? 0 J=oE, (6)
1:(5)= 1 H(©) = 0= Hoy(©) = He(§) o,
ic
0 k

Sub. (7) into (6) = H (&) = H (0)e” Ses (8.9)

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Sub. H (&) HH(O)e_fé;elff into E (rf) ~—lnxg 2H.(&)
ig

= E (&)~ 52 (1-i) [ nxH (£ =0)]e Ses (8.10)
E(¢=07Eq(E =05 E(6=0)= HP1-i) nxH(£=0)] (8.11)
Power Loss Per Unit Area:
dg"“ = time averaged power into conductor per unit area
a

—%Re[n-E@:O)xH*(f:O)}
=—lRe[n-E”(§=0)xH[’[(g:O)]
4/10“’5\"'”(5 0) = 55 Hy (€ =0) (8.12)

_E‘HII(‘”SZO)‘

oc ,ucia)ia

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Alternative method to derive (8.12):
_¢(=0)
(8.10)= J(&) =cE (&)~ L1-D[nxH(£=0)]e ¢  (8.13)

{tlme averaged power }

=1Re[J(&)-E (5)} L)

(8.13)

_20— jo d‘fp(f)‘ _7‘ 16 = 0)‘ Io

loss in conductor per
unit volume

dPlOS S
da

same as (8.12)

= a5
Effective surface current K ;-
Koy = Jo 3(&)dé = s(1-i)[nxH (£ =0)][e
=nxH (£ =0) (8.14)

d])ZOSS J— 1

2
200 Koy

(8.12) & (8.14) =

(8.15)

8.2-8.4 Modes in a Waveguide

Consider a hollow conductor of infinite length and uniform cross
section of arbitrary shape (see figure). We assume that the filling
medium is uniform, linear, and isotropic (B = uH; D = ¢E, where ¢
and u are in general complex numbers). This is a structure commonly
used to guide EM waves as well as a rare case where exact solutions
are possible (for some simple cross sections.) Maxwell equations can

be written
VxE———B - (8)
VxB=usE (" ARG R ()
H )complex £ and ’
V-E=0 H (10)
V-B=0 (11)
VX(8):>VxVsz—%VxB:V(V-E)—VZE:_g(ﬂg%E)
:>V2E—,ug§E:O (12)

Similarly, Vx (9) = V2B — ygg B=0 (13)
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8.2-8.4 Modes in Waveguides (continued)

X,: coordinates transverse to z,
e.g. (x,y) or (r,60)

+ik,z—iot
Let E(X,7) =E(X,)e
k., here <> k in Jackson

B(X t) B(X ) ilk z—iwt ’
where, in general, @ and k_ are complex constants. To be specific,
we assume that the real parts of @ and &, are both positive. Then,

=271 and e %771 have forward and backward phase velocities,
k2710l and e~ =71 3150 have

respectively. As will be seen in (31), e
forward and backward group velocities, respectively. Hence, we call
=271 4 forward wave and e =7 g backward wave.

With the assumed z and ¢ dependences, we have
52 2

— — 2 2
or’ e Cartesian
62 N k2 vz __Jox® oy

=
oz? 10(,0)4+ 10
e (r 6r) 3 Py , cylindrical

2
VI=Vit o =V -k
4

8.2-8.4 Modes in Waveguides (continued)

Thus,
VE- pe % “E=0 -
2 2 (X,)
VzB—ﬂea—szo = (V7 + pee” =k ){B(X )} 0 (8.19)
= (V7 + peo’ ‘kz){i 8(( i} 0 (14)

It is in general not possible to obtain from (8.19). So our strategy
here is to solve (14) for £_(X,) and B, (X, ), and then express the other
components of the fields [E,(X,) and B,(X,)] in terms of £_(X,) and
B_(X,) through Eqgs. (17) and (18).

Exercise: Writing E(X,) = E.e, + Egey + E,e, and using the
cylindrical coordinate system, derive the equations
for £, and £, from (8.19).

iafe O - 0 —
(hlnt. Eer—ee, @Ee——er)

9.5 Guided Waves
9.5.1 Wave Guides

Griffiths

Can the electromagnetic waves propagate in a hollow metal pipe?
Yes, wave guide.
Waveguides generally made of good

conductor, so that E=0 and B=0 inside the
material.

The boundary conditions at the inner wall
are: E’"=0 and B' =0 ...

The generic form of the monochromatic waves:
E(X,y,Z,t) = Eo(xay)ei(kZ7Wt) = (E )A(‘I‘E y-}-E 2)e
B(x,y,z,t) = Bo(x, y)ei(l\?z_wt) (B X+ B )7 B’Szz)ei(kz—wz)

11

Griffiths

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell’s
equations: OB
a V-

E=0 VxE+="=0 Whyp, =0andJ, =0?
V-B=0 VxB=i2§ wherev:L
V- Ot /glu
We obtain
OE OB
~-Zx—jwB, L)
oy c
OB
=B, — y:—gEx
c
oE. . ..OB_ OB, io
:la)By — :__ZE)/

12




Griffiths

TE, TM, and TEM Waves

Determining the longitudinal components E, and B,, we could

quickly calculate all the others.
' OFE OB

General Approach

E=E,+Ec¢e :
o Exfafj +ey—5, Cartesian
Let {B=B, +Be, A
0 10 g
V=V.+e. 9=V, +ike €. 5 7€, 25> cylindrical
t Z 0z t z%z

