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1.Textbook and Contents of the Course:
J D Jackson “Classical Electrodynamics” 3rd edition ChaptersJ. D. Jackson, Classical Electrodynamics , 3rd edition, Chapters
8-11, 14.
Other books will be referenced in the lecture notes when neededOther books will be referenced in the lecture notes when needed.

2. Conduct of Class :
Lecture notes will be projected sequentially on the screenLecture notes will be projected sequentially on the screen

during the class. Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skippedalgebraic details in the lecture notes will often be skipped.
Questions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes beforeleast gone through the algebra in the lecture notes before
attending classes (important!).



3. Grading Policy: Midterm (40%); Final (40%); Quiz x 4 (20%)
and extra points (10%) The overall score will be normalized toand extra points (10%). The overall score will be normalized to
reflect an average consistent with other courses.

4 L t N t St ti f b i ti th l t t4. Lecture Notes: Starting from basic equations, the lecture notes
follow Jackson closely with algebraic details filled in.

Equations numbered in the format of (8 7) (8 9) refer toEquations numbered in the format of (8.7), (8.9)... refer to
Jackson. Supplementary equations derived in lecture notes, which
will later be referenced are numbered (1) (2) [restarting fromwill later be referenced, are numbered (1), (2)... [restarting from
(1) in each chapter.] Equations in Appendices A, B…of each
chapter are numbered (A.1), (A.2)…and (B.1), (B.2)…chapter are numbered (A.1), (A.2)…and (B.1), (B.2)…

Page numbers cited in the text (e.g. p. 395) refer to Jackson.
Section numbers (e.g. Sec. 8.1) refer to Jackson (except for( g ) ( p
sections in Ch. 11). Main topics within each section are
highlighted by boldfaced characters. Some words are typed in
italicized characters for attention. Technical terms which are
introduced for the first time are underlined.



Chapter 8: Waveguides, Resonant Cavities, 
d O ti l Fib

8.1 Fields at the Surface of and Within a Good Conductor*

and Optical Fibers

Notations: ,  : fields outside the conductor; ,  : fields inside 
the conductor; : a unit vector to conductor surface; : a
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8.1 Fields at the Surface of and Within a Good Conductor

 n ,  ,    c c

                 the conductor; : a unit vector to conductor surface; : a 
                 normal coordinate into the conductor.
Assu

n  

me: (i) fields i te 


,  c cH E,  H E 0
Assume: (i) fields

        (ii) good but not perfect conductor, i.e.
e





                  ,  but 1 [See Ch. 7 of lecture notes, Eq. (24)].

(iii) ( 0) is known
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       (iii) ( 0) is known.
Find:  ( ),  ( ),  and powc c


 

H
E H



er loss, etc. in terms of ( 0) H
__________________________________________________________________
*The main results in Sec. 8.1 [ (8.9), (8.10), (8.12), (8.14), and (8.15)] have

been derived with a much simpler method in Ch 7 of lecture notes [See



been derived with a much simpler method in Ch. 7 of lecture notes. [See
contents following Eq. (26)]. So, we will not cover this section in classes.



( ) ( ) : In the conductor we have Calculation of E H
8.1 Fields at the Surface of and Within a Good Conductor (continued)

      ( ),  ( ) :  In the conductor, we have
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In a good conductor, fields vary rapidly along the (3)     

1

In a good conductor, fields vary rapidly along the
normal to the surface, see Ch. 7 of lecture notes.    (3)
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8.1 Fields at the Surface of and Within a Good Conductor (continued)

1    Sub. ( ) (0)  into ( ) ( )

( ) (1 ) ( 0) (8 10)
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8.1 Fields at the Surface of and Within a Good Conductor (continued)

Alternative method to derive (8 12):
(1 )

1(8.10) ( ) ( ) (1 ) ( 0)     (8.13)
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8.2-8.4 Modes in a Waveguide

     Consider a   of  and 
 of  (see figure). We assume that the filli

conductor uniform cross
ng 

medium is uniform

hollow infin

linear and

 ite length
arbi

isotropic (
section trary shape

; where  B H D Emedium is uniform, linear, and isotropic ( ;  ,  where     B H D E
and  are in general complex numbers). This is a structure commonly 
used to guide EM waves as well as a case where exact solutionsrare


used to guide EM waves as well as a  case where exact solutions
are possible (for some simple cross sections.) Maxwell equati
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8.2‐8.4 Modes in Waveguides (continued)
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( ) ( )

z

z

ik z i t
t

ik z i t
t e
t e





 

 

 




