清大物理系＂電動力學（二）＂任課老師：張存續
 ＂Electrodynamics（II）＂（PHYS 532000）

Spring Semester， 2012

Department of Physics，National Tsing Hua University，Taiwan Tel．42978，E－mail：thschang＠phys．nthu．edu．tw

Office hour：3：30－4：30 pm＠Rm． 417

助教：

趙賢文：0933580065，s9822817＠m98．nthu．edu．tw
張家銓：0988972152，cc1141596063＠hotmail．com

1．Textbook and Contents of the Course：

J．D．Jackson，＂Classical Electrodynamics＂，3rd edition，Chapters 8－11， 14.
Other books will be referenced in the lecture notes when needed．

2．Conduct of Class ：

Lecture notes will be projected sequentially on the screen during the class．Physical concepts will be emphasized，while algebraic details in the lecture notes will often be skipped． Questions are encouraged．It is assumed that students have at least gone through the algebra in the lecture notes before attending classes（important！）．

3．Grading Policy：Midterm（40\％）；Final（40\％）；Quiz x 4 （20\％） and extra points (10%) ．The overall score will be normalized to reflect an average consistent with other courses．
4．Lecture Notes：Starting from basic equations，the lecture notes follow Jackson closely with algebraic details filled in．

Equations numbered in the format of（8．7），（8．9）．．．refer to Jackson．Supplementary equations derived in lecture notes，which will later be referenced，are numbered（1），（2）．．．［restarting from （1）in each chapter．］Equations in Appendices A，B．．．of each chapter are numbered（A．1），（A．2）．．．and（B．1），（B．2）．．．

Page numbers cited in the text（e．g．p．395）refer to Jackson． Section numbers（e．g．Sec．8．1）refer to Jackson（except for sections in Ch．11）．Main topics within each section are highlighted by boldfaced characters．Some words are typed in italicized characters for attention．Technical terms which are introduced for the first time are underlined．

Chapter 8：Waveguides，Resonant Cavities， and Optical Fibers

8．1 Fields at the Surface of and Within a Good Conductor＊

Notations： \mathbf{H}, \mathbf{E} ：fields outside the conductor； $\mathbf{H}_{C}, \mathbf{E}_{C}$ ：fields inside the conductor； \mathbf{n} ：a unit vector \perp to conductor surface；$\xi:$ a normal coordinate into the conductor．
Assume：（i）fields $\sim e^{-i \omega t}$
（ii）good but not perfect conductor，i．e．
 $\sigma \neq \infty$ ，but $\frac{\sigma}{\omega \varepsilon_{b}} \gg 1$［See Ch． 7 of lecture notes，Eq．（24）］．
（iii） $\mathbf{H}_{\| \mid}(\xi=0)$ is known．
Find： $\mathbf{E}_{c}(\xi), \mathbf{H}_{c}(\xi)$ ，and power loss，etc．in terms of $\mathbf{H}_{\|}(\xi=0)$
＊The main results in Sec． 8.1 ［（8．9），（8．10），（8．12），（8．14），and（8．15）］have been derived with a much simpler method in Ch． 7 of lecture notes．［See contents following Eq．（26）］．So，we will not cover this section in classes．
8.1 Fields at the Surface of and Within a Good Conductor (continued)

Calculation of $\mathbf{E}_{C}(\xi), \mathbf{H}_{c}(\xi)$: In the conductor, we have
$\left\{\begin{array}{l}\nabla \times \mathbf{E}_{c}=-\frac{\partial}{\partial t} \mathbf{B}_{c}=i \omega \mu_{c} \mathbf{H}_{c} \quad \text { good conductor assumption } \\ \nabla \times \mathbf{H}_{c}=\mathbf{J}+\frac{\partial}{\partial t} \mathbf{D}_{c}=\sigma \mathbf{E}_{c}-i \omega \varepsilon_{b} \mathbf{E}_{c} \simeq \sigma \mathbf{E}_{c}\end{array}\right.$
$\nabla \simeq-\mathbf{n} \frac{\partial}{\partial \xi}\left[\begin{array}{l}\text { In a good conductor, fields vary rapidly along the } \\ \text { normal to the surface, see Ch. } 7 \text { of lecture notes. }\end{array}\right]$
(1), (2), (3) $\Rightarrow \begin{cases}\mathbf{E}_{c} \approx-\frac{1}{\sigma} \mathbf{n} \times \frac{\partial}{\partial \xi} \mathbf{H}_{c} \\ \mathbf{H}_{c} \approx \frac{i}{\mu_{c}(\omega)} \mathbf{n} \times \frac{\partial}{\partial \xi} \mathbf{E}_{c} & \delta \equiv \sqrt{\frac{2}{\mu_{c} \omega \sigma}}=\text { skin depth }\end{cases}$

Sub. (4) into (5): $\frac{\partial^{2}}{\partial \xi^{2}}\left(\mathbf{n} \times \mathbf{H}_{c}\right)+\frac{2 i}{\delta^{2}}\left(\mathbf{n} \times \mathbf{H}_{c}\right) \approx 0$
$\Rightarrow \mathbf{n} \times \mathbf{H}_{c}(\xi) \approx \mathbf{n} \times \mathbf{H}_{c}(0) e^{-\frac{\xi}{\delta}} e^{\frac{i \xi}{\delta}} \quad \frac{\text { b.c. at } \xi=0: \mathbf{H}_{\|}(0)=\mathbf{H}_{c| |}(0)}{\xi i \xi}$
$\Rightarrow \mathbf{H}_{c| |}(\xi) \approx \mathbf{H}_{c| |}(0) e^{-\frac{\xi}{\delta}} e^{\frac{i \xi}{\delta}}=\mathbf{H}_{\|}(0) e^{-\frac{\xi}{\delta}} e^{\frac{i \xi}{\delta}}$
$\mathbf{n} \cdot(5) \Rightarrow \mathbf{n} \cdot \mathbf{H}_{c}(\xi) \approx 0 \Rightarrow \mathbf{H}_{c| |}(\xi) \approx \mathbf{H}_{c}(\xi)$

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Sub. $\mathbf{H}_{c}(\xi) \approx \mathbf{H}_{\|}(0) e^{-\frac{\xi}{\delta}} e^{\frac{i \xi}{\delta}}$ into $\mathbf{E}_{c}(\xi) \approx-\frac{1}{\sigma} \mathbf{n} \times \frac{\partial}{\partial \xi} \mathbf{H}_{c}(\xi)$

$$
\begin{equation*}
\Rightarrow \mathbf{E}_{c}(\xi) \approx \sqrt{\frac{\mu_{C} \omega}{2 \sigma}}(1-i)\left[\mathbf{n} \times \mathbf{H}_{\|}(\xi=0)\right] e^{-\frac{\xi}{\delta}} e^{\frac{i \xi}{\delta}} \tag{1}
\end{equation*}
$$

$$
\begin{align*}
& \mathbf{E}_{\|}(\xi=0)_{\uparrow}=\mathbf{E}_{c\| \|}(\xi=0) \approx \mathbf{E}_{c}(\xi=0) \approx \sqrt{\frac{\mu_{C} \omega}{2 \sigma}}(1-i)\left[\mathbf{n} \times \mathbf{H}_{\|}(\xi=0)\right] \tag{2}\\
& \text { b.c. at } \xi=0 \quad \mathbf{n} \cdot(4) \Rightarrow \mathbf{n} \cdot \mathbf{E}_{C} \simeq 0 \Rightarrow \mathbf{E}_{C \|} \simeq \mathbf{E}_{C} \tag{3}
\end{align*}
$$

Power Loss Per Unit Area :

$\frac{d P_{\text {loss }}}{d a}=$ time averaged power into conductor per unit area

$$
\begin{equation*}
=-\frac{1}{2} \operatorname{Re}\left[\mathbf{n} \cdot \mathbf{E}(\xi=0) \times \mathbf{H}^{*}(\xi=0)\right] \tag{5}
\end{equation*}
$$

$$
=-\frac{1}{2} \operatorname{Re}\left[\mathbf{n} \cdot \mathbf{E}_{\|}(\xi=0) \times \mathbf{H}_{\|}^{*}(\xi=0)\right]
$$

$$
\begin{align*}
& =\frac{1}{4} \mu_{C} \omega \delta\left|\mathbf{H}_{\|}(\xi=0)\right|^{2}=\frac{1}{2 \sigma \delta}\left|\mathbf{H}_{\| \mid}(\xi=0)\right|^{2} \tag{7}\\
& \propto \mu_{C}^{\frac{1}{2}} \omega^{\frac{1}{2}} \sigma^{-\frac{1}{2}}\left|\mathbf{H}_{\|}(\xi=0)\right|^{2} \tag{8.9}
\end{align*}
$$

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Alternative method to derive (8.12):
$(8.10) \Rightarrow \mathbf{J}(\xi)=\sigma \mathbf{E}_{c}(\xi) \approx \frac{1}{\delta}(1-i)\left[\mathbf{n} \times \mathbf{H}_{\|}(\xi=0)\right] e^{-\frac{\xi(1-i)}{\delta}}$

$$
\begin{align*}
& {\left[\begin{array}{l}
\text { time averaged power } \\
\text { loss in conductor per } \\
\text { unit volume }
\end{array}\right]=\frac{1}{2} \operatorname{Re}\left[\mathbf{J}(\xi) \cdot \mathbf{E}_{c}^{*}(\xi)\right]=\frac{1}{2 \sigma}|\mathbf{J}(\xi)|^{2}} \tag{8.13}\\
& \begin{array}{l}
\frac{d P_{\text {loss }}}{d a}=\frac{1}{2 \sigma} \int_{0}^{\infty} d \xi|\mathbf{J}(\xi)|^{2} \stackrel{\downarrow}{=} \frac{1}{\sigma \delta^{2}}\left|\mathbf{H}_{\| \mid}(\xi=0)\right|^{2} \int_{0}^{\infty} e^{-\frac{2 \xi}{\delta}} d \xi \\
\quad=\frac{1}{2 \sigma \delta}\left|\mathbf{H}_{\| \mid}(\xi=0)\right|^{2}, \quad \text { same as }(8.12)
\end{array} \tag{8}
\end{align*}
$$