E = /’2 Sk ro—%) s , .
(w/c) - x y VxE=-2B =(V,tike, )x(E +E.e,)=io(B,+B.e,) (15)
i OE OB d . .
= z_ z VxB=usE=(V,tike, )x(B,+B.e,)=—iusw(E,+E.e_ ) (16
Ey (a)/c)z—kz (k ﬁy (0 ax) Try to derive these H ot ( t z Z) ( t z Z) H ( t z z) ( )
i 0B,  OE, _ relations by yourself. Using the relations: (Vi<Eplle; , we obtain from the transverse
B = —— k- (V,xE.e,)Le,
(w/c)y —k ox ¢ Oy £(15) and (16
. ; oB. Lo 8Ez) components of (15) and (16):
We obtain y (a)/c)2 iy ay o2 ay Vt XEZEZ iikzez X E[ = lC{)Bt (17)
2 8 o V,xB.e, tik.e, xB, =—-iuswkE, (18)
—+—5+—5-k*|E.=0 IfE =0 = TE (transverse electric) waves;
o " v g i In (15)-(18), the UPPEIL oion applies to the forward ave
2 2 o If B, =0 = TM (transverse magnetic) waves; ) lower( S0 PP backward ( V&Ve:
[—2+—2+—2—k2}32 =0 IfE =0and B, =0 = TEM waves.
ox~ oy° v z z ,
13 1
8.2-8.4 Modes in Waveguides (continued) . . .
8.2-8.4 Modes in Waveguides (continued)
Rewrite (17) and (18 .
ewrite (17) and (18) Sub. (19) into (18)
V,xE_e_*tike xE, =ioB 17
S ! a7 V,xB.e, tik, L (V,E, Fik,E,)=—iucwk, (20)
V,xB.e, tik,e, xB, =-iucwE, (18) — e
V,B,xe,

Since E, and B, have already been solved from (14), (17) and (18)

are algebraic (rather than differential) equations. We now manipulate

(17) and (18) to eliminate B, and thus express E, in terms of £, and B, .

.
e, x(17)= e, x(V,xE.e,)tik, e, x(e,xE,)=iwe, xB,
%/_J
V,E,xe,+E_V,xe,
0
Vxya=Vyxa+yVxa
If v, a are both independent of z, then
V,xya=V,yxa+yV,xa

= iwe.xB, =V E, Fik.E, (19)

Multiply (20) by iw: iwV B, xe_ +ikV,E, +k’E, = usw’E,
= (,uga)z —k? ) E, =i(wV,B,xe,+k,V,E,)

= E, = 5 [*k.V,E, —we_ xV,B, ] (8.26a)
UeW” —k
Similarly,
i
B, =55 [th.V,B, + peawr, xV,E, | (8.26b)
UED™ =k

Thus, once E, and B, have been solved from (14), the solutions
for E, and B, are given by (8.26a) and (8.26b).




8.2-8.4 Modes in Waveguides (continued)

8.2-8.4 Modes in Waveguides (continued)

Discussion: TM Mode of a Waveguide (B, = 0): (see pp. 359-360)
(i) E, B, E., B. in (8.26a) and (8.26b) are functions of X, only. (V; +7%)E, =0 with boundary condition E,|, ; 0 (2D
(i1) € and y can be complex. Im(¢) or Im(x) implies dissipation. E, = i%vt E, Assume perfectly (21a)
(111) By letting B, = 0, we may obtain a set of solutions for £,, E,, 7 conducting wall.
and B, from (14), (8.26a), and (8.26b), respectively. It can be H, = ié:)ez xE, = iZIeZ xE, (21b)
shown that if the boundary condition on E, is satisfied, then 5 L ~JZ,=k_/ew, wave impedance
boundary conditions on E, and B, are also satisfied. Hence, this y© = peo” —k; of TM modes (210)
gives a set of valid solutions called the TM (transverse TE Mode of a Waveguide (E. = 0): (see pp. 359-360)
magnetic) modes. Similarly, by letting £, = 0, we may obtain a (VZ +y*)H, = 0 with boundary condition ZH, ,=0 (22)
set of valid solutions called the TE (transverse electric) modes. ik, Zy = polk,, wave 2
(iv) E, is the generating function for t(he TM mode and )BZ is the Hi== 3 Vil impsdance of TE modes J 0 o= (222)
. . . . bec. n-H =0
iez::::tl:f ;;lnyc,t;zr}azsg: TE mode. The generating function E, =7 ;]ia)ez «H, =3Z,e. xH, P .\|s_| =0 (22b)
5 o (22a) = n-V,H,|, =0
y© = pe0” —k; = 2H | =0 |(22¢)
Disenssion: 8:2:84 Modes In Waveguides (continued) Field Patterns of Circular Waveguide Modes
(1) Either (21) or (22) constitutes an eigenvalue problem (see (2?) O = TEo,
lecture notes, Ch. 3, Appendix A). The eigenvalue y 2 will be TE[@#@“I % 10> < - jj\\\:'\":““* %3;
an infinite set of discrete values fixed by the boundary \ é 200 3 i~ - T T,
condition, each representing an eigenmode of the waveguide ; % a0l Tl
(An example will be provided below.) £ ol ™oy S
(i) (21b) and (22b) show that E, is perpendicular to B, (also true e 2?8(mnijo oo
in a cavity). (g) o B ;%;11
(1i1) (21b) and (22b) show that E, and B, are in phase if y, €, o, k, % A E e — =
are all real (not true in a cavity). é zz Z— - T
(iv) (21c¢) [or (22¢)] is the dispersion relation, which relates @ and *a'*'; sl T~ -7 T T =,
k,for a given mode. = 1,00' L B B
(v) The wave impedance, Z, or Z,, gives the ratio of E,fo H,in the surface current L (mm)

waveguide.