E x E x
B x B x

: coordinates transverse to , 
      e.g. ( , ) or ( , )

here in Jackson

t z
x y r

k k




x

( , ) ( )

where, in general,  and  are complex constants. To be specific, 
th l t f d b th itith t Th

t

z

t e

k
k



B x B x  here   in Jackson zk k

assumewe  the real parts of  and  are both positivthat . The en, 
zik

z
z i te

k



  and  have forward and backward phase velocities, zik z i t

ik i t ik i t
e  

respectively. As will be seen in (31),  and  also have 
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8.2‐8.4 Modes in Waveguides (continued)
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to obtain from (8 19) So our strategy    It is in general not possible to obtain from (8.19). So our strategy 
here is to solve (14) for ( ) and and then express the other ( ), z t z tE Bx x
components of the fields [ ] in terms of ( ) and
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: Writing ( ) and using thetExercise E E E   E x e e e: Writing ( )   and using the 
                     cylindrical coordinate system, derive the equations 
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9.5 Guided Waves 
9 5 1 W G id

Griffiths
9.5.1 Wave Guides

Can the electromagnetic waves propagate in a hollow metal pipe?
Yes, wave guide. 

Waveguides generally made of goodWaveguides generally made of good 
conductor, so that E=0 and B=0 inside the 
materialmaterial.

The boundary conditions at the inner wallThe boundary conditions at the inner wall 
are:  // 0  and  0  B E 

The generic form of the monochromatic waves:
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General Properties of Wave Guides
Griffiths

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell’s 
equations: Bequations: 
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2(iii) (vi)x xz z
y yi B E

z x z x c
    

   



TE, TM, and TEMWaves
Griffiths

TE, TM, and TEM Waves

Determining the longitudinal components Ez and Bz, we could 
quickly calculate all the othersquickly calculate all the others.
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8.2‐8.4 Modes in Waveguides (continued)

Rewrite (17) and (18)     Rewrite (17) and (18)
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8.2‐8.4 Modes in Waveguides (continued)
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8.2‐8.4 Modes in Waveguides (continued)

Di iDiscussion:
(i) Et, Bt, Ez, Bz in (8.26a) and (8.26b) are functions of xt only.
(ii)  and  can be complex. Im( or Im( implies dissipation.
(iii) By letting Bz = 0, we may obtain a set of solutions for Ez, Et,

and Bt from (14), 8.26a), and (8.26b), respectively. It can be
shown that if the boundary condition on Ez is satisfied, theny z ,
boundary conditions on Et and Bt are also satisfied. Hence, this
gives a set of valid solutions called the TM (transversegives a set of valid solutions called the TM (transverse
magnetic) modes. Similarly, by letting Ez = 0, we may obtain a
set of valid solutions called the TE (transverse electric) modesset of valid solutions called the TE (transverse electric) modes.

(iv) Ez is the generating function for the TM mode and Bz is the
i f i f h d h i f igenerating function for the TE mode. The generating function

is denoted by Ψ in Jackson.



8.2‐8.4 Modes in Waveguides (continued)

TM Mode of a Waveguide (Bz = 0): (see pp. 359-360)
2 2( ) 0 with boundary condition 0                  (21)t z z sE E

ik
   




g ( z ) ( pp )

2                                                                          (21a)

1

z
t t z

ik E



  E



Assume perfectly
conducting wall.

1                       t z t z t
z ek Z


     H e E e E

2 2 2

                         (21b)



 ,  wave impedancee zZ k 2 2 2                                                                          (21c)zk   

TE Mode of a Waveguide (Ez = 0): (see pp. 359-360)
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8.2‐8.4 Modes in Waveguides (continued)

Discussion:Discussion:
(i) Either (21) or (22) constitutes an eigenvalue problem (see

l Ch 3 A di A) Th i l 2 ill blecture notes, Ch. 3, Appendix A). The eigenvalue  2 will be
an infinite set of discrete values fixed by the boundary
condition, each representing an eigenmode of the waveguide
(An example will be provided below.)( p p )

(ii) (21b) and (22b) show that Et is perpendicular to Bt (also true
in a cavity)in a cavity).

(iii) (21b) and (22b) show that Et and Bt are in phase if , , , kz

are all real (not true in a cavity).
(iv) (21c) [or (22c)] is the dispersion relation, which relates  and

kz for a given mode.
(v) The wave impedance, Ze or Zh, gives the ratio of Et to Ht in the



(v) The wave impedance, Ze or Zh, gives the ratio of Et to Ht in the
waveguide.