Effective surface current $K_{\text {eff }}$:

$$
\begin{align*}
\mathbf{K}_{e f f} & =\int_{0}^{\infty} \mathbf{J}(\xi) d \xi=\frac{1}{\delta}(1-i)\left[\mathbf{n} \times \mathbf{H}_{\|}(\xi=0)\right] \int_{0}^{\infty} e^{-\frac{\xi(1-i)}{\delta}} d \xi \tag{10}\\
& =\mathbf{n} \times \mathbf{H}_{\|}(\xi=0)(8.13) \tag{8.14}
\end{align*}
$$

(8.12) \& (8.14) $\Rightarrow \frac{d P_{\text {loss }}}{d a}==\frac{1}{2 \sigma \delta}\left|\mathbf{K}_{\text {eff }}\right|^{2}$

8.2-8.4 Modes in a Waveguide

Consider a hollow conductor of infinite length and uniform cross section of arbitrary shape (see figure). We assume that the filling medium is uniform, linear, and isotropic $(\mathbf{B}=\mu \mathbf{H} ; \mathbf{D}=\varepsilon \mathbf{E}$, where ε and μ are in general complex numbers). This is a structure commonly used to guide EM waves as well as a rare case where exact solutions are possible (for some simple cross sections.) Maxwell equations can be written

$$
\left\{\begin{array}{l}
\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B} \tag{9}\\
\nabla \times \mathbf{B}=\mu \varepsilon \frac{\partial}{\partial t} \mathbf{E} \quad \stackrel{\varepsilon, \mu}{\text { complex } \varepsilon \text { and } \mu} z \\
\nabla \cdot \mathbf{E}=0 \\
\nabla \cdot \mathbf{B}=0
\end{array}\right.
$$

$$
\begin{align*}
\nabla \times(8) & \Rightarrow \nabla \times \nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \nabla \times \mathbf{B} \Rightarrow \nabla(\nabla \cdot \mathbf{E})-\nabla^{2} \mathbf{E}=-\frac{\partial}{\partial t}\left(\mu \varepsilon \frac{\partial}{\partial t} \mathbf{E}\right) \tag{11}\\
& \Rightarrow \nabla^{2} \mathbf{E}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0 \tag{8.15}
\end{align*}
$$

Similarly, $\nabla \times(9) \Rightarrow \nabla^{2} \mathbf{B}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{B}=0$

Let $\left\{\begin{array}{l|l|}\mathbf{E}(\mathbf{x}, t)=\mathbf{E}\left(\mathbf{x}_{t}\right) e^{ \pm i k_{z} z-i \omega t} & \begin{array}{c}\mathbf{x}_{t}: \text { coordinates transverse to } z, \\ \text { e.g. }(x, y) \text { or }(r, \theta) \\ \mathbf{B}(\mathbf{x}, t)=\mathbf{B}\left(\mathbf{x}_{t}\right) e^{ \pm i k_{z} z-i \omega t} \\ k_{z} \text { here } \leftrightarrow k \text { in Jackson }\end{array} \\ \end{array}\right.$
where, in general, ω and k_{z} are complex constants. To be specific, we assume that the real parts of ω and k_{z} are both positive. Then, $e^{i k_{z} z-i \omega t}$ and $e^{-i k_{z} z-i \omega t}$ have forward and backward phase velocities, respectively. As will be seen in (31), $e^{i k_{z} z-i \omega t}$ and $e^{-i k_{z} z-i \omega t}$ also have forward and backward group velocities, respectively. Hence, we call $e^{i k_{z} z-i \omega t}$ a forward wave and $e^{-i k_{z} z-i \omega t}$ a backward wave.

With the assumed z and t dependences, we have

$$
\left\{\begin{array}{l}
\frac{\partial^{2}}{\partial t^{2}} \rightarrow-\omega^{2} \\
\frac{\partial^{2}}{\partial z^{2}} \rightarrow-k_{z}^{2} \\
\nabla^{2}=\nabla_{t}^{2}+\frac{\partial^{2}}{\partial z^{2}}=\nabla_{t}^{2}-k_{z}^{2}
\end{array} \quad \nabla_{t}^{2}= \begin{cases}\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}, & \text { Cartesian } \\
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}, & \text { cylindrical }\end{cases}\right.
$$

Thus,

$$
\begin{align*}
& \left\{\begin{array}{l}
\nabla^{2} \mathbf{E}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{E}=0 \\
\nabla^{2} \mathbf{B}-\mu \varepsilon \frac{\partial^{2}}{\partial t^{2}} \mathbf{B}=0
\end{array} \Rightarrow\left(\nabla_{t}^{2}+\mu \varepsilon \omega^{2}-k_{z}^{2}\right)\left\{\begin{array}{l}
\mathbf{E}\left(\mathbf{x}_{t}\right) \\
\mathbf{B}\left(\mathbf{x}_{t}\right)
\end{array}\right\}=0\right. \tag{8.19}\\
& \Rightarrow\left(\nabla_{t}^{2}+\mu \varepsilon \omega^{2}-k_{z}^{2}\right)\left\{\begin{array}{l}
E_{z}\left(\mathbf{x}_{t}\right) \\
B_{z}\left(\mathbf{x}_{t}\right)
\end{array}\right\}=0 \tag{14}
\end{align*}
$$

It is in general not possible to obtain from (8.19). So our strategy here is to solve (14) for $E_{z}\left(\mathbf{x}_{t}\right)$ and $B_{z}\left(\mathbf{x}_{t}\right)$, and then express the other components of the fields $\left[\mathbf{E}_{t}\left(\mathbf{x}_{t}\right)\right.$ and $\left.\mathbf{B}_{t}\left(\mathbf{x}_{t}\right)\right]$ in terms of $E_{z}\left(\mathbf{x}_{t}\right)$ and $B_{z}\left(\mathbf{x}_{t}\right)$ through Eqs. (17) and (18).

Exercise: Writing $\mathbf{E}\left(\mathbf{x}_{t}\right)=E_{r} \mathbf{e}_{r}+E_{\theta} \mathbf{e}_{\theta}+E_{z} \mathbf{e}_{z}$ and using the cylindrical coordinate system, derive the equations for E_{r} and E_{θ} from (8.19).
(hint: $\frac{\partial}{\partial \theta} \mathbf{e}_{r}=\mathbf{e}_{\theta}, \frac{\partial}{\partial \theta} \mathbf{e}_{\theta}=-\mathbf{e}_{r}$)

Griffiths

9.5 Guided Waves
 9.5.1 Wave Guides

Can the electromagnetic waves propagate in a hollow metal pipe? Yes, wave guide.
Waveguides generally made of good conductor, so that $\mathbf{E}=0$ and $\mathbf{B}=0$ inside the material.

The boundary conditions at the inner wall are: $\quad \mathbf{E}^{/ /}=0$ and $B^{\perp}=0 \ldots$

The generic form of the monochromatic waves:
$\left\{\begin{array}{l}\tilde{\mathbf{E}}(x, y, z, t)=\tilde{\mathbf{E}}_{0}(x, y) e^{i(\tilde{k}-\omega t)}=\left(\tilde{E}_{x} \hat{\mathbf{x}}+\tilde{E}_{y} \hat{\mathbf{y}}+\tilde{E}_{z} \hat{\mathbf{z}}\right) e^{i(\tilde{k}-\omega t)} \\ \tilde{\mathbf{B}}(x, y, z, t)=\tilde{\mathbf{B}}_{0}(x, y) e^{i(\tilde{z}-\omega t)}=\left(\tilde{B}_{x} \hat{\mathbf{x}}+\tilde{B}_{y} \hat{\mathbf{y}}+\tilde{B}_{z} \hat{\mathbf{z}}\right) e^{i(\tilde{k}-\omega t)}\end{array}\right.$

Griffiths

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell's equations:

$$
\begin{array}{lll}
\nabla \cdot \mathbf{E}=0 & \nabla \times \mathbf{E}+\frac{\partial \mathbf{B}}{\partial t}=0 & \text { Why } \rho_{f}=0 \text { and } J_{f}=0 ? \\
\nabla \cdot \mathbf{B}=0 & \nabla \times \mathbf{B}=\frac{1}{v^{2}} \frac{\partial \mathbf{E}}{\partial t} & \text { where } v=\frac{1}{\sqrt{\varepsilon \mu}}
\end{array}
$$

We obtain
(i) $\frac{\partial E_{y}}{\partial x}-\frac{\partial E_{x}}{\partial y}=i \omega B_{z}$
(iv) $\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}=-\frac{i \omega}{c^{2}} E_{z}$
(ii) $\frac{\partial E_{z}}{\partial y}-\frac{\partial E_{y}}{\partial z}=i \omega B_{x}$
(v) $\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}=-\frac{i \omega}{c^{2}} E_{x}$
(iii) $\frac{\partial E_{x}}{\partial z}-\frac{\partial E_{z}}{\partial x}=i \omega B_{y}$
(vi) $\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}=-\frac{i \omega}{c^{2}} E_{y}$

TE, TM, and TEM Waves

Determining the longitudinal components E_{z} and B_{z}, we could quickly calculate all the others.