Field Patterns of Circular Waveguide Modes

1

a
@ 0 TEo
g - TE,,
> -10 = TEj3;
2 TEy,
= 20 T TM,
=
S
5 -30
] ™,
ks
-4.0
1.5
(®) o0 ey
a] = e ——— 1Ej;
C 02— _ TEy,
@ o TEy,
3 0.4 B — - ~ - TMy,
g 06
B F— o~ - —
5 o0sf ~-- Tom™
= L
R I B R B
0 2 4 6 8

Characterization of Circularly Symmetric TEo1 Mode

(a) simulation

o 2
o
N—
5 o,
-
L — p=4E° -
L 0=45 — 6=180Q°
6 P IR BT 1
30 32 34 36 38 40

Freq (GHz)
(b) measurement
0

A -2
g
U?-4 saag=Q° «e09=90°
L ...@=45° ---0=180°
[{ ---0=60°0 — 6=180°Th
6 P ? P TR !

30 32 34 36 38 40
Freq (GHz)

T. H. Chang and B. R. Yu, “High-Power Millimeter-Wave Rotary Joint”, Rev. Sci. Instrum. 80,
034701 (2009).

8.2-8.4 Modes in Waveguides (continued)
TEM Mode of Coaxial and Parallel-Wire Transmission Lines

(E,=B,=0): (see Jackson p. 341)

i
E, = ) [ikZVtEZ — e, XVth] (8.26a)
, HED™ =k
Rewrite .
i
ﬁ[ikZVth + pEwe , x V,EZ]
UEW” =k

B, = (8.26b)

These 2 equations fail for a different class of modes, called the
TEM (transverse electromagnetic) mode, for which £, = B, =0.
However, they give the condition for the existence of this mode:

a)zzkzz/us.

Equations in rectangular boxes are (827)
basic equations for the TEM mode. '
(8.27) is also the dispersion relation in infinite space. This makes
the TEM mode very useful because it can propagate at any frequency.
To calulate E, and B,, we need to go back to Maxwell equations.

8.2-8.4 Modes in Waveguides (continued)

b

-p _ B/l _ JErem X\ +ik, z—icot
Let £, =B, =0 and {Bz} = {BTEM(XI) e

then, because B, =0, the z-component of VxE = —% B gives

ETEM =—V,Dppy (Xt)
and, because £, =0, V-E=0 gives

V,xEifpgy =0 =

=

V,xA,(X,)=0

g
A, (X,)=-V,D(X,)

Vi-Bin=0 = Vtzq)TEM(Xt) =0
where @, is the generating function for the TEM modes. Because
Ean =0 on the surface of a perfect conductor, @, is subject to the
boundary condition @, = const. on the conductor. This gives @,
= const. or E,, =0 everywhere, if there is only one conductor. So,

TEM modes exist only in 2-conductor configurations, such as coaxial
and parallel-wire transmission lines. Finally, B,g,, 1s given by the

b

k
transverse components of Vx E = —% B: [Brpm =t €, xEqpy|

24




Why single conductor cannot support TEM waves? (1)

Let’s consider the property of 2D Laplace equation.

Suppose @\, depends on two variables.

2 2
O D@y + O D@y _
o’ T oy’
Harmonic functions in two dimensions have the same properties
as we noted in one dimension:

a partial differential equation (PDE);
not a ordinary differential equation (ODE).

@\ has no local maxima or
minima. All extrema occur at the
boundaries. (The surface may not
be an equalpotential.)

If @y =const., E;py=0 & Brpy=0
(Not a flawless argument)

Why single conductor cannot support TEM waves? (11)
David Cheng’s explanation. Chap. 10, p.525.

1. The magnetic flux lines always close upon themselves. For a
TEM wave, the magnetic field line would form closed loops
in a transverse plane.

2. The generalized Ampere’s law requires that the line integral
of the magnetic field around any closed loop in a transverse
plane must equal the sum of the longitudinal conduction and
displace conduction current inside the waveguide.

3. There is no longitudinal conduction current inside the
waveguide and no longitudinal displace current (£,=0).

4. There can be no closed loops of magnetic field lines in any
transverse plane. (weak conclusion)

The TEM wave cannot exist in a single-conductor hollow
waveguide of any shape. (Again, not a perfect argument)

8.2-8.4 Modes in Waveguides (continued)

In summary, the TEM modes are governed by the following set
of equtions:

Vi (%) =0 (23)
Erem ==V Prpm (X)) (23a)
Brpm = J_r%ez =Y (23b)
(or Hypy = i%ez XErpn = i\/%ez XErgy = Y€, X Eqpy)

kZ
w? = 1iz (23¢)

where Y (=./¢/ ) is the (intrinsic) admittance of the filling medium
defined in Ch. 7 of lecture notes (the last page of Sec. II).

8.2-8.4 Modes in Waveguides (continued)
Discussion:
(1) For the TEM modes, we solve a 2-D equation Vtzq)TEM (X,)=0
for @\ (X,). But this is not a 2-D problem because @, is not the

full solution. The full solution is {Ef (.1 )} - {ETEM (Xf)}ei""z”“”
Bt(x’ t) BTEM (Xt)

with Epgy ==V, @rgy (X,) and Bogy = i%ez X Ergn-
For an actual 2-D electrostatic problem [®(X) = D (X, )], we have

VtZCD(Xt) =0, which gives the full solution E,(X,) = -V, D(X,).