Field Patterns of Circular Waveguide Modes
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Field Patterns of Circular Waveguide Modes
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( )

Characterization of Circularly Symmetric TE01 Mode
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T H Chang and B R Yu “High Power Millimeter Wave Rotary Joint” Rev Sci Instrum 80



T. H. Chang and B. R. Yu, High-Power Millimeter-Wave Rotary Joint , Rev. Sci. Instrum. 80, 
034701 (2009).

8.2‐8.4 Modes in Waveguides (continued)

TEM Mode of Coaxial and Parallel-Wire Transmission LinesTEM Mode of Coaxial and Parallel-Wire Transmission Lines 
(Ez = Bz = 0): (see Jackson p. 341)
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     These 2 equations fail for a different class of modes, called the
TEM ( l
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i ) d f hi h 0E BTEM (transverse electromagnetic) mode, for which 0.
However, they give the condition for the existence of this mode:
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2 2 Equations in rectangular boxes are        .      (8.2basic equations for the TEM mode.zk      
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     (8.27) is also the dispersion relation in infinite space. This makes
the TEM mode very useful because it can propagate at any frequencythe TEM mode very useful because .
     To calulate  an

it can propagate at a
d , we need to go back to Maxwell 

ny frequency
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8.2‐8.4 Modes in Waveguides (continued)
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TEM
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TEMre is the generating function for the TEM modes. Because
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TEMtan

re  is the generating function for the TEM modes. Because
0 on the surface of a perfect conductor,  is subject to the

boundary condition on the conducto This giver sconst 
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ET M  So,
TEM modes exist only in 2 conductor configurations such as coaxial

 or 0 everywhere, if there is only one conductor.E

TEM

TEM modes exist only in 2-conductor configurations, such as coaxial
and parallel-wire transmission lines. Finally,  is given by theB

transver TEM TEMse components of :  .zk
zt 
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Why single conductor cannot support TEM waves? (I)

Let’s consider the property of 2D Laplace equation.

Suppose ΦTEM depends on two variables. 
2 2

TEM TEM a partial differential equation (PDE);   
TEM TEM

2 2

a partial differential equation (PDE);
 0   

not a ordinary differential equation (ODE).x y
   

    

Harmonic functions in two dimensions have the same properties 
as we noted in one dimension:

ΦTEM has no local maxima or 
minima. All extrema occur at the 

ΦTEM

boundaries. (The surface may not 
be an equalpotential.)q p )

If ΦTEM=const., ETEM=0 & BTEM=0



TEM TEM TEM
(Not a flawless argument)

Why single conductor cannot support TEM waves? (II)
David Cheng’s explanation. Chap. 10, p.525.

1 The magnetic flux lines always close upon themselves For a1. The magnetic flux lines always close upon themselves. For a 
TEM wave, the magnetic field line would form closed loops 
in a transverse plane.in a transverse plane.

2. The generalized Ampere’s law requires that the line integral 
of the magnetic field around any closed loop in a transverseof the magnetic field around any closed loop in a transverse 
plane must equal the sum of the longitudinal conduction and 
displace conduction current inside the waveguidedisplace conduction current inside the waveguide. 

3. There is no longitudinal conduction current inside the 
id d l i di l di l ( 0)waveguide and no longitudinal displace current (Ez=0).

4. There can be no closed loops of magnetic field lines in any p g y
transverse plane. (weak conclusion)

The TEM wave cannot exist in a single-conductor hollow



The TEM wave cannot exist in a single-conductor hollow 
waveguide of any shape. (Again, not a perfect argument)

In summary the TEM modes are governed by the following set
8.2‐8.4 Modes in Waveguides (continued)

2

     In summary, the TEM modes are governed by the following set
of equtions:

 TEM

TEM TEM

2 ( ) 0                                                                  (23)

( )
t t

t t

  

  

x

E x (23a)



 TEM TEM ( )                     t t E x

TEM TEM

                                    (23a)

                                                         (23b)z
zk
  B e E




    

TEM TEM TEM TEM(or )z z z
zk Y

         H e E e E e E





2 2
                              zk  (23c)                                





where  ( / ) is the (intrinsic) admittance of the filling medium 
defined in Ch 7 of lecture notes (the last page of Sec II)

Y  
defined in Ch. 7 of lecture notes (the last page of Sec. II).



8.2‐8.4 Modes in Waveguides (continued)

:Discussion

TEM
2

     :
      (i) For the TEM modes, we solve a 2-D equation ( ) 0
f ( ) hi i bl b i h

t t

Discussion
  x

 
TEM TEMfor ( ). But this is not a 2-D problem because  is not the

( , )full solution The full solution is

t

t t
 



x
E x  TEM ( ) zik z i tt e  E x full solution. The full solution is ( , )t tB x  

TEM

TEM TEM TEM TEM

 ( )
with ( ) and .z

t
k

t t z

e

     

B x
E x B e ETEM TEM TEM TEM

2

( )

     For an actual 2-D electrostatic problem [ ( ) ( )], we have
( ) 0 hi h i h f ll l i ( ) ( )

t t z

t



  

   

x x
E2 ( ) 0,  which gives the full solution ( ) ( ). 

   (i
t t t t t t     x E x x

i) Note the difference between the scalar potentials discussed here ( ) p
and in Ch. 1 and Ch. 6.

( ) regard as a mathematical tool  E x TEM TEM TEM( )   regard  as a mathematical tool.
( ) ( )               regard  as a physical quanti

t t   

  

E x
E x x ty.