We obtain

$$
\begin{aligned}
E_{x} & =\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial E_{z}}{\partial x}+\omega \frac{\partial B_{z}}{\partial y}\right) \\
E_{y} & =\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial E_{z}}{\partial y}-\omega \frac{\partial B_{z}}{\partial x}\right) \\
B_{x}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial B_{z}}{\partial x}-\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial y}\right) & \text { rry to derive these } \\
B_{y}=\frac{i}{(\omega / c)^{2}-k^{2}}\left(k \frac{\partial B_{z}}{\partial y}+\frac{\omega}{c^{2}} \frac{\partial E_{z}}{\partial y}\right) &
\end{aligned}
$$

$\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\omega^{2}}{v^{2}}-k^{2}\right] E_{z}=0 \quad$ If $E_{z}=0 \Rightarrow \mathrm{TE}$ (transverse electric) waves; $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\omega^{2}}{v^{2}}-k^{2}\right] B_{z}=0 \quad l l$ If $E_{z}=0 \Rightarrow \mathrm{TM}$ (transverse magnetic)

General Approach

Let $\left\{\begin{array}{l}\mathbf{E}=\mathbf{E}_{t}+E_{z} \mathbf{e}_{z} \\ \mathbf{B}=\mathbf{B}_{t}+B_{z} \mathbf{e}_{z} \\ \nabla=\nabla_{t}+\mathbf{e}_{z} \frac{\partial}{\partial z}=\nabla_{t} \pm i k_{z} \mathbf{e}_{z}\end{array} \quad \nabla_{t}=\left\{\begin{array}{l}\mathbf{e}_{x} \frac{\partial}{\partial x}+\mathbf{e}_{y} \frac{\partial}{\partial y}, \text { Cartesian } \\ \mathbf{e}_{r} \frac{\partial}{\partial r}+\mathbf{e}_{\theta} \frac{1}{r} \frac{\partial}{\partial \theta}, \text { cylindrical }\end{array}\right.\right.$
$\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B} \Rightarrow\left(\nabla_{t} \pm i k_{z} \mathbf{e}_{z}\right) \times\left(\mathbf{E}_{t}+E_{z} \mathbf{e}_{z}\right)=i \omega\left(\mathbf{B}_{t}+B_{z} \mathbf{e}_{z}\right)$
$\nabla \times \mathbf{B}=\mu \varepsilon \frac{\partial}{\partial t} \mathbf{E} \Rightarrow\left(\nabla_{t} \pm i k_{z} \mathbf{e}_{z}\right) \times\left(\mathbf{B}_{t}+B_{z} \mathbf{e}_{z}\right)=-i \mu \varepsilon \omega\left(\mathbf{E}_{t}+E_{z} \mathbf{e}_{z}\right)$
Using the relations: $\left\{\begin{array}{l}\left(\nabla_{t} \times \mathbf{E}_{t}\right) \| \mathbf{e}_{z} \\ \left(\nabla_{t} \times E_{z} \mathbf{e}_{z}\right) \perp \mathbf{e}_{z}\end{array}\right\}$, we obtain from the transverse components of (15) and (16):

$$
\begin{align*}
& \nabla_{t} \times E_{z} \mathbf{e}_{z} \pm i k_{z} \mathbf{e}_{z} \times \mathbf{E}_{t}=i \omega \mathbf{B}_{t} \tag{17}\\
& \nabla_{t} \times B_{z} \mathbf{e}_{z} \pm i k_{z} \mathbf{e}_{z} \times \mathbf{B}_{t}=-i \mu \varepsilon \omega \mathbf{E}_{t} \tag{18}
\end{align*}
$$

In (15)-(18), the $\left\{\begin{array}{l}\text { upper } \\ \text { lower }\end{array}\right\}$ sign applies to the $\left\{\begin{array}{l}\text { forward } \\ \text { backward }\end{array}\right\}$ wave.

8.2-8.4 Modes in Waveguides (continued)

Rewrite (17) and (18)

$$
\begin{align*}
& \nabla_{t} \times E_{z} \mathbf{e}_{z} \pm i k_{z} \mathbf{e}_{z} \times \mathbf{E}_{t}=i \omega \mathbf{B}_{t} \tag{17}\\
& \nabla_{t} \times B_{z} \mathbf{e}_{z} \pm i k_{z} \mathbf{e}_{z} \times \mathbf{B}_{t}=-i \mu \varepsilon \omega \mathbf{E}_{t} \tag{18}
\end{align*}
$$

Since E_{z} and B_{z} have already been solved from (14), (17) and (18) are algebraic (rather than differential) equations. We now manipulate (17) and (18) to eliminate \mathbf{B}_{t} and thus express \mathbf{E}_{t} in terms of E_{z} and B_{z}.

$$
\begin{aligned}
\mathbf{e}_{z} \times(17) \Rightarrow & \mathbf{e}_{z} \times(\underbrace{E_{z} \underbrace{\nabla_{t} \times \mathbf{e}_{z}}_{0}}_{\nabla_{t} E_{z} \times E_{z} \mathbf{e}_{z}+E_{z}} \pm i k_{z} \overbrace{\mathbf{e}_{z} \times\left(\mathbf{e}_{z} \times \mathbf{E}_{t}\right)}^{-\mathbf{E}_{t}}=i \omega \mathbf{e}_{z} \times \mathbf{B}_{t} \\
& \begin{array}{l}
\nabla \times \psi \mathbf{a}=\nabla \psi \times \mathbf{a}+\psi \nabla \times \mathbf{a} \\
\text { If } \psi, \mathbf{a} \text { are both independent of } z, \text { then } \\
\nabla_{t} \times \psi \mathbf{a}=\nabla_{t} \psi \times \mathbf{a}+\psi \nabla_{t} \times \mathbf{a}
\end{array}
\end{aligned}
$$

$$
\begin{equation*}
\Rightarrow i \omega \mathbf{e}_{z} \times \mathbf{B}_{t}=\nabla_{t} E_{z} \mp i k_{z} \mathbf{E}_{t} \tag{19}
\end{equation*}
$$

8.2-8.4 Modes in Waveguides (continued)

Sub. (19) into (18)

$$
\begin{equation*}
\underbrace{\nabla_{t} \times B_{z} \mathbf{e}_{z}}_{\nabla_{t} B_{z} \times \mathbf{e}_{z}} \pm i k_{z} \frac{1}{i \omega}\left(\nabla_{t} E_{z} \mp i k_{z} \mathbf{E}_{t}\right)=-i \mu \varepsilon \omega \mathbf{E}_{t} \tag{20}
\end{equation*}
$$

Multiply (20) by $i \omega$: $i \omega \nabla_{t} B_{z} \times \mathbf{e}_{z} \pm i k_{z} \nabla_{t} E_{z}+k_{z}^{2} \mathbf{E}_{t}=\mu \varepsilon \omega^{2} \mathbf{E}_{t}$
$\Rightarrow\left(\mu \varepsilon \omega^{2}-k_{z}^{2}\right) \mathbf{E}_{t}=i\left(\omega \nabla_{t} B_{z} \times \mathbf{e}_{z} \pm k_{z} \nabla_{t} E_{z}\right)$
$\Rightarrow \mathbf{E}_{t}=\frac{i}{\mu \varepsilon \omega^{2}-k_{z}^{2}}\left[\pm k_{z} \nabla_{t} E_{z}-\omega \mathbf{e}_{z} \times \nabla_{t} B_{z}\right]$
Similarly,

$$
\begin{equation*}
\mathbf{B}_{t}=\frac{i}{\mu \varepsilon \omega^{2}-k_{z}^{2}}\left[\pm k_{z} \nabla_{t} B_{z}+\mu \varepsilon \omega \mathbf{e}_{z} \times \nabla_{t} E_{z}\right] \tag{8.26b}
\end{equation*}
$$

Thus, once E_{z} and B_{z} have been solved from (14), the solutions for \mathbf{E}_{t} and \mathbf{B}_{t} are given by (8.26a) and (8.26b).

8.2-8.4 Modes in Waveguides (continued)

Discussion:

(i) $\mathbf{E}_{t}, \mathbf{B}_{t}, E_{z}, B_{z}$ in (8.26a) and (8.26b) are functions of \mathbf{x}_{t} only.
(ii) ε and μ can be complex. $\operatorname{Im}(\varepsilon)$ or $\operatorname{Im}(\mu)$ implies dissipation.
(iii) By letting $B_{z}=0$, we may obtain a set of solutions for E_{z}, \mathbf{E}_{t}, and \mathbf{B}_{t} from (14), (8.26a), and (8.26b), respectively. It can be shown that if the boundary condition on E_{z} is satisfied, then boundary conditions on \mathbf{E}_{t} and \mathbf{B}_{t} are also satisfied. Hence, this gives a set of valid solutions called the TM (transverse magnetic) modes. Similarly, by letting $E_{z}=0$, we may obtain a set of valid solutions called the TE (transverse electric) modes.
(iv) E_{z} is the generating function for the TM mode and B_{z} is the generating function for the TE mode. The generating function is denoted by Ψ in Jackson.

TM Mode of a Waveguide ($B_{z}=0$): (see pp. 359-360)

$$
\begin{cases}\left(\nabla_{t}^{2}+\gamma^{2}\right) E_{z}=0 \text { with boundary condition }\left.E_{z}\right|_{s}=0 \\
\mathbf{E}_{t}= \pm \frac{i k_{z}}{\gamma^{2}} \nabla_{t} E_{z} & \begin{array}{l}
\text { Assume perfectly } \\
\text { conducting wall. }
\end{array} \\
\mathbf{H}_{t}= \pm \frac{\varepsilon \omega}{k_{z}} \mathbf{e}_{z} \times \mathbf{E}_{t}= \pm \frac{1}{Z_{e}} \mathbf{e}_{z} \times \mathbf{E}_{t} \\
\gamma^{2}=\mu \varepsilon \omega^{2}-k_{z}^{2} & \begin{array}{l}
Z_{e} \equiv k_{z} / \varepsilon \omega, \text { wave impedance } \\
\text { of TM modes } \tag{21c}
\end{array}\end{cases}
$$

TE Mode of a Waveguide ($E_{z}=0$): (see pp. 359-360)

8.2-8.4 Modes in Waveguides (continued)

Discussion:
(i) Either (21) or (22) constitutes an eigenvalue problem (see lecture notes, Ch. 3, Appendix A). The eigenvalue γ^{2} will be an infinite set of discrete values fixed by the boundary condition, each representing an eigenmode of the waveguide (An example will be provided below.)
(ii) (21b) and (22b) show that \mathbf{E}_{t} is perpendicular to \mathbf{B}_{t} (also true in a cavity).
(iii) (21b) and (22b) show that \mathbf{E}_{t} and \mathbf{B}_{t} are in phase if $\mu, \varepsilon, \omega, k_{z}$ are all real (not true in a cavity).
(iv) (21c) [or (22c)] is the dispersion relation, which relates ω and k_{z} for a given mode.
(v) The wave impedance, Z_{e} or Z_{h}, gives the ratio of E_{t} to H_{t} in the waveguide.