(i1) Note the difference between the scalar potentials discussed here
and in Ch. 1 and Ch. 6.

Erpn ==V, @rpn(X,) regard @, as a mathematical tool.

E(X) =-VO(X) regard @ as a physical quantity.

E(X,t) =-VD(X,t)— %A(X, t) regard @ and A as mathematical tools.

28




8.2-8.4 Modes in Waveguides (continued)

Example I: TE mode of a rectangular waveguide

Rewrite the basic equations for the TE mode:

(Vt2 + }/2 )H . = 0 with boundary condition = (22)
H, =i%VtHZ —z  (22a)
. e\
E, =:Jli“’eszt —3Ze,xH, * (22b)
V4
)/2 = ,ueco2 —k2 (22¢)
Rectangular geometry = Cartesian system = V2 6622 + 8‘32
y
Hence, the wave equation in (22) becomes:
[;224—68}} T use? kZZ}szo (24)

8.2-8.4 Modes in Waveguides (continued)

Rewrite (24): [6622 + a% + uew” kj}Hz =0 (24)

Hikyy dependence for /7_, we obtain

[,uga) —kf—ki—kzz]HZ:O —z

Assummg e

In order for /, # 0, we must have
pea’ —k; —k; —kZ =0,

which is satisfied for £k, + ky, *+k_. Since (e’k X g kX ),
ik,y

ik ; _ . . :
(", e "™, and (%%, ¢7*:*) are all linearly independent pairs,

the complete solution for /7, 1s
H, =c iot [Alelkxx + Aye lkxx]|:Blel VY +Bye i yJ’:|

: [C+eikzz + c_e""‘zZ] (25)

8.2-8.4 Modes in Waveguides (continued) H =+ ikZ
Applying boundary conditions [see (22)] to (25): !

Griffiths

. . . ik —ik . P
Hz _ it [Alezkxx +A2€ zkxx:|[Blel VY +Bze lyy}[c_'_elkzz +C e

B.x< 2B

x 0xX " Zlx=0

b
B, 2B

Y oy 2

y=0

7 i e . 0 a
:>HZ :COSkxXCOSkyy[C+e ZWt+1kZZ+C_e it lkzz:|

onca z

. =0=sink,a=0=k, =mnz/a, m=0,1,2,...

)
oc &
B, o 2B,

- =0=sink,b=0=k, =nx/b, n=0,1,2,...

nry

mrx
= H, =cos
a

forward wave backward wave

Sub. k, =", k, ="[F into pew —k2 k2 k2—0 we obtain

a’>’y
® —kzz—ﬁ (mj+Z) 0, myn=0,1,2,. @

a

Ax

COST[C+€ikZZ_iwt + C_e—ikzz—ia)t:| (26)

7)

9.5.2 TE Waves in a Rectangular Wave Guide

E_ =0, and B_(x,y) = X(x)Y(») < separation of variables

2 2 2
L oX l@_Y (a)__ kz) =0
X ox*> Yo :

2 2
La/f__kf d la_é/:_kz
X Ox | Y 7

2 . s .

with = K+ k2 +k *Qriffiths’ derivation

uses different boundary
condition --- E,=0.
X(x)=Asink x+ Bcosk x

Y(y)=Csink,y+Dcosk,y




Griffiths

TE Waves in a Rectangular Wave Guide (1)

OB. . ]
ExocgocCcoskyy—Dsmkyy Et:¢#ezxvt}]2
4

E(@y=0)=0=C=0

E(@y=0b)=0=sink,b=0,k, =%(n ~0,1,2,..)

E, o« —=oc Acosk x— Bsink x
ox

E,(@x=0)=0=A4=0

. mr
E(@x=a)=0=sink,a=0,k, :T(m =0,1,2,...)

B_(x,y)= B,cos(mzx/a)cos(nzy/b) < the TE_ mode

k=\(@/v) —=7*[(m/ a)* +(n/b)*]

8.2-8.4 Modes in Waveguides (continued)

Rewrite (27) as  uew” —k? — usa?,, =0, @ (28)

where wcmnzﬁ(';%lfjj)“z, mn=0,1,2,... &i . (29)
— zZ

Each pair of (m, n) gives a normal mode (TE_, mode) of the
waveguide. m and n cannot both be 0, because that will creat a %
situation on (8.26) or (22a), making H, and E, indeterminable.

@,,., 18 the cutoff frequency (the frequency at which &k, = 0) of

the waveduide for the TE,, mode. Waves with < @,,,, cannot
propagate as a TE , mode because k, becomes purely imaginary.

(28) is the TE,, mode dispersion relation of a waveguide filled
with a dielectric medium with constant (in general complex) ¢ and .
For the usual case of an unfilled waveguide, we have ¢ = ¢, and

U=y (= ue = ly&y = c%), and (28) (29) can be written

for unfilled
waveguide } (30)4

2 422 2 oo _ m? o n\1/2
o —kic" -aw,, =0with o,,, —ﬂc(a—erb—z)

8.2-8.4 Modes in Waveguides (continued)

1
2 2\2
w* - kzzc2 - a)czmn =0, o, = 7zc(’"2 + 22)2 /\/U\f\/’\/
a Yy
: As [P E—
A, = guide wavelength = 27/k, ey A T
A. = cutoff wavelength = 27¢/ @, depend | mode & 1 wave
- try 1 freq.
Ay = free space wavelength = 27c/w on geometty i e
Ag yes 1 yes
® > @,,,, = k, =real = propagating waves| ;| | yes | no |
AU ISR A, [
O= Wy >k, =0= Ay =0 As no i yes
o< ®,,,, = k, =1maginary = evanescent fields
NG o TEy (A, ~09a)
al l \/TEovTEzo (4, =a)
b 2 - K
L— S
\ usable bandwidth (a < A, <2a)

Question 1: A typical waveguide has N
a=2b. Why? 7z
Question 2: Can we use a waveguide to transport waves at 60 Hz?