( , ) ( , ) ( , )   regard  and  as mathematical tools.tt t t


    E x x A x A



8.2‐8.4 Modes in Waveguides (continued)

Example 1: TE mode of a rectangular waveguide

     Rewrite the basic equations for the TE mode:

Example 1: TE mode of a rectangular waveguide

2 2( ) 0 with boundary condition 0   (22)t z zn s
H H

ik
 

   



2                          (22a)
     

z
t t z

ik H



  H




    z

x
y

                             t z t h z t
z

Z
k


   E e H e H 

2 2 2

            (22b)





x

2 2
2 2

2 2 2

2
                                                                   (22c)

Rectangular geometry Cartesian system
z

t

k 
 

  
   2 2     Rectangular geometry Cartesian system

     Hence, the wave equation in 
t x y 

  

2 2 2 2

(22) becomes: 
 2 2

2 2
2 2     0                                       (24)z zx y

k H 
 
      



2 2 2 2     
i (24) 0 (24)k  

8.2‐8.4 Modes in Waveguides (continued)

2 2
2 2     Rewrite (24):    0                  (24)

b iA i d d fx yik x ik

z zx y

y

k H

H

 





      

   z2 2 2 2

     , we obtain     

     0

Assuming  dependence for x yik x ik

x y z z

y
z

k k k

e H

H



       
x

y
     In order for 0, we must ha

x y z z

zH

 
 ve

2 2 2 2            0,

hi h i ti fi d f Si ( )

x y z
ik x ik x

k k k

k k k




   

  which is satisfied for , , . Since ( , ), 

( , ),  and ( ,  ) are all linearly independent pairs,

x x

y y z z

ik x ik x
x y z

ik y ik y ik z ik z

k k k e e

e e e e 

  

( , ), ( , ) y p p ,
the complete solution for  iszH

ik y ik yik x ik xi t      1 2 1 2    

(25)

y yx x

z z

ik y ik yik x ik xi t
z

ik z ik z

H e A e A e B e B e

C C

 



       
                                                                      (25) z zik z ik zC e C e    



     Applying boundary conditions [see (22)] to (25):
8.2‐8.4 Modes in Waveguides (continued)

2
z

t t z
ik H


  H

1 2 1 2

pp y g y [ ( )] ( )
y yx x z zik y ik yik x ik x ik z ik zi t

zH e A e A e B e B e C e C e  
 

           



y
b

0 1 2 1 20 0

00

x xx zx x
ik A ik A A A

k k

B B
 



     


 


x ao
1 2 10 20

co

0

s

yy z yy yik B ik B B B

H k

B B
 

 


    
  cos z zi t ik z i t ik zx k y C e C e      coszH k  cos                     

sin 0 ,  0,1, 2,0

z z

x

x y

x xzx x a

x k y C e C e

k a k m a mB B 
 

   
     


  
 

sin 0 ,  0,1, 2,0 y y

x a

y zy y b
k b k n b nB B 









     


cos cos            z zik z i t ik z i t
z

m x n yH C e C e
a b

     
 


             (26)                                                                           

2 2 2 2
forward wave backward wave

     Sub. ,  into 0,  we obtainx y x y z
m n
a bk k k k k       

 

2                
y ya b

  2 2
2 2

2 2 0,  , 0,1, 2,                  (27)m n
z a b

k m n     


9.5.2 TE Waves in a Rectangular Wave Guide
Griffiths

g

0,  and ( , ) ( ) ( ) separation of variablesz zE B x y X x Y y  

2 2 2
2

2 2 2

1 1 ( ) 0X Y k
X Y

 
   

 2 2 2X x Y y v 

2 2
2 2

2 2

1 1  and  x y
X Yk k

X x Y y
 

   
 

2
2 2 2

2with x yk k k
v


   *Griffiths’ derivation 
uses different boundary 

( ) sin cosX x A k x B k x 

uses d e e t bou da y
condition --- Et=0.

( ) sin cos
( ) sin cos

x x

y y

X x A k x B k x
Y y C k y D k y


 





TE Waves in a Rectangular Wave Guide (II)
Griffiths

TE Waves in a Rectangular Wave Guide (II)

cos siny y
z

x C k y D k yBE  



 i H
 E e

(@ 0) 0 0

y y

xE y C
y
   

 2t z t zH


 E e

(@ ) 0 sin 0, ( 0,1,2,...)x y y
nE y b k b k n
b


    

B
cos sin

(@ 0) 0 0
x x

z
y A k x B k x

E x A

BE
x
 

   





(@ 0) 0 0

(@ ) 0 sin 0, ( 0,1,2,...)

y

y x x

E x A
mE x a k a k m

   

    