Field Patterns of Circular Waveguide Modes

Field Patterns of Circular Waveguide Modes

Characterization of Circularly Symmetric TE01 Mode

(a) simulation

T. H. Chang and B. R. Yu, "High-Power Millimeter-Wave Rotary Joint", Rev. Sci. Instrum. 80, 034701 (2009).

8.2-8.4 Modes in Waveguides (continued)

TEM Mode of Coaxial and Parallel-Wire Transmission Lines ($E_{z}=B_{z}=0$): (see Jackson p. 341)

Rewrite $\left\{\begin{array}{l}\mathbf{E}_{t}=\frac{i}{\mu \varepsilon \omega^{2}-k_{z}^{2}}\left[\pm k_{z} \nabla_{t} E_{z}-\omega \mathbf{e}_{z} \times \nabla_{t} B_{z}\right] \\ \mathbf{B}_{t}=\frac{i}{\mu \varepsilon \omega^{2}-k_{z}^{2}}\left[\pm k_{z} \nabla_{t} B_{z}+\mu \varepsilon \omega \mathbf{e}_{z} \times \nabla_{t} E_{z}\right]\end{array}\right.$
These 2 equations fail for a different class of modes, called the TEM (transverse electromagnetic) mode, for which $E_{z}=B_{z}=0$.
However, they give the condition for the existence of this mode:

$$
\begin{equation*}
\omega^{2}=k_{z}^{2} / \mu \varepsilon \tag{8.27}
\end{equation*}
$$

$[$ Equations in rectangular boxes are $]$
(8.27) is also the dispersion relation in infinite space. This makes the TEM mode very useful because it can propagate at any frequency.

To calulate \mathbf{E}_{t} and \mathbf{B}_{t}, we need to go back to Maxwell equations.

8.2-8.4 Modes in Waveguides (continued)

$$
\text { Let } E_{z}=B_{z}=0 \text { and }\left\{\begin{array}{l}
\mathbf{E}_{t} \\
\mathbf{B}_{t}
\end{array}\right\}=\left\{\begin{array}{l}
\mathbf{E}_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right) \\
\mathbf{B}_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right)
\end{array}\right\} e^{ \pm i k_{z} z-i \omega t},
$$

then, because $B_{z}=0$, the z-component of $\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B}$ gives

$$
\nabla_{t} \times \mathbf{E}_{\mathrm{TEM}}=0 \Rightarrow \mathbf{E}_{\mathrm{TEM}}=-\nabla_{t} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right),
$$

and, because $E_{z}=0, \nabla \cdot \mathbf{E}=0$ gives

$$
\nabla_{t} \cdot \mathbf{E}_{\mathrm{TEM}}=0 \Rightarrow \nabla_{t}^{2} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right)=0,
$$

$$
\mathbf{A}_{t}\left(\mathbf{x}_{t}\right)=-\nabla_{t} \Phi\left(\mathbf{x}_{t}\right)
$$

where $\Phi_{\text {TEM }}$ is the generating function for the TEM modes. Because $\mathbf{E}_{\text {tan }}=0$ on the surface of a perfect conductor, $\Phi_{\text {TEM }}$ is subject to the boundary condition $\Phi_{\text {TEM }}=$ const. on the conductor. This gives $\Phi_{\text {TEM }}$ $=$ const. or $\mathbf{E}_{\text {TEM }}=0$ everywhere, if there is only one conductor. So, TEM modes exist only in 2-conductor configurations, such as coaxial and parallel-wire transmission lines. Finally, $\mathbf{B}_{\text {TEM }}$ is given by the transverse components of $\nabla \times \mathbf{E}=-\frac{\partial}{\partial t} \mathbf{B}: \mathbf{B}_{\text {TEM }}= \pm \frac{k_{z}}{\omega} \mathbf{e}_{z} \times \mathbf{E}_{\text {TEM }}$.

Why single conductor cannot support TEM waves? (I)

Let's consider the property of 2D Laplace equation.
Suppose $\Phi_{\text {TEM }}$ depends on two variables.
$\frac{\partial^{2} \Phi_{\mathrm{TEM}}}{\partial x^{2}}+\frac{\partial^{2} \Phi_{\mathrm{TEM}}}{\partial y^{2}}=0 \quad\left\{\begin{array}{l}\text { a partial differential equation (PDE); } \\ \text { not a ordinary differential equation (ODE). }\end{array}\right.$
Harmonic functions in two dimensions have the same properties as we noted in one dimension:

Why single conductor cannot support TEM waves? (II)
David Cheng's explanation. Chap. 10, p. 525.

1. The magnetic flux lines always close upon themselves. For a TEM wave, the magnetic field line would form closed loops in a transverse plane.
2. The generalized Ampere's law requires that the line integral of the magnetic field around any closed loop in a transverse plane must equal the sum of the longitudinal conduction and displace conduction current inside the waveguide.
3. There is no longitudinal conduction current inside the waveguide and no longitudinal displace current ($E_{\mathrm{z}}=0$).
4. There can be no closed loops of magnetic field lines in any transverse plane. (weak conclusion)
The TEM wave cannot exist in a single-conductor hollow waveguide of any shape. (Again, not a perfect argument)

8.2-8.4 Modes in Waveguides (continued)

In summary, the TEM modes are governed by the following set of equtions:

$$
\left\{\begin{array}{l}
\nabla_{t}^{2} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right)=0 \\
\mathbf{E}_{\mathrm{TEM}}=-\nabla_{t} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right) \\
\mathbf{B}_{\mathrm{TEM}}= \pm \frac{k_{z}}{\omega} \mathbf{e}_{z} \times \mathbf{E}_{\mathrm{TEM}} \\
\left(\text { or } \mathbf{H}_{\mathrm{TEM}}= \pm \frac{k_{z}}{\omega \mu} \mathbf{e}_{z} \times \mathbf{E}_{\mathrm{TEM}}= \pm \sqrt{\frac{\varepsilon}{\mu}} \mathbf{e}_{z} \times \mathbf{E}_{\mathrm{TEM}}= \pm Y \mathbf{e}_{z} \times \mathbf{E}_{\mathrm{TEM}}\right) \\
\omega^{2}=\frac{k_{z}^{2}}{\mu \varepsilon} \tag{23c}
\end{array}\right.
$$

where $Y(=\sqrt{\varepsilon / \mu})$ is the (intrinsic) admittance of the filling medium defined in Ch. 7 of lecture notes (the last page of Sec. II).
8.2-8.4 Modes in Waveguides (continued)

Discussion:

(i) For the TEM modes, we solve a 2-D equation $\nabla_{t}^{2} \Phi_{\text {TEM }}\left(\mathbf{x}_{t}\right)=0$ for $\Phi_{\text {TEM }}\left(\mathbf{x}_{t}\right)$. But this is not a 2-D problem because $\Phi_{\text {TEM }}$ is not the full solution. The full solution is $\left\{\begin{array}{l}\mathbf{E}_{t}(\mathbf{x}, t) \\ \mathbf{B}_{t}(\mathbf{x}, t)\end{array}\right\}=\left\{\begin{array}{l}\mathbf{E}_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right) \\ \mathbf{B}_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right)\end{array}\right\} e^{ \pm i k_{z} z-i \omega t}$ with $\mathbf{E}_{\text {TEM }}=-\nabla_{t} \Phi_{\text {TEM }}\left(\mathbf{x}_{t}\right)$ and $\mathbf{B}_{\text {TEM }}= \pm \frac{k_{z}}{\omega} \mathbf{e}_{z} \times \mathbf{E}_{\text {TEM }}$.

For an actual 2-D electrostatic problem $\left[\Phi(\mathbf{x})=\Phi\left(\mathbf{x}_{t}\right)\right]$, we have $\nabla_{t}^{2} \Phi\left(\mathbf{x}_{t}\right)=0$, which gives the full solution $\mathbf{E}_{t}\left(\mathbf{x}_{t}\right)=-\nabla_{t} \Phi\left(\mathbf{x}_{t}\right)$.
(ii) Note the difference between the scalar potentials discussed here and in Ch. 1 and Ch. 6.
$\int \mathbf{E}_{\text {TEM }}=-\nabla_{t} \Phi_{\text {TEM }}\left(\mathbf{x}_{t}\right)$ regard $\Phi_{\text {TEM }}$ as a mathematical tool.
$\mathbf{E}(\mathbf{x})=-\nabla \Phi(\mathbf{x}) \quad$ regard Φ as a physical quantity.
$\mathbf{E}(\mathbf{x}, t)=-\nabla \Phi(\mathbf{x}, t)-\frac{\partial}{\partial t} \mathbf{A}(\mathbf{x}, t)$ regard Φ and \mathbf{A} as mathematical tools.