8.2-8.4 Modes in Waveguides (continued)
Other quantities of interest:

: SO S 5 R R @
(1) Differentiating 0" —k;c¢” - @, =0
with respect to & 2>c
d 2 — r\owVl Z
Za)d—]fz)—Zch =0 sk,
_do _ k c2 Lo .
= Vg = Tlg =-Z- [group velocity in unfilled waveguide]
_ Jve<e
Ve > 02as @ > &gy

(2) The remaining field components (£, E v Hy, and H y) can
be obtained from /, through

ik, ;
Ht :inV[HZ

y? = uew’ — k7 =gn (22a)
L@ see (22¢) and (30).
E,=¢k—eszt (22b)

z

where the {uppe;} sign applies to the {

forward }
ve
lowe

backward




8.2-8.4 Modes in Waveguides (continued)
TE mode field patterns of rectangular waveguide
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from E. L. Ginzton, "Microwave measurements". A, : cutoff frequency
solid curve: E-field lines; dashed curves: B-field lines

8.2-8.4 Modes in Waveguides (continued)
TM mode field patterns of rectangular waveguide
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from E. L. Ginzton, "Microwave measurements". 4, : cutoff frequency
solid curve: E-field lines; dashed curves: B-field lines

8.2-8.4 Modes in Waveguides (continued)

Discussion: Waveguide and microwaves

A typical waveguide has a = 2b to maximize the usable bandwidth
(a <4y <2a) over which only the TE,;, mode can propagate and hence
mode purity is maintained. Waves are normally transported by the TE;
mode over this frequency range. Waveguides come in different sizes.
Usable bandwidths of waveguides of practical dimensions (0.1 cm < a
<100 cm) cover the entire microwave band (300 MHz to 300 GHz).

Compared with coaxial transmission lines, the waveguide is capable
of handling much higher power. Hence, it is commonly used in high-
power microwave systems. In a radar system, for example, it is used to

transport microwaves from AD o TEy, (4, ~0.90)
the generator to the antenna. le— TEy,, TEy (A, = a)
X TEyy (4 =2a)
a —>Z \ usable bandwidth (a <1, <2a)
Ek\l >k
a 7z

8.2-8.4 Modes in Waveguides (continued)

Example 2: TEM modes of a coaxial transmission line
TEM modes are governed by the following set of equtions:

2
Vi@ppy (X)) =0
Erem =V @ (X))
Hipy =78, X Eqpy
2_k2

= ,ug

oD

(23) gives r 5 (r TEM)

w

Neglect the gq(; # 0 modes = 1 ¥ or 0 (r acI)TEM) 0= Dy =Ciin(r)+C,.

D, (r=a)=V, C,=V,/In(alb) -
- b.c.{CDTEM( -h=0 {Cl _Cnts v =" Intais):
mem (r=b) = L =—C,In(b)
Vi Vil 7—i
. Erpm (X,0) = In(bo/a)%eﬂ Lz za)ter
(230 0y fhen give YV, +ik_z—it (31)

_ 1
TEM (X t) _[n(b/a)?e e(” 40




Exciting a Specific Mode

TER .
(@) TE21 2 °F
8.
~ Ffe
=2
Ll
33 e<———18.3 GHz—>"
é-"_'—Th. 1Peu == Th.20pcu
£ -5\~ — Th. 10pcu » ® ® Exp.
Ll S T T R B

85 90 95 100 105
l cutoff Frequency (GHz)

Difficulties of Exciting a Higher-Order Mode:
Take TE, as an Example

| s (b) TEo1 . ©
| | section o T
|| TE@norT™MRn |/ e
_ ) _ R - e 240GH——>
M = ]a),uoPm %-4_- — Th.1pecu == Th.20pcu
E 5§ — Th.10pcu **¢ Exp.
5+ 4 — n ) i,z T AT T I P
Ef =3 A7 (G, +2ey) P i =
n () TE41 A 02
o L Coupling structure octa-feed
total 1 4 r 2 2 4 ' =L Waveguide radius 1.86 mm
1)01 — ﬂ41p01 804 (p()l -0 ) JO (p()l) é 'Z. Parasitic modes ~ TE;; ,, TE; 5 TEy » TEy 5
total ' 4 r 2 2 4, 4 = TE,,
Py Borpar €00 (Par” —47) J4(p4y) %: T T TR
=-18 dB &L ™,,
® 9Igrequgcfncy tOGOHz)105 e el U AL &
TEAI.A’ TE41.B TEIZ,A’ TEIZ,B
T. H. Chang, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low ™,
terahertz region”, Appl. Phys. Lett. 93, 111503 (2008). Frequency DUT Detestor TM; 0 Ty 5 TEsia TEsip
41 dgubler TE, . TEyp ™My TM 42
Applications of Waveguide Modes (1) Applications of Waveguide Modes (11)
§< lasma chambers Material processing Mode converters Rotary joints
@ R .
,4\\‘ i @ “ i SiC cylinder
Appl. Phys. Lett. 94, 102104 (2009) THz waveguide, circulator, isolator, power divider, antenna...
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8.7 Modes in Cavities

We consider the example of a rectangular cavity (i.e. a rectangular
waveguide with two ends closed by conductors), for which we have
two additional boundary conditions at the ends.