( ) cos( / ) cos( / ) the TE modeB x y B m x a n y b  

(@ ) , ( , , , )y x x a

0 mn( , ) cos( / ) cos( / ) the TE  modezB x y B m x a n y b  

2 2 2 2( / ) [( / ) ( / ) ]k v m a n b   



( / ) [( / ) ( / ) ]k v m a n b   
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2 2 2Rewrite (27) as 0 (28)k   

kcmn
2 2
2 2

1/ 2

    Rewrite (27) as      0,                                (28)

where  ( ) ,   , 0,1, 2,                               (29)
z cmn

m n
cmn a b

k

m n


 





   
zkcmn

     Each pair of ( ,  ) gives a normal mod
a b

m n


mn
0

e (TE  mode) of the 
id d t b th b 0 b th t ill t  0 

0waveguide.  and  cannot both be 0, because that will creat a  
situation on (8.26) or (22a), making  and  indeterminable.t t

m n
H E

cutoff fr equ    is the  (the freqe uency ncycmn

mn

at which 0) of 
the waveduide for the TE  mode. Waves with  cannot 

z

cmn

k
 




mn

mn

propagate as a TE  mode because  becomes purely imaginary.     
    (28) is the TE  mode dispersion relation of a wavegu

zk
ide filledmn( 8) s t e ode d spe s o e at o o a wavegu

0

de ed
with a dielectric medium with constant (in general complex)  and .

For the usual case of an unfilled waveguide we have and
 

 

2

0
1

0 0 0

    For the usual case of an unfilled waveguide, we have  and 
 ( ), and (28) (29) can be written 

c

 
    


   

 


    
2 2
2 2

2 2 2 2 1/ 2 for unfilled
waveguide0 with ( )   (30)m n

z cmn cmn a b
k c c           

 
1

2 2 22 2 2 2
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f g
 2 2 2

2 2
2 2 2 2   0,

guide wavelength 2

m n
z cmn cmn a b

k c c

k

   

 

    

  gguide wavelength 2
   cutoff wavelength 2

g z

c cmn

k
c

 
  

 
  


mode & depend wave
on freqgeometryfree space wavelength 2

real propagating waves
f c

k

  

 

  
   

on freq.geometry
yes yes

yes no
g





real propagating waves
0  

cmn z

cmn z g

k
k

 
  
  
     






yes no
no yes

c

f




(c = 0.9a)
( )( )TE TE 

11  ( 0.9 )     cTE a 
imaginarcmn zk    y evanescent fields 

(c = a)
(c = 2a)

01 20,  ( ) cTE TE a 

10    ( 2 )cTE a 2
ab 

zk
usable bandwidth ( 2 )fa a 

Question 1: A typical waveguide has 
2b Wh ?

  a

zka = 2b. Why?
Question 2: Can we use a waveguide to transport waves at 60 Hz?



     :Other quantities of  interest
8.2‐8.4 Modes in Waveguides (continued)

2 2 2 2     (1) Differentiating 0 
with respect to

z cmn

z

k c
k
   



k c 

2

2
           with respect to 

           2 2 0
z

z

z
d
dk

k

k c   zkcmn
zk c

 
2

    group velocity in unfilled waveguide        z
zg

k cd
dkv

v


  

c    gv


cmn0 as 
(2) Th i i fi ld ( d )

g

c
v

E E H H
 


  

     (2) The remaining field components ( ,  ,  ,  and ) can 
be obtained from  through

x y x y

z

E E H H
H

ik 22 2 2  
2                                    (22a)z

t t z
ik H


  H
2

2
2 2 2

see (22c) and (30)

cmn
z c

k      
  

                      t z t
zk


 E e H

   
                                                     (22b)

f d

see (22c) and (30). 

   upper forwardwhere the  sign applies to the  wave.lower backward 



8.2‐8.4 Modes in Waveguides (continued)

TE mode field patterns of rectangular waveguideTE mode field patterns of rectangular waveguide



c     from E. L. Ginzton, "Microwave measurements". : cutoff frequency
      solid curve: -field lines; dashed curves: -field lines


E B

8.2‐8.4 Modes in Waveguides (continued)

TM mode field patterns of rectangular waveguideTM mode field patterns of rectangular waveguide



cfrom E. L. Ginzton, "Microwave measurements". : cutoff frequency
      solid curve: -field lines; dashed curves: -field lines


E B

8.2‐8.4 Modes in Waveguides (continued)

:     Discussion  Waveguide and microwaves

10

     A typical waveguide has 2  to maximize the usable bandwidth 
( 2 ) over which only the TE  mode can propagate and hencef

g
a b

a a


  10( ) y p p g
mode purity is maintained. Wa

f
10ves are normally transported by the TE

mode over this frequency range. Waveguides come in different sizes.q y g g
Usable bandwidths of waveguides of practical dimensions (0.1 cm

100 cm) cover the entire mi
a

 crowave band (300 MHz to 300 GHz). ) ( )
     Compared with coaxial transmission lines, the waveguide is capable 
of handling much higher power. Hence, it is commonly used in high-g g p , y g
power microwave systems. In a radar system, for example, it is used to
transport microwaves from ( = 0 9a)( 0 9 )TE a transport microwaves from
the generator to the antenna.