Example 1: TE mode of a rectangular waveguide
Rewrite the basic equations for the TE mode:

$$
\left\{\begin{array}{l}
\left(\nabla_{t}^{2}+\gamma^{2}\right) H_{z}=0 \text { with boundary condition }\left.\frac{\partial}{\partial n} H_{z}\right|_{s}=0 \\
\mathbf{H}_{t}= \pm \frac{i k_{z}}{\gamma^{2}} \nabla_{t} H_{z} \\
\mathbf{E}_{t}=\mp \frac{\mu \omega}{k_{z}} \mathbf{e}_{z} \times \mathbf{H}_{t}=\mp Z_{h} \mathbf{e}_{z} \times \mathbf{H}_{t} \tag{22b}\\
\gamma^{2}=\mu \varepsilon \omega^{2}-k_{z}^{2}
\end{array}\right.
$$

Rectangular geometry \Rightarrow Cartesian system $\Rightarrow \nabla_{t}^{2}=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$
Hence, the wave equation in (22) becomes:

$$
\begin{equation*}
\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\mu \varepsilon \omega^{2}-k_{z}^{2}\right] H_{z}=0 \tag{24}
\end{equation*}
$$

8.2-8.4 Modes in Waveguides (continued)

Applying boundary conditions [see (22)] to (25):

$$
\mathbf{H}_{t}= \pm \frac{i k_{z}}{\gamma^{2}} \nabla_{t} H_{z}
$$

$$
H_{z}=e^{-i \omega t}\left[A_{1} e^{i k_{x} x}+A_{2} e^{-i k_{x} x}\right]\left[B_{1} e^{i k_{y} y}+B_{2} e^{-i k_{y} y}\right]\left[C_{+} e^{i k_{z} z}+C_{-} e^{-i k_{z} z}\right]
$$

$$
\left\{\begin{array}{l}
\left.B_{x} \propto \frac{\partial}{\partial x} B_{z}\right|_{x=0}=0 \Rightarrow i k_{x} A_{1}-i k_{x} A_{2}=0 \Rightarrow A_{1}=A_{2} \\
\left.B_{y} \propto \frac{\partial}{\partial y} B_{z}\right|_{y=0}=0 \Rightarrow i k_{y} B_{1}-i k_{y} B_{2}=0 \Rightarrow B_{1}=B_{2}
\end{array}\right.
$$

$$
\Rightarrow H_{z}=\cos k_{x} x \cos k_{y} y\left[C_{+} e^{-i \omega t+i k_{z} z}+C_{-} e^{-i \omega t-i k_{z} z}\right]
$$

$\left\{\begin{array}{l}\left.B_{x} \propto \frac{\partial}{\partial x} B_{z}\right|_{x=a}=0 \Rightarrow \sin k_{x} a=0 \Rightarrow k_{x}=m \pi / a, m=0,1,2, \ldots \\ \left.B_{y} \propto \frac{\partial}{\partial y} B_{z}\right|_{y=b}=0 \Rightarrow \sin k_{y} b=0 \Rightarrow k_{y}=n \pi / b, n=0,1,2, \ldots\end{array}\right.$
$\Rightarrow H_{z}=\cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b}[\underbrace{C_{+} e^{i k_{z} z-i \omega t}}_{\text {forward wave }}+\underbrace{C _e^{-i k_{z} z-i \omega t}}_{\text {backward wave }}]$
Sub. $k_{x}=\frac{m \pi}{a}, k_{y}=\frac{n \pi}{b}$ into $\mu \varepsilon \omega^{2}-k_{x}^{2}-k_{y}^{2}-k_{z}^{2}=0$, we obtain

$$
\begin{equation*}
\mu \varepsilon \omega^{2}-k_{z}^{2}-\pi^{2}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)=0, m, n=0,1,2, \ldots \tag{27}
\end{equation*}
$$

Rewrite (24): $\left[\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\mu \varepsilon \omega^{2}-k_{z}^{2}\right] H_{z}=0$
Assuming $e^{i k_{x} x+i k_{y} y}$ dependence for H_{z}, we obtain

$$
\begin{array}{cc}
{\left[\mu \varepsilon \omega^{2}-k_{x}^{2}-k_{y}^{2}-k_{z}^{2}\right] H_{z}=0} & \rightarrow z \\
\text { order for } H_{z} \neq 0 \text {, we must have } & y \\
x
\end{array}
$$

$$
\begin{equation*}
\mu \varepsilon \omega^{2}-k_{x}^{2}-k_{y}^{2}-k_{z}^{2}=0, \tag{22c}
\end{equation*}
$$

which is satisfied for $\pm k_{x}, \pm k_{y}, \pm k_{z}$. Since $\left(e^{i k_{x} x}, e^{-i k_{x} x}\right)$, $\left(e^{i k_{y} y}, e^{-i k_{y} y}\right)$, and $\left(e^{i k_{z} z}, e^{-i k_{z} z}\right)$ are all linearly independent pairs, the complete solution for H_{z} is

$$
\begin{align*}
H_{z}=e^{-i \omega t} & {\left[A_{1} e^{i k_{x} x}+A_{2} e^{-i k_{x} x}\right]\left[B_{1} e^{i k_{y} y}+B_{2} e^{-i k_{y} y}\right] } \\
\cdot & {\left[C_{+} e^{i k_{z} z}+C_{-} e^{-i k_{z} z}\right] } \tag{25}
\end{align*}
$$

Griffiths

9.5.2 TE Waves in a Rectangular Wave Guide

$$
E_{z}=0, \text { and } B_{z}(x, y)=X(x) Y(y) \leftarrow \text { separation of variables }
$$

$$
\frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}+\left(\frac{\omega^{2}}{v^{2}}-k^{2}\right)=0
$$

$$
\frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}=-k_{x}^{2} \text { and } \frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}=-k_{y}^{2}
$$

$$
\text { with } \frac{\omega^{2}}{v^{2}}=k^{2}+k_{x}^{2}+k_{y}^{2}
$$

*Griffiths' derivation uses different boundary condition --- $\mathbf{E}_{t}=0$.

$$
\begin{align*}
& X(x)=A \sin k_{x} x+B \cos k_{x} x \tag{26}\\
& Y(y)=C \sin k_{y} y+D \cos k_{y} y
\end{align*}
$$

$$
\begin{aligned}
& E_{x} \propto \frac{\partial B_{z}}{\partial y} \propto C \cos k_{y} y-D \sin k_{y} y \\
& E_{x}(@ y=0)=0 \Rightarrow C=0 \\
& E_{x}(@ y=b)=0 \Rightarrow \sin k_{y} b=0, k_{y}=\frac{n \pi}{b}(n=0,1,2, \ldots) \\
& E_{y} \propto \frac{\partial B_{z}}{\partial x} \propto A \cos k_{x} x-B \sin k_{x} x \\
& E_{y}(@ x=0)=0 \Rightarrow A=0 \\
& E_{y}(@ x=a)=0 \Rightarrow \sin k_{x} a=0, k_{x}=\frac{m \pi}{a}(m=0,1,2, \ldots) \\
& B_{z}(x, y)=B_{0} \cos (m \pi x / a) \cos (n \pi y / b) \leftarrow \text { the TE } \mathrm{Tm} \\
& \text { mode }
\end{aligned}
$$

$$
k=\sqrt{(\omega / v)^{2}-\pi^{2}\left[(m / a)^{2}+(n / b)^{2}\right]}
$$

8.2-8.4 Modes in Waveguides (continued)

Rewrite (27) as $\quad \mu \varepsilon \omega^{2}-k_{z}^{2}-\mu \varepsilon \omega_{c m n}^{2}=0$, where $\omega_{c m n}=\frac{\pi}{\sqrt{\mu \varepsilon}}\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)^{1 / 2}, m, n=0,1,2, \ldots$

Each pair of (m, n) gives a normal mode ($\mathrm{TE}_{\mathrm{mn}}$ mode) of the waveguide. m and n cannot both be 0 , because that will creat a $\frac{0}{0}$ situation on (8.26) or (22a), making \mathbf{H}_{t} and \mathbf{E}_{t} indeterminable.
$\omega_{c m n}$ is the cutoff frequency (the frequency at which $k_{z}=0$) of the waveduide for the $\mathrm{TE}_{\mathrm{mn}}$ mode. Waves with $\omega<\omega_{c m n}$ cannot propagate as a $\mathrm{TE}_{\mathrm{mn}}$ mode because k_{z} becomes purely imaginary.
(28) is the $\mathrm{TE}_{\mathrm{mn}}$ mode dispersion relation of a waveguide filled with a dielectric medium with constant (in general complex) ε and μ.

For the usual case of an unfilled waveguide, we have $\varepsilon=\varepsilon_{0}$ and $\mu=\mu_{0}\left(\Rightarrow \mu \varepsilon=\mu_{0} \varepsilon_{0}=\frac{1}{c^{2}}\right)$, and (28) (29) can be written

$$
\omega^{2}-k_{z}^{2} c^{2}-\omega_{c m n}^{2}=0 \text { with } \omega_{c m n}=\pi c\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)^{1 / 2}\left[\begin{array}{l}
\text { for unfilled } \tag{30}\\
\text { waveguide }
\end{array}\right]
$$

Question 2: Can we use a waveguide to transport waves at 60 Hz ?

8.2-8.4 Modes in Waveguides (continued)

Other quantities of interest:
(1) Differentiating $\omega^{2}-k_{z}^{2} c^{2}-\omega_{c m n}^{2}=0$ with respect to k_{z}

$$
2 \omega \frac{d \omega}{d k_{z}}-2 k_{z} c^{2}=0
$$

$\Rightarrow v_{g}=\frac{d \omega}{d k_{z}}=\frac{k_{z} c^{2}}{\omega}$ [group velocity in unfilled waveguide]
$\Rightarrow\left\{\begin{array}{l}v_{g}<c \\ v_{g} \rightarrow 0 \text { as } \omega \rightarrow \omega_{\text {cmn }}\end{array}\right.$
(2) The remaining field components $\left(E_{x}, E_{y}, H_{x}\right.$, and $\left.H_{y}\right)$ can be obtained from H_{z} through

$$
\begin{gather*}
\qquad \mathbf{H}_{t}= \pm \frac{i k_{z}}{\gamma^{2}} \nabla_{t} H_{z} \tag{22a}\\
\mathbf{E}_{t}=\mp \frac{\mu \omega}{k_{z}} \mathbf{e}_{z} \times \mathbf{H}_{t} \quad\left[\begin{array}{l}
\gamma^{2}=\mu \varepsilon \omega^{2}-k_{z}^{2}=\frac{\omega_{c m n}^{2}}{c^{2}} \\
\text { see }(22 \mathrm{c}) \text { and }(30) .
\end{array}\right] \\
\text { where the }\left\{\begin{array}{l}
\text { upper } \\
\text { lower }
\end{array}\right\} \text { sign applies to the }\left\{\begin{array}{l}
\text { forward } \\
\text { backward }
\end{array}\right\} \text { wave. } \tag{22b}
\end{gather*}
$$

TE mode field patterns of rectangular waveguide

from E. L. Ginzton, "Microwave measurements". λ_{c} : cutoff frequency solid curve: E-field lines; dashed curves: B-field lines

TM mode field patterns of rectangular waveguide

from E. L. Ginzton, "Microwave measurements". λ_{c} : cutoff frequency solid curve: E-field lines; dashed curves: B-field lines

8.2-8.4 Modes in Waveguides (continued)

Discussion:Waveguide and microwaves

A typical waveguide has $a=2 b$ to maximize the usable bandwidth ($a<\lambda_{f}<2 a$) over which only the TE_{10} mode can propagate and hence mode purity is maintained. Waves are normally transported by the TE_{10} mode over this frequency range. Waveguides come in different sizes. Usable bandwidths of waveguides of practical dimensions $(0.1 \mathrm{~cm}<a$ $<100 \mathrm{~cm}$) cover the entire microwave band (300 MHz to 300 GHz).