Rewrite (27): H, = cos "X os m};y |:C+eikzz—i60t n C_e—ikzz—ia)t
b.c (1) H (Z = 0) =0 = C =—C Y cross -sectional

z - b/ view
= H, = H_ ge " cos™ *~cos™; > sink,z 0 X

mr Iy
a

b.c. (ii): H,(z=d) = 0 Y side view

b
=sink,d=0 = k, =17 1=12,... [ 1, (32)

0 d
= H_=H_ge " cos m;;x cos mgy sin Mdz , {71;1:2’0’1’2’} (33)
1
Sub. (32) into @ —k202 czmn =0, where @, = ﬂc(’;’—j+’;—§)2

2 2 , : resonant frequenc
= 0= @y =7+ + L) [ ol 1 y} (34)

of the TE,,; mode

45

8.7 Modes in Cavities (continued)
mirx ni A o
From (26) : HZ = COS Cosb'y|:C+elkzZ 10t + C_e lkZZ 1ot :| ,
a

we see that a cavity mode is formed of a forward wave and a backward
wave of equal amplitude. The forward wave is reflected at the right end
to become a backward wave, and turns into a forward wave again at the
the left end. The forward and backward waves superpose into a standing
wave [see (33)]. Thus, we may obtain 4
the other components of the cavity field 4

by superposing the other components of g‘;gs;grzvgfve i
the two traveling waves, as in (26). 0 p > Z

Comparison with vibrational modes of a string:

side view

dependent variable(s) | independent variables | mode index
string | x (oscillation amp.) zZ, t [
E.,E, 6 B, B,
cavity oy ey X, y, 2z, t m, n, |
E, (orB,)

8.5 Energy Flow and Attenuation in Waveguides

Power in a Lossless Waveguide : Consider a TM mode (E =E,

+E.e,,H=H),) in a medium with real ¢, x (hence real o, k,).

S =3sExH"=1[E, xH, +E.e, xH;] [complex Poynting vector |
_ O
/2
21b)

“ZIE, x(e, xE,)+ E, e, x(e, xE,)] [for TM modes]

ez‘Et‘ _Et ~
k &, yl O =0

_ 0 Z—ZZEZVtE:] ) real & and p
2k,

(21a) ok &

== [e.V,E \

2
e, IV B + >:

’7EVE]

Z

P\, = time averaged power in the z-direction

= J 48 -[ReSqy]da  [4: crossectional area]

_ Ok;E (V. E. -V, E.)da (35)

27 7

8.5 Energy Flow and Attenuation in Waveguides (continued)
' : L. 2 3 0
Green's first identity: [ (#Vy +V@-Vy)d’x=¢ p% da (1.34)

Let ¢ and w be independent of z and apply (1.34) to a slab of end
surface area A (on the x-y plane) and infinistesimal thickness Az in z,

surface integrals on}

AZ,[A (¢V w+V,p-V,w)da= AZ@)C a‘// dl + {;\17;(1; e\r;/?lsic(flf\tgflish

2 d
:IA(¢vtV’+Vt¢'VzW)da:(ﬁc¢5in/dl Az
Let ¢ = E, and y = E,, then B
. : o2 da
jA(VtEZ.Vth)daz[Sﬁcgé%Ezdl—jAE V/E, da] /ﬂ .

=0 2 E,
5 5 by boundary condition by (14) (' dl
=y jA\EZ\ da. (36)
a)k g

Sub. (36) into (35): Py = (V E -V ,E_)da, we obtain

wk_ &

52 [where 7/2 = ,uga)2 —kzz] (37)
4

Py =

IA‘EZ‘Z da’

48




8.5 Energy Flow and Attenuation in Waveguides (continued)

2 ) _ y | o.(Ge oatk, =0)is the
VoS pewt —kr = o= Jue [cutoff freq. of the mode. (38)
1
= k, = (uea’ - ) = x/ugw(l—* ) (39)

Sub. (38) and (39) into (37)
2.1

2 W5\ 2
Poy =552V (1= %) JIE.[* da
Similarly, for the TE mode and real 4, ¢, @, and k_, we obtain

from (22), (22a), and (22b),
k, 2 iy gk

Spp ="y le: \VHL = HoV H] (41)

[cf. (8.51)] (40)

=LHera-

Note: P, and Py are expressed in terms of the generating function.

49

Z’é)%J‘AHZZ da [cf. (8.51)] (42)

8.5 Energy Flow and Attenuation in Waveguides (continued)

Energy in a Lossless Waveguide :

$,S-nda +1[ I -Ed’x+2iwf (w,—w,)d’x=0 (6.134)
w =1E-D*:lg\E\ if ¢, y are real, w, and w,, are

e 41 , 4 o also real and represent time (6.133)
Wi =4 B-H = 4u ‘B ‘ averaged field energy densities.