(c = 0.9a)
(c = a)

( = 2a)
01 20,  ( ) cTE TE a 

( 2 )TE a 

11  ( 0.9 )    cTE a 

    z
2
a

(c = 2a)10     ( 2 )cTE a 

usable bandwidth ( 2 )fa a 
 



a
2  zk

8.2‐8.4 Modes in Waveguides (continued)

: TEM modes of a coaxial transmission lineExample 2

2

   : TEM modes of a coaxial transmission line
   TEM modes are governed by the following set of equtions:

( ) 0

Example 2

  x (23) TEM ( ) 0                                                           t t  x

TEM TEM

            (23)
( )                                                              (23a)t t  E x




         

TEM TEM

2 2
                                                                (23b)z

z

Y
k

  



H e E

(23c)




            

2
TEM TEM

2 2
1 1

(23c)

   (23) gives ( ) 0. 

                                                        
rr r r r 
  

  




 

TEM
TEM 1 2

1   Neglect the 0 modes ( ) 0 ( ) .r C In r C

r r r r

r r r





  
 

       

TEM (
   Apply b.c.




TEM
TEM

0 1 0
0

2 1

( / )
( / )

) / ( / )
.

( ) 0 ( )
In r b
In a b

r a V C V In a b
V

r b C C In b
           

0

TEM

TEM

2 1
( )

( / )
1

( ) 0 ( )

( , )
(23 b) h i (31)

z
r

ik z i tV
In b a

r b C C In b

t er
 

 
 


E x e

0
TEM

( )

( / )
1

   (23a, b) then give                 (31)
( , ) zik z i tYV

In b at er 
 




 
H x e
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T. H. Chang, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low 
terahertz region”, Appl. Phys. Lett. 93, 111503 (2008).

Difficulties of Exciting a Higher-Order Mode:
Take TE02 as an ExampleTake TE02 as an Example

Desired mode TE02

Coupling structure octa-feed
Waveguide radius 1.86 mm
Parasitic  modes TE11,A, TE11,B TE21,A, TE21,B

TE01

TE TE TE12 A TE12 BTE31,A, TE31,B TE12,A, TE12,B

TM01

TM11,A, TM11,B T M21,A, TM21,B

TE41,A, TE41,B TE12,A, TE12,B



TM02

TM31,A, TM31,B TE51,A, TE51,B

TE22,A, TE22,B TM12,A, TM12,B

Applications of Waveguide Modes (I)

Material processingPlasma chambers



Appl. Phys. Lett. 94, 102104 (2009)

Applications of Waveguide Modes (II)

Rotary jointsMode converters


THz waveguide, circulator, isolator, power divider, antenna…



We consider the e ample of a rectang lar ca it (i e a rectang lar
8.7 Modes in Cavities

We consider the example of  a rectangular cavity (i.e. a rectangular 
waveguide with two ends closed by conductors), for which we have
two additional boundary conditions at the ends

     

two additional boundary conditions at the ends.

     Rewrite (27):  cos cos  z zik z i t ik z i t
z

m x n y
a bH C e C e     

    
     b.c. (i): ( 0) 0  z

i t

b

m x n y
H z C C

  
 

 
    

  cross -sectional
   view

y
b

0 cos cos sin

     b.c. (ii): ( ) 0

i t
z z z

z

m x n y
a bH H e k z

H z d

   

  side view    

x
y

a

b

o

( ) ( )

sin 0  ,  1, 2,                                  
z

z z
l
dk d k l                   (32)

 

zd

b
o

12 2

0
, 0,1, 2,cos cos sin ,         (33)1, 2,

i t
z z

m x l zn y
a b d

m nH H e l
        




12 2
2

2 2

2 2 2

2 2 2 2

1/2 : resonant freq

     Sub. (32) into 0,  where ( )m n
z cmn cmn a b

k c c



       

uency 2 2 2
2 2 2

1/2 : resonant freq ( ) mnlm n l
mnl a b d

c       
uency

         of the TE  mode         (34)
mnl

 
  



8.7 Modes in Cavities (continued)  
+C C 

     From (26) :  cos cos ,

we see that a cavity mode is formed of a forward wave and a backward

z zik z i t ik z i t
z

m x n yH C e C e
a b

     
    

we see that a cavity mode is formed of a forward wave and a backward
wave of equal amplitude. The forward wave is reflected at the right end
to become a backward wave and turns into a forward wave again at the

 y

to become a backward wave, and turns into a forward wave again at the
the left end. The forward and backward waves superpose into a standing 
wave [see (33)] Thus we may obtain

forward wave   
b k d



  side view       
b

wave [see (33)]. Thus, we may obtain
the other components of the cavity field
by superposing the other components of backward wave   z

d 0 

by superposing the other components of
the two traveling waves, as in (26).