Compared with coaxial transmission lines, the waveguide is capable of handling much higher power. Hence, it is commonly used in highpower microwave systems. In a radar system, for example, it is used to transport microwaves from the generator to the antenna.

8.2-8.4 Modes in Waveguides (continued)

Example 2: TEM modes of a coaxial transmission line
TEM modes are governed by the following set of equations:

$$
\left\{\begin{array}{l}
\nabla_{t}^{2} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right)=0 \\
\mathbf{E}_{\mathrm{TEM}}=-\nabla_{t} \Phi_{\mathrm{TEM}}\left(\mathbf{x}_{t}\right) \\
\mathbf{H}_{\mathrm{TEM}}= \pm Y \mathbf{e}_{z} \times \mathbf{E}_{\mathrm{TEM}} \\
\omega^{2}=\frac{k_{z}^{2}}{\mu \varepsilon} \tag{23c}
\end{array}\right.
$$

(23) gives $\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\mathrm{TEM}}}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} \Phi_{\mathrm{TEM}}}{\partial \varphi^{2}}=0$.

Neglect the $\frac{\partial \Phi}{\partial \varphi} \neq 0$ modes $\Rightarrow \frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial \Phi_{\text {TEN }}}{\partial r}\right)=0 \Rightarrow \Phi_{\text {TEN }}=C_{1} \operatorname{In}(r)+C_{2}$.
Apply b.c. $\left\{\begin{array}{l}\Phi_{\text {TEN }}(r=a)=V_{0} \\ \Phi_{\mathrm{TEM}}(r=b)=0\end{array} \Rightarrow\left\{\begin{array}{l}C_{1}=V_{0} / \operatorname{In}(a / b) \\ C_{2}=-C_{1} \operatorname{In}(b)\end{array} \Rightarrow \Phi_{\text {TEN }}=V_{0} \frac{\operatorname{In}(r / b)}{\operatorname{In}(a / b)}\right.\right.$.
(23a, b) then give $\left\{\begin{array}{l}\mathbf{E}_{\mathrm{TEM}}(\mathbf{x}, t)=\frac{V_{0}}{\operatorname{In}(b / a)} \frac{1}{r} e^{ \pm i k_{z} z-i \omega t} \mathbf{e}_{r} \\ \mathbf{H}_{\mathrm{TEM}}(\mathbf{x}, t)= \pm \frac{Y V_{0}}{\operatorname{In}(b / a)} \frac{1}{r} e^{ \pm i k_{z} z-i \omega t} \mathbf{e}_{\varphi}\end{array}\right.$

T. H. Chang, C. S. Lee, C. N. Wu, and C. F. Yu, "Exciting circular TEmn modes at low terahertz region", Appl. Phys. Lett. 93, 111503 (2008).

Difficulties of Exciting a Higher-Order Mode: Take TE_{02} as an Example

Applications of Waveguide Modes (I)

Applications of Waveguide Modes (II)

THz waveguide, circulator, isolator, power divider, antenna...

8.7 Modes in Cavities

We consider the example of a rectangular cavity (i.e. a rectangular waveguide with two ends closed by conductors), for which we have two additional boundary conditions at the ends.

Rewrite (27): $H_{z}=\cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b}\left[C_{+} e^{i k_{z} z-i \omega t}+C_{-} e^{-i k_{z} z-i \omega t}\right]$ b.c. (i): $H_{z}(z=0)=0 \Rightarrow C_{+}=-C_{-}$
$\Rightarrow H_{z}=H_{z 0} e^{-i \omega t} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \sin k_{z} z$

b.c. (ii): $H_{z}(z=d)=0$
$\Rightarrow \sin k_{z} d=0 \Rightarrow k_{z}=\frac{l \pi}{d}, l=1,2, \ldots$
$\Rightarrow H_{z}=H_{z 0} e^{-i \omega t} \cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b} \sin \frac{l \pi z}{d}, \quad\left[\begin{array}{l}m, n=0,1,2, \ldots \\ l=1,2, \ldots\end{array}\right]$
Sub. (32) into $\omega^{2}-k_{z}^{2} c^{2}-\omega_{c m n}^{2}=0$, where $\omega_{c m n}=\pi c\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}\right)^{\frac{1}{2}}$
$\Rightarrow \omega=\omega_{m n l}=\pi c\left(\frac{m^{2}}{a^{2}}+\frac{n^{2}}{b^{2}}+\frac{l^{2}}{d^{2}}\right)^{1 / 2}\left[\begin{array}{c}\omega_{m n l}: \text { resonant frequency } \\ \text { of the } \mathrm{TE}_{m n l} \text { mode }\end{array}\right]$
8.7 Modes in Cavities (continued)
$\mathrm{C}_{+}=-C_{-}$
$\operatorname{From}(26): H_{z}=\cos \frac{m \pi x}{a} \cos \frac{n \pi y}{b}\left[C_{+} e^{i k_{z} z-i \omega t}+C_{-} e^{-i k_{z} z-i \omega t}\right]$,
we see that a cavity mode is formed of a forward wave and a backward wave of equal amplitude. The forward wave is reflected at the right end to become a backward wave, and turns into a forward wave again at the the left end. The forward and backward waves superpose into a standing wave [see (33)]. Thus, we may obtain the other components of the cavity field by superposing the other components of the two traveling waves, as in (26).

Comparison with vibrational modes of a string:

	dependent variable(s)	independent variables	mode index
string	x (oscillation amp.)	z, t	l
cavity	$E_{x}, E_{y}, B_{x}, B_{y}$,	x, y, z, t	m, n, l
$E_{z}\left(\right.$ or $\left.B_{z}\right)$			

8.5 Energy Flow and Attenuation in Waveguides

Power in a Lossless Waveguide : Consider a TM mode (E = \mathbf{E}_{t}

 $+E_{z} \mathbf{e}_{z}, \mathbf{H}=\mathbf{H}_{t}$) in a medium with real ε, μ (hence real ω, k_{z}).$\mathbf{S}_{\mathrm{TM}}=\frac{1}{2} \mathbf{E} \times \mathbf{H}^{*}=\frac{1}{2}\left[\mathbf{E}_{t} \times \mathbf{H}_{t}^{*}+E_{z} \mathbf{e}_{z} \times \mathbf{H}_{t}^{*}\right] \quad$ [complex Poynting vector]
(21b) $_{\overline{\overline{1}}} \frac{1}{2} \frac{\varepsilon \omega}{k_{z}}[\underbrace{\mathbf{E}_{t} \times\left(\mathbf{e}_{z} \times \mathbf{E}_{t}^{*}\right)}_{\left.\mathbf{e}_{z} \mathbf{E}_{t}\right|^{2}}+E_{z} \underbrace{\mathbf{e}_{z} \times\left(\mathbf{e}_{z} \times \mathbf{E}_{t}^{*}\right)}_{-\mathbf{E}_{t}^{*}}$] [for TM modes]
$\quad \overline{\overline{\bar{j}}} \frac{\varepsilon \omega}{2 k_{z}}\left[\mathbf{e}_{z} \frac{k_{z}^{2}}{\gamma^{4}}\left|\nabla_{t} E_{z}\right|^{2}+\frac{i k_{z}}{\gamma^{2}} E_{z} \nabla_{t} E_{z}^{*}\right] \xrightarrow{\varepsilon, \mu) \quad \text { real } \varepsilon \text { and } \mu=\infty} z$
$=\frac{\omega k_{z} \varepsilon}{2 \gamma^{4}}\left[\mathbf{e}_{z}\left|\nabla_{t} E_{z}\right|^{2}+\frac{i \gamma^{2}}{k_{z}} E_{z} \nabla_{t} E_{z}^{*}\right]$
$P_{\mathrm{TM}}=$ time averaged power in the z-direction
$=\int_{A} \mathbf{e}_{z} \cdot\left[\operatorname{Re} \mathbf{S}_{\mathrm{TM}}\right] d a \quad[A:$ crossectional area]
$=\frac{\omega k_{z} \varepsilon}{2 \gamma^{4}} \int_{A}\left(\nabla_{t} E_{z}^{*} \cdot \nabla_{t} E_{z}\right) d a$

8.5 Energy Flow and Attenuation in Waveguides (continued)

Green's first identity: $\int_{v}\left(\phi \nabla^{2} \psi+\nabla \phi \cdot \nabla \psi\right) d^{3} x=\oint_{S} \phi \frac{\partial \psi}{\partial n} d a \quad$ (1.34)
Let ϕ and ψ be independent of z and apply (1.34) to a slab of end surface area A (on the $x-y$ plane) and infinistesimal thickness Δz in z,
$\Delta z \int_{A}\left(\phi \nabla_{t}^{2} \psi+\nabla_{t} \phi \cdot \nabla_{t} \psi\right) d a=\Delta z \oint_{C} \phi \frac{\partial \psi}{\partial n} d l+\left[\begin{array}{l}\text { surface integrals on } \\ \text { two ends of the } \\ \text { slab, which vanish. }\end{array}\right]$
$\Rightarrow \int_{A}\left(\phi \nabla_{t}^{2} \psi+\nabla_{t} \phi \cdot \nabla_{t} \psi\right) d a=\oint_{C} \phi \frac{\partial \psi}{\partial n} d l$
Let $\phi=E_{z}^{*}$ and $\psi=E_{z}$, then
$\int_{A}\left(\nabla_{t} E_{z}^{*} \cdot \nabla_{t} E_{z}\right) d a=[\oint_{C} \underbrace{=0}_{\text {by }} \frac{0}{\partial n} E_{z}^{*} d l-\int_{A} E_{z}^{*} \underbrace{\nabla_{t}^{2} E_{z}}_{\substack{-\gamma^{2} E_{z} \\ \text { by (14) }}} d a]$
$=\gamma^{2} \int_{A}\left|E_{z}\right|^{2} d a$.