Apply (6.134) to a section of a lossless ySN=0("Ep, =0)
waveguide [i.e. y, ¢ are real and the wall | Effi |e_| 12
conductivity o = ]. ) S=J(E, xH;)
o =0 (inside volume) = J =0= [ J*-Ed’x=0 ~ [ onbothends

E, =0 on the side wall = S-n =0 on the side wall

k) are real = E, and H, are in phase [by (21b)&(22b)]
= E, xH, isreal = is real on both ends = ¢ S-nda is real

{Re[(6. 134)] = 95 : S-nda =0 (no net power into or out of volume)

U, & (hence w,

Im[(6.134)] = [, w,d Sx= [, Wnd 3x (B-field energy = E-field energy)
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8.5 Energy Flow and Attenuation in Waveguides (continued)

For the TM mode (H, = 0):
U, = field energy per unit length (21b)

=] (W, +w,)da =2[ w,da="4[ [H, da —”H’ [ J|E.[ da

VP da = . daTg(a)c)z.[AEz da (43)
(22 72JA‘EZ‘2da 7/2 = luga)cz
by (36)

Similarly, for the TE mode (£, = 0):

Urg =2 Weda =5 [ [E/[* da=< 5 (L) [ 4|H. [ da (44)
From (40), (42), (43), and (44) Use (22a,b) and

PTM _ PTE 1 _& _ Grsen’s Ist identity 8.53)

Urg \/_ “150) tE .

vp = a)/kz [39)] dkz (21.0)

= v,v, =1/ e (8.54);‘

8.5 Energy Flow and Attenuation in Waveguides (continued)

Attenuation in Waveguides Due to Ohmic Loss on the Wall:
We express k, for a lossless (o = ) and lossy (o # «©) waveguide

. e

= (8.55)
kéo) +a+iff, o#©

as

where k§°> is the solution of the dispersion relation for o = oo, i.e.
uew* —kZ — psw? =0 [derived in (28)] (45)
The expression for o # oo in (8.55) assumes that the wall loss

modifies kéo) by a small real part & and a small imaginary part £,
where o and £ are to be dertermined.
Physical reason for a: Effective waveguide radius increases by
by an amount ~ skin depth 6. A larger waveguide has
a smaller o,. Hence, a > 0.

Physical reason for [ : Power dissipation on the wall.




8.5 Energy Flow and Attenuation in Waveguides (continued)

Ink, = kgo) +a+if, «a isnot of primary interest because it modifies
the guide wavelength slightly. However, £ results in attentuation, which
can be very significant over a long distance. We outline below how S
can be evaluated.

P = power flow (oc Re[E, x HI ] oc ¢*e7 . g7k = 72kaiz e_zﬂz)

= Poe_zﬂz /|power dissipation/unit length | (8.56)
= p= _#% = field attenuation constant (8.57)
P _ _ 1 2
(8.15):5_—H¢C\K@7 dl : (46)
(8.14)= K, =nxH d " (47)
(46)(47):>d7P=—L35 \an\z dl (8.58)
dz 200 Jc )
Since the wall loss can be regarded as a small perturbation, we may
use the zero-order H derived for o = o0 in Sec.8.1 to calculate ‘é—f

8.5 Energy Flow and Attenuation in Waveguides (continued)

Specifically, we calculate the zero-order E and H, and use the
zero-order E and H to calculate P from (8.51) and dP/dz from (8.58).
[ 1is then found from (8.57).

Formulae for g for rectangular and cylindrical waveguides are
tabulated in many microwave textbooks, e.g. R. E. Collin,
“Foundation of Microwave Engineering” (2" Ed.) p. 189 & p.197
(where the attenuation constant is denoted by « instead of f).

Note:

(1) f has been calculated by a perturbation method.

The method is invalid near the cutoff frequency,

at which there is a large “perturbation”. Sec 8.6 b

gives a method which calculates both « and £

(due to wall loss) valid for all frequencies. Sw
(i1) Other types of losses (e.g. lossy filling medium @

or complex &) can also contribute to « and f.

8.5 Energy Flow and Attenuation in Waveguides (continued)

(ii1) Note there are two definitions of the attenuation constant.
In Ch. 8 of Jackson, the attentuation constant for the waveguide
1s denoted by £ and it is defined as

B=—559, (8.57)
This is the field attentuation constant, i.e.

E,Boce .
In Ch. 7 of Jackson, the attentuation constant for a uniform medium

1s denoted by « [see (7.53)] and it is defined as

__1dP
o= P dz

This is the power attentuation constant, i.e.

P o e—az

Obviously, the power attentuation constant is twice the value of the
field attentuation constant.

Terahertz Waveguide (l)

Scanning optical

delay lin
g e . Femtosecond laser
Fibre \r...........-
coupler
O 1
THz transmitter
4
Input coupler ?I—» 2 Fibre
’/ coupler
o
1 % /
Wa\lreguide THz receiver
Movable stage Movable stage

K. Wang and D. M. Mittleman, “Metal wires for terahertz
wave guiding”, Nature, vol.432, No. 18, p.376, 2004.




Terahertz Waveguide (ll):
Using The Lowest Lossy TEo1 Mode

_ 0.1
& 0.01
% ' References
~, 0.001 1. Pozar, p.161.
3 2. Collin, p.197.
0.0001
1E_OO5IIII|IIII|IIII|IIII|IIII

0 100 200 300 400 500
Freq(GHz)

Q: How to excite the TEoi mode and fabricate it at the terahertz
region?
A possible solution: X-ray micro-fabrication (LIGA).