Comparison with vibrational modes of a string:                  Comparison with vibrational modes of a string: 
dependent variable(s) independent variables mode index

i ( ill i ) lstring  (oscillation amp.) ,  
,  ,  ,  ,

cavity x y x y

x z t l
E E B B

x y z t m n l



cavity ,  ,  ,  ,  ,  
 (or )

y y

z z
x y z t m n l

E B

C id TM d (P i L l W id E E
8.5 Energy Flow and Attenuation in Waveguides

* *

         :  Conside  a TM mode (
    , ) in a medium with real ,   (hence real ,  ).

r t
z z t zE k  


 

Power in a Lossless Waveguide E E
e H H

 TM
* *1 1

2 2

1

    [ ]   complex Poynting vector

[ (

t t z z tE


     



S E H E H e H

E e  * *) ( )] for TM modesE   E e e E1
2 [ (t

zk
 E e  

2 *

) ( )]  for TM modes

tz t

z t z z z tE


   

Ee E

E e e E 
(21b)
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k ikE E E
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    z
, 

real  and  
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42
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k iE E E
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(21a)
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42
     time averaged power in the -direction
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P z




TM[Re ]    [ : crossectiozA da A  e S

*

nal area]

k  *
4 ( ) (35)

2
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t z t zA
k E E da 


  


2 3Green's first identity: (1 34)( )d x da         
8.5 Energy Flow and Attenuation in Waveguides (continued)

     Green s first identity:    (1.34)
     Let  and  be independent of  and apply (1.34) to a slab of end 

f ( h l ) d i fi i i l hi k

( ) nv sd x da
z

    
 

    

isurface area  (on the -  plane) and infinistesimal thickness A x y

2 surface integrals on
two ends of the

 in , 

( )

z z

z da z dl     


 

         
2

two ends of the 
slab, which vanish.

( )
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by boundary condition
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4     Sub. (36) into (35): ( ) ,  we obtain
2

z
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kP E E da 


  
k        TM

2 2 2 2
2 ,    [where ]                    (37)
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8.5 Energy Flow and Attenuation in Waveguides (continued)

2 2 2 (i e at 0) is thek   

1 12

2 2 2 (i.e.  at 0) is the           (38)cutoff freq. of the mode.
c z

z c
kk 


           

1 1
2 2

2

2
2 2 1             (39)

S b (38) d (39) i t (37)
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221
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     Sub. (38) and (39) into (37) 

1( ) ( )c
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     [cf. (8.51)]               (40)ATM 22 ( ) ( )
c z  
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     Similarly, for the TE mode and real , , , and , we obtain z
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TM TE     :  and are expressed in terms of the generating function.

c

Note P P


:Energy in a Lossless Waveguide
8.5 Energy Flow and Attenuation in Waveguides (continued)

 3 31
2

:
     2 0              (6.134) + e ms v vda d x i w w d x      
     Energy in a Lossless Waveguide

S n J E
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4 4
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E D
B H

3) 
if ,   are real,  and  are 
also real and represent time 

d fi ld d i i

e mw w  
 
 
 

tan0 ( 0)  S En 

1 1
4 4mw B   B H

     Apply (6.134) to a section of a lossless 

averaged field energy densities. 
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2 2,  t tE H1

1

t
t

E
Hz n ewaveguide [i.e. ,  are real and the wall 

conductivity ]. 
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For the TM mode ( 0):H 
8.5 Energy Flow and Attenuation in Waveguides (continued)
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2 22 2

     For the TM mode ( 0): 
     field energy per unit length 
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Similarly for the TE mode ( 0):E 
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     Similarly, for the TE mode ( 0): 
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     From (40), (42), (43), and (44)
1 1( )c zP P k   (8 53)v

Use (22a,b) and
Green’s 1st identity

TM TE
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Attenuation in Waveguides Due to Ohmic Loss on the Wall:

8.5 Energy Flow and Attenuation in Waveguides (continued)

Attenuation in Waveguides Due to Ohmic Loss on the Wall:

(0)

     We express  for a lossless ( ) and lossy ( ) waveguide zk     

 (0)

(0)

,
as                                                  (8.55)z

z
k

k
k i



  

   
   

(0)

,

where  is the solution of the dispersion
z

z

k i

k

     

 relation for ,  i.e.  
2 2 2     0   [derived in (28)]                         (45)

The expression for in (8 55) assumes that the wall loss
z ck 


  

 
(0)

     The expression for  in (8.55) assumes that the wall loss 
modifies  by a small real part  and zk




 
a small imaginary part , 

h d t b d t i d


where  and  are to be dertermined.  
     :  Effective waveguide radius increases byPhysical reason for α

 

                      by an amount skin depth . A larger waveguide h as
                      a smaller . Hence, 0. c  