Sub. (36) into (35): $P_{\mathrm{TM}}=\frac{\omega k_{z} \varepsilon}{2 \gamma^{4}} \int_{A}\left(\nabla_{t} E_{z}^{*} \cdot \nabla_{t} E_{z}\right) d a$, we obtain

$$
\begin{equation*}
P_{\mathrm{TM}}=\frac{\omega k_{z} \varepsilon}{2 \gamma^{2}} \int_{A}\left|E_{z}\right|^{2} d a, \quad\left[\text { where } \gamma^{2}=\mu \varepsilon \omega^{2}-k_{z}^{2}\right] \tag{37}
\end{equation*}
$$

$\Rightarrow k_{z}=\left(\mu \varepsilon \omega^{2}-\gamma^{2}\right)^{\frac{1}{2}}=\sqrt{\mu \varepsilon} \omega\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{\frac{1}{2}}$
$\left[\omega_{c}\left(\right.\right.$ i.e. ω at $\left.k_{z}=0\right)$ is the $]$ cutoff freq. of the mode.

Sub. (38) and (39) into (37)

$$
\begin{equation*}
P_{\mathrm{TM}}=\frac{1}{2} \sqrt{\frac{\varepsilon}{\mu}}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{\frac{1}{2}} \int_{A}\left|E_{z}\right|^{2} d a \quad[\text { cf. (8.51)] } \tag{40}
\end{equation*}
$$

Similarly, for the TE mode and real μ, ε, ω, and k_{z}, we obtain from (22), (22a), and (22b),

$$
\begin{align*}
\mathbf{S}_{\mathrm{TE}} & =\frac{\omega k_{z} \mu}{2 \gamma^{4}}\left[\mathbf{e}_{z}\left|\nabla_{t} H_{z}\right|^{2}-\frac{i \gamma^{2}}{k_{z}} H_{z}^{*} \nabla_{t} H_{z}\right] \tag{41}\\
P_{\mathrm{TE}} & =\int_{A} \mathbf{e}_{z} \cdot\left[\operatorname{ReS}_{\mathrm{TE}}\right] d a=\frac{\omega k_{z} \mu}{2 \gamma^{2}} \int_{A}\left|H_{z}\right|^{2} d a \\
& =\frac{1}{2} \sqrt{\frac{\mu}{\varepsilon}}\left(\frac{\omega}{\omega_{c}}\right)^{2}\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{\frac{1}{2}} \int_{A}\left|H_{z}\right|^{2} d a \quad \text { [cf. (8.51)] } \tag{42}
\end{align*}
$$

Note: P_{TM} and P_{TE} are expressed in terms of the generating function.

8.5 Energy Flow and Attenuation in Waveguides (continued)

Energy in a Lossless Waveguide :

$$
\begin{equation*}
\oint_{S} \mathbf{S} \cdot \mathbf{n} d a+\frac{1}{2} \int_{V} \mathbf{J}^{*} \cdot \mathbf{E} d^{3} x+2 i \omega \int_{V}\left(w_{e}-w_{m}\right) d^{3} x=0 \tag{6.134}
\end{equation*}
$$

$\left\{\begin{array}{l}w_{e}=\frac{1}{4} \mathbf{E} \cdot \mathbf{D}^{*}=\frac{1}{4} \varepsilon|E|^{2} \quad\left[\begin{array}{l}\text { if } \varepsilon, \mu \text { are real, } w_{e} \text { and } w_{m} \text { are } \\ \left.w_{m}=\frac{1}{4} \mathbf{B} \cdot \mathbf{H}^{*}=\frac{1}{4 \mu} \right\rvert\, B^{2}\end{array}\right] \\ \text { also real and represent time } \\ \text { averaged field energy densities. }\end{array}\right]$
Apply (6.134) to a section of a lossless $\quad \frac{\mathbf{S} \cdot \mathbf{n}=0\left(\because \mathbf{E}_{\tan }=0\right)}{(}$ waveguide [i.e. μ, ε are real and the wall conductivity $\sigma=\infty$].
$\sigma=0$ (inside volume) $\Rightarrow \mathbf{J}=0 \Rightarrow \int_{\mathcal{V}} \mathbf{J}^{*} \cdot \mathbf{E} d^{3} x=0$
$\mathbf{E}_{t}=0$ on the side wall $\Rightarrow \mathbf{S} \cdot \mathbf{n}=0$ on the side wall
μ, ε (hence ω, k_{z}) are real $\Rightarrow \mathbf{E}_{t}$ and \mathbf{H}_{t} are in phase [by (21b) $\&(22 \mathrm{~b})$] $\Rightarrow \mathbf{E}_{t} \times \mathbf{H}_{t}^{*}$ is real $\Rightarrow \mathbf{S}$ is real on both ends $\Rightarrow \oint_{S} \mathbf{S} \cdot \mathbf{n} d a$ is real
$\left\{\begin{array}{l}\operatorname{Re}[(6.134)] \Rightarrow \oint_{S} \mathbf{S} \cdot \mathbf{n} d a=0 \text { (no net power into or out of volume) } \\ \operatorname{Im}[(6.134)] \Rightarrow \int_{V} w_{e} d^{3} x=\int_{V} w_{m} d^{3} x \text { (B-field energy = E-field energy) }\end{array}\right.$

8.5 Energy Flow and Attenuation in Waveguides (continued)

For the TM mode $\left(H_{z}=0\right)$:
$U_{\mathrm{TM}}=$ field energy per unit length

(21b)

$=\int_{A}\left(w_{e}+w_{m}\right) d a=2 \int_{A} w_{m} d a=\frac{\mu}{2} \int_{A}\left|\mathbf{H}_{t}\right|^{2} d a \stackrel{\downarrow}{=} \frac{\mu}{2} \frac{\varepsilon^{2} \omega^{2}}{k_{z}^{2}} \int_{A}\left|\mathbf{E}_{t}\right|^{2} d a$
$\underset{\substack{=}}{=\frac{\mu}{2}} \frac{\varepsilon^{2} \omega^{2}}{k_{z}^{2}} \frac{k_{z}^{2}}{\gamma^{4}} \underbrace{\int_{A}\left|\nabla_{t} E_{z}\right|^{2} d a}_{\substack{\gamma^{2} \int_{A}\left|E_{z}\right|^{2} d a \\ \text { by }(36)}}=\frac{\mu \varepsilon^{2} \omega^{2}}{2 \gamma^{2}} \int_{A}\left|E_{z}\right|^{2} d a=\frac{\varepsilon}{2}\left(\frac{\omega}{\omega_{c}}\right)^{2} \int_{A}\left|E_{z}\right|^{2} d a$
$\gamma^{2}=\mu \varepsilon \omega_{c}^{2}$
Similarly, for the TE mode ($E_{z}=0$):

$$
\begin{equation*}
U_{\mathrm{TE}}=2 \int_{A} W_{e} d a=\frac{\varepsilon}{2} \int_{A}\left|\mathbf{E}_{t}\right|^{2} d a=\frac{\mu}{2}\left(\frac{\omega}{\omega_{c}}\right)^{2} \int_{A}\left|H_{z}\right|^{2} d a \tag{44}
\end{equation*}
$$

From (40), (42), (43), and (44)

$$
\begin{equation*}
\sqrt{\text { Use }(22 a, b) \text { and }} \tag{8.53}
\end{equation*}
$$

$\frac{P_{\mathrm{TM}}}{U_{\mathrm{TM}}}=\frac{P_{\mathrm{TE}}}{U_{\mathrm{TE}}}=\frac{1}{\sqrt{\mu \varepsilon}}\left(1-\frac{\omega_{c}^{2}}{\omega^{2}}\right)^{\frac{1}{2}}=\frac{k_{z}}{\uparrow} \frac{\text { Green's 1st identity }}{\bar{\dagger} v_{g}}$
$v_{p}=\omega / k_{z}$
$\Rightarrow v_{p} v_{g}=1 / \mu \varepsilon$

8.5 Energy Flow and Attenuation in Waveguides (continued)

Attenuation in Waveguides Due to Ohmic Loss on the Wall:

We express k_{z} for a lossless $(\sigma=\infty)$ and lossy $(\sigma \neq \infty)$ waveguide

$$
\text { as } \quad k_{z}= \begin{cases}k_{z}^{(0)}, & \sigma=\infty \tag{8.55}\\ k_{z}^{(0)}+\alpha+i \beta, & \sigma \neq \infty\end{cases}
$$

where $k_{z}^{(0)}$ is the solution of the dispersion relation for $\sigma=\infty$, i.e.

$$
\begin{equation*}
\mu \varepsilon \omega^{2}-k_{z}^{2}-\mu \varepsilon \omega_{c}^{2}=0 \quad[\text { derived in }(28)] \tag{45}
\end{equation*}
$$

The expression for $\sigma \neq \infty$ in (8.55) assumes that the wall loss modifies $k_{z}^{(0)}$ by a small real part α and a small imaginary part β, where α and β are to be dertermined.

Physical reason for α : Effective waveguide radius increases by by an amount \sim skin depth δ. A larger waveguide has a smaller ω_{c}. Hence, $\alpha>0$.
Physical reason for β : Power dissipation on the wall.