8.8 Cavity Power Loss and Q

Definition of Q : We have so far assumed a real o for EM waves
in infinite space or a waveguide. Since fields are stored in a cavity, it
damps in time if there are losses, represented by a complex @. Thus,
fields at any point in the cavity have the time dependence given by

Eoe—la)ot , O =0

—i(a)0+Aa)+i§]—0)t —i(a)O+Aa))t—;)—0t
Eqe =FEye , O#®

E@t) = (8.88)
where @, is the resonant frequency [e.g. (34)] without the wall loss.

(8.88) assumes that the wall loss modifies @, by a small real
Dy

part Aw and a small imaginary part 5 0’

where A and Q are to be
dertermined.
Physical reason for Aw : Effective cavity size increases by an
amount ~ skin depth 6. A larger cavity has a lower
frequency. Hence, Aw < 0.

Physical reason for Q: power dissipation on the wall

8.8 Cavity Power Loss and Q (continued)

U = stored energy in the cavity [ oc|[E \2 oc g 1V GO T = G2t

_ay /

=U,e 0 —i(ay +Aa))t—@t
dU0 E(r) = Ege 0 =
= &= —QU (power loss) = o = _% (8.87)
= 0=, stored energy (time-space definition of Q) (8.86)

power loss

(8.88) represents a damped oscillation which does not have a
single frequency. To exame the frequency of E(z). we write

E(f)= ﬁ [° E(@)e ™ da,

where U;e (8.88), assume E(r) =0 fort<0
, |
1 ot 1, ¥ 0 —Hatti(@-oy-Aw)t
E(a))—ﬁj._ooE(t)elw dl—ﬁEo‘[o e 20 dt
_ 1 Ey
2

T—i(w— o, —Aa))+%

_ant
—e ©

]

8.8 Cavity Power Loss and Q (continued)

The frequency spectrum is best seen form the field energy
distribution in w-space

5 1 max, @ =, +Aw

E(w)" o« -=1, o, (8.90)
(a)—coo—Aa))2+(%) 2 =0+ AOE 50
St = full width at oy
| half-maximum points | @ l

= Q0= ?70) (frequency-space definition of Q) : (8.91)
Note: @, 1s the resonant frequency Il Fig. 8.8

of the cavity in the absence of Il St = %

any loss. @, + A 1s the resonant
frequency in the presence of
losses. In most cases, the
difference is insignificant.

> Lo
AN
g/’"

€

l

wo +
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8.8 Cavity Power Loss and Q (continued)

Physical Interpretation of QO :

(i) Use the time-space definition: O = &, stored energy

2
wave period

Wy =21fy ="
decay time of
stored energy

power loss

stored energy

R T~

power loss

stored energy _ o fd

=0=a, (48)

power loss 7,

(48) shows that O, which results from the power loss, is
approximately 27 times the number of oscillations during the
decay time. A larger Q value implies that the field energy can be
stored in the cavity for a longer time. Hence, Q is often referred

to as the quality factor.

8.8 Cavity Power Loss and Q (continued)

(1) Use the frequency-space definition: Q = % (see Fig. 8.8)

For a lossy cavity, a resonant mode can be excited not just at
one frequency (as is the case with a lossless cavity) but at a range
of frequencies (dw). The resonant frequency (w,TAw, see Fig. 8.8)
of a lossy cavity is the frequency at which the cavity can be excited
with the largest inside-field amplitude, given the same source
power. The resonant width dw of a mode
is equal to the resonant frequency divided
by the QO value of that mode (see Fig. 8.8).
Note that each mode has a different QO value.

Figure 8.8 can be easily generated

!

I

T

|

I

I

l

I

1n experiment to measure the {
|

O value.

8.8 Cavity Power Loss and Q (continued)

stored energy

O=aw,

Using the results of Sec. 8.1, we can calculate Q (but not Aw)

power loss

due to the ohmic loss. We first calculate the zero order E and H of
a specific cavity assuming o = o, then use the zero order E and H

to calculate U and power loss,

2f wed x=£[ |E dx

e

stored energy = [ (w, +w,,)d"x =
e 2.[vwmd3x:%jv\H\2d3x

(3.15)
71
power loss = %gﬁs‘Keﬁp

1

/ 206
(8.14)

2 da (6.133)

cﬁs\nx H\z da

8.8 Cavity Power Loss and Q (continued)

Formulae for O (due to ohmic loss) for rectangular and
cylindrical cavities can be found in, for example, R. E. Collin,
"Foundation of Microwave Engineering", p. 503 and p. 506.

Q due to other types of losses : If there are several types of
power losses in a cavity (e.g. due to Imeg and coupling losses), O
can be expressed as follows:

stored ener
0=aw, =Y (49)
> (power loss),,
n

n-th type of power loss|

= L =2 S (50)
Q n Qn
where O, (Q due to the n-th type of power loss) is given by
stored ener
0, =a gy

0 (power loss),,




8.8 Cavity Power Loss and Q (continued)

A Comparison between Waveguides and Cavities

Waveguide Cavity
Function transport EM energy store EM energy
Characteri- dispersion relation and resonant frequency
zation attenuation constant and Q

Examples of transport of high (1) particle acceleration

applications power microwaves  (2) frequency measurement
(mostly for (such as multi-kW

microwaves, waves for long-range

0.3-300 GHz)  radars and communi-

cations)

High-Q Microwave/Material Applicator

stored energy

@
> (power loss),
n

Conductor loss, dielectric loss, radiation loss, diffraction loss...

Homework of Chap. 8

Problems: 2, 3,4, 5, 6,
18, 19, 20
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