     :  Power dissipation on the wall.  Physical reason for β



8.5 Energy Flow and Attenuation in Waveguides (continued)

(0)In is not of primary interest because it modifiesk k i         In ,   is not of primary interest because it modifies
the guide wavelength slightly. However,  results in attentuation, which
can be very significant over a long distance We outline

z zk k i  


 

below how can be very significant over a long distance. We outline 

 * 2 2

below how  
can be evaluated.

kik ik 





power dissipation/unit length
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2 2       power flow Re[ ]

(8 56)
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power dissipation/unit length0
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         (8.56)

field attenuation constant (8.57)P
dP
dz

P e

   


n

21     (8.15)             2 effc
dP
dz dl    K                    (46)

dl n

2

     (8.14)                                (47)
1(46)(47) (8 58)

eff

dP dl

  

  

K n H

n H     (46)(47)                               (8.58)2
     Since the wall loss can be regarded as a small

cdz dl    n H
 perturbation, we may



use the zero-order  derived for  in Sec.8.1 to calculate .dP
dz  H

8.5 Energy Flow and Attenuation in Waveguides (continued)

Specifically we calculate the zero order E and H and use theSpecifically, we calculate the zero-order E and H, and use the
zero-order E and H to calculate P from (8.51) and dP/dz from (8.58).
 is then found from (8 57) is then found from (8.57).

Formulae for  for rectangular and cylindrical waveguides are
t b l t d i i t tb k R E C llitabulated in many microwave textbooks, e.g. R. E. Collin,
“Foundation of Microwave Engineering” (2nd Ed.) p. 189 & p.197
(where the attenuation constant is denoted by  instead of ).

Note:

(i)  has been calculated by a perturbation method.
The method is invalid near the cutoff frequency,q y,
at which there is a large “perturbation”. Sec 8.6
gives a method which calculates both  and 

 
c

gives a method which calculates both  and 
(due to wall loss) valid for all frequencies.

(ii) Other types of losses (e g lossy filling medium c



(ii) Other types of losses (e.g. lossy filling medium
or complex ) can also contribute to  and .

8.5 Energy Flow and Attenuation in Waveguides (continued)

(iii) Note there are two definitions of the attenuation constant     (iii) Note there are two definitions of the attenuation constant.
     In Ch. 8 of Jackson, the attentuation constant for the waveguide
is denoted by and it is defined asis denoted by  and it is defined as
                         


1

2               ,                                         (8.57)P
dP
dz  

     This is the  attentuation constant, i.e. 
                       z

field
e E B                                       , .

   
eE B

  In Ch. 7 of Jackson, the attentuation constant for a uniform medium 
is denoted by [see (7 53)] and it is defined as

1
is denoted by  [see (7.53)] and it is defined as
                                        P

dP
dz


  

  
      This is the  attentpower uation constant, i.e. 
                                                               zP e 
     Obviously, the power attentuation constant is twice the value of  the
field attentuation constant.



Terahertz Waveguide (I)

K. Wang and D. M. Mittleman, “Metal wires for terahertz 



g ,
wave guiding”, Nature, vol.432, No. 18, p.376, 2004. 



Terahertz Waveguide (II):
Using The Lowest Lossy TE01 Mode
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Q: How to excite the TE01 mode and fabricate it at the terahertz 
region? 
A ibl l i X i f b i i (LIGA)



A possible solution: X-ray micro-fabrication (LIGA).

8.8 Cavity Power Loss and Q
W h f d l f EMD fi iti f Q      We have so far assumed a real  for EM waves 

in infinite space or a waveguide. Since fields are  in a cavity, it 
damps in time if there are losses represented b a comple


stored

Definition of Q :

Th sdamps in time if there are losses, represented by a complex . Thus, 
fields at any point in the cavity have the time dependence given by 



 i t0

0 0
0 0

0

( ) ( )
2 2

,                                                      
    ( )



    



     

  


i t

i i t i t t
Q Q

E e
E t       (8.88)




0 0
2 2 ,       Q QE e E e

0where  is the resonant frequency [e.g. (34)] without the wall loss. 


0
0

2

     (8.88) assumes that the wall loss modifies  by a small real
part  and a small imaginary part , where 


 Q  and  are to be Q2pa t a d a s a ag a y pa t , w e e Q a d a e to be

dertermined.  
Δ : Effective cavity size increases by an

 Q

Physical reason for ω     Δ :  Effective cavity size increases by an
   amount skin depth . A larger cavity has a lower 

frequency Hence 0

 


Physical reason for ω



                     frequency. Hence, 0.
     

 
Ph :  power dissipation on the wallysical reason for Q

0*2 2
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8.8 Cavity Power Loss and Q (continued)

0

2 2stored energy in the cavity [ ]Qi

Q
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U e

e e e  







     

0( )i t t


0

0   

 (power loss)       (8.87)
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stored energy (time-space definition of ) (8.86)
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power loss
     (8.88) represents