In $k_{z}=k_{z}^{(0)}+\alpha+i \beta, \alpha$ is not of primary interest because it modifies the guide wavelength slightly. However, β results in attentuation, which can be very significant over a long distance. We outline below how β can be evaluated.

$$
\left.\begin{array}{rl}
P & =\text { power flow }\left(\propto \operatorname{Re}\left[\mathbf{E}_{t} \times \mathbf{H}_{t}^{*}\right] \propto e^{i k_{z} z} \cdot e^{-i k_{z}^{* z}}=e^{-2 k_{z i} z}=e^{-2 \beta z}\right) \\
& =P_{0} e^{-2 \beta z} \\
\Rightarrow & \beta=-\frac{1}{2 P} \frac{d P}{d z}=\text { field attenuation constant } \\
& (8.15) \Rightarrow \frac{d P}{d z}=-\frac{1}{2 \sigma \delta} \oint_{c}\left|\mathbf{K}_{e f f}\right|^{2} d l \\
& (8.14) \Rightarrow \mathbf{K}_{e f f}=\mathbf{n} \times \mathbf{H} \\
& \left.(46)(47) \Rightarrow \frac{d P}{d z}=-\frac{1}{2 \sigma \delta} \oint_{c} \right\rvert\, \mathbf{n} \times \mathbf{H}^{2} d l
\end{array}\right\}
$$

Since the wall loss can be regarded as a small perturbation, we may use the zero-order \mathbf{H} derived for $\sigma=\infty$ in Sec.8.1 to calculate $\frac{d P}{d z}$.
8.5 Energy Flow and Attenuation in Waveguides (continued)

Specifically, we calculate the zero-order \mathbf{E} and \mathbf{H}, and use the zero-order \mathbf{E} and \mathbf{H} to calculate P from (8.51) and $d P / d z$ from (8.58). β is then found from (8.57).

Formulae for β for rectangular and cylindrical waveguides are tabulated in many microwave textbooks, e.g. R. E. Collin, "Foundation of Microwave Engineering" (2nd Ed.) p. 189 \& p. 197 (where the attenuation constant is denoted by α instead of β).

Note:
(i) β has been calculated by a perturbation method. The method is invalid near the cutoff frequency, at which there is a large "perturbation". Sec 8.6 gives a method which calculates both α and β (due to wall loss) valid for all frequencies.
(ii) Other types of losses (e.g. lossy filling medium

ω_{c} or complex ε) can also contribute to α and β.

8.5 Energy Flow and Attenuation in Waveguides (continued)

(iii) Note there are two definitions of the attenuation constant.

In Ch. 8 of Jackson, the attentuation constant for the waveguide is denoted by β and it is defined as

$$
\begin{equation*}
\beta=-\frac{1}{2 P} \frac{d P}{d z}, \tag{8.57}
\end{equation*}
$$

This is the field attentuation constant, i.e.

$$
\mathbf{E}, \mathbf{B} \propto e^{-\beta z} .
$$

In Ch. 7 of Jackson, the attentuation constant for a uniform medium is denoted by α [see (7.53)] and it is defined as

$$
\alpha=-\frac{1}{P} \frac{d P}{d z}
$$

This is the power attentuation constant, i.e.

$$
P \propto e^{-\alpha z}
$$

Obviously, the power attentuation constant is twice the value of the field attentuation constant.

Terahertz Waveguide (I)

K. Wang and D. M. Mittleman, "Metal wires for terahertz wave guiding", Nature, vol.432, No. 18, p.376, 2004.

Terahertz Waveguide (II): Using The Lowest Lossy TE01 Mode

References

1. Pozar, p. 161.
2. Collin, p. 197.

Q: How to excite the TE01 mode and fabricate it at the terahertz region?
A possible solution: X-ray micro-fabrication (LIGA).

8.8 Cavity Power Loss and Q

Definition of Q: We have so far assumed a real ω for EM waves in infinite space or a waveguide. Since fields are stored in a cavity, it damps in time if there are losses, represented by a complex ω. Thus, fields at any point in the cavity have the time dependence given by

$$
E(t)= \begin{cases}E_{0} e^{-i \omega_{0} t}, & \sigma=\infty \tag{8.88}\\ E_{0} e^{-i\left(\omega_{0}+\Delta \omega+i \frac{\omega_{0}}{2 Q}\right) t}=E_{0} e^{-i\left(\omega_{0}+\Delta \omega\right) t-\frac{\omega_{0}}{2 Q} t}, & \sigma \neq \infty\end{cases}
$$

where ω_{0} is the resonant frequency [e.g. (34)] without the wall loss.
(8.88) assumes that the wall loss modifies ω_{0} by a small real part $\Delta \omega$ and a small imaginary part $\frac{\omega_{0}}{2 Q}$, where $\Delta \omega$ and Q are to be dertermined.

Physical reason for $\Delta \omega$: Effective cavity size increases by an amount \sim skin depth δ. A larger cavity has a lower frequency. Hence, $\Delta \omega<0$.
Physical reason for Q : power dissipation on the wall

8.8 Cavity Power Loss and Q (continued)

The frequency spectrum is best seen form the field energy distribution in ω-space
$|E(\omega)|^{2} \propto \frac{1}{\left(\omega-\omega_{0}-\Delta \omega\right)^{2}+\left(\frac{\omega_{0}}{2 Q}\right)^{2}}=\left\{\begin{array}{l}\max , \omega=\omega_{0}+\Delta \omega \\ \frac{1}{2} \max , \omega=\omega_{0}+\Delta \omega \pm \frac{\omega_{0}}{2 Q}\end{array}\right.$
$\Rightarrow \delta \omega=\left[\begin{array}{l}\text { full width at } \\ \text { half-maximum points }\end{array}\right]=\frac{\omega_{0}}{Q}$
$\Rightarrow Q=\frac{\omega_{0}}{\delta \omega}$ (frequency-space definition of Q)
Note: ω_{0} is the resonant frequency of the cavity in the absence of any loss. $\omega_{0}+\Delta \omega$ is the resonant frequency in the presence of losses. In most cases, the difference is insignificant.

Physical Interpretation of Q :

(i) Use the time-space definition: $Q=\omega_{0} \frac{\text { stored energy }}{\text { power loss }}$

$$
\begin{align*}
& \omega_{0}=2 \pi f_{0}=\frac{2 \pi}{\tau_{0}} \sqrt[\text { wave period }]{\text { power loss }} \approx \tau_{d} \longleftarrow \begin{array}{l}
\text { decay time of } \\
\text { stored energy }
\end{array}
\end{align*}
$$

$\Rightarrow Q=\omega_{0} \frac{\text { stored energy }}{\text { power loss }} \approx 2 \pi \frac{\tau_{d}}{\tau_{0}}$
(48) shows that Q, which results from the power loss, is approximately 2π times the number of oscillations during the decay time. A larger Q value implies that the field energy can be stored in the cavity for a longer time. Hence, Q is often referred to as the quality factor.
(ii) Use the frequency-space definition: $Q=\frac{\omega_{0}}{\delta \omega}$ (see Fig. 8.8)

For a lossy cavity, a resonant mode can be excited not just at one frequency (as is the case with a lossless cavity) but at a range of frequencies $(\delta \omega)$. The resonant frequency $\left(\omega_{0}+\Delta \omega\right.$, see Fig. 8.8) of a lossy cavity is the frequency at which the cavity can be excited with the largest inside-field amplitude, given the same source power. The resonant width $\delta \omega$ of a mode is equal to the resonant frequency divided by the Q value of that mode (see Fig. 8.8). Note that each mode has a different Q value.
Figure 8.8 can be easily generated in experiment to measure the Q value.

Fig. 8.8
$\delta \omega=\frac{\omega_{0}}{Q}$

8.8 Cavity Power Loss and Q (continued)

$$
Q=\omega_{0} \frac{\text { stored energy }}{\text { power loss }}
$$

Using the results of Sec. 8.1, we can calculate Q (but not $\Delta \omega$) due to the ohmic loss. We first calculate the zero order \mathbf{E} and \mathbf{H} of a specific cavity assuming $\sigma=\infty$, then use the zero order \mathbf{E} and \mathbf{H} to calculate U and power loss,

$$
\begin{aligned}
& \text { stored energy }=\int_{V}\left(w_{e}+w_{m}\right) d^{3} x=\left\{\begin{array}{l}
2 \int_{V} w_{e} d^{3} x=\frac{\varepsilon}{2} \int_{V}|\mathbf{E}|^{2} d^{3} x \\
\left.2 \int_{v} w_{m} d^{3} x=\frac{\mu}{2} \int_{V} \right\rvert\, \mathbf{H}^{2} d^{3} x
\end{array}\right. \\
& \text { power loss } \begin{array}{l}
(8.15) \\
\frac{1}{2 \sigma \delta}
\end{array} \oint_{S}\left|\mathbf{K}_{e f f}\right|^{2} d a \\
& =\frac{1}{2 \sigma \delta} \oint_{S}|\mathbf{n} \times \mathbf{H}|^{2} d a \\
& (8.14)
\end{aligned}
$$

8.8 Cavity Power Loss and Q (continued)

Formulae for Q (due to ohmic loss) for rectangular and cylindrical cavities can be found in, for example, R. E. Collin, "Foundation of Microwave Engineering", p. 503 and p. 506.
Q due to other types of losses: If there are several types of power losses in a cavity (e.g. due to $\operatorname{Im} \varepsilon$ and coupling losses), Q can be expressed as follows:

$$
\begin{align*}
& Q=\omega_{0} \frac{\text { stored energy }}{\sum_{n}(\text { power loss })_{n}} \tag{49}\\
& \Rightarrow \frac{1}{Q}=\sum_{n} \frac{1}{Q_{n}} \tag{50}
\end{align*}
$$

where Q_{n} (Q due to the n-th type of power loss) is given by

$$
Q_{n}=\omega_{0} \frac{\text { stored energy }}{(\text { power loss })_{n}}
$$

A Comparison between Waveguides and Cavities

	Waveguide	Cavity
Function	transport EM energy	store EM energy
Characteri-	dispersion relation and attenuation constant	resonant frequency and Q
zation	transport of high	(1) particle acceleration
Examples of	power microwaves applications (mostly for	(2) frequency measurement
microwaves, $0.3-300 \mathrm{GHz}$)	waves for long-range radars and communi- cations)	

High-Q Microwave/Material Applicator

Conductor loss, dielectric loss, radiation loss, diffraction loss...

Homework of Chap. 8

Problems: 2, 3, 4, 5, 6,
18, 19, 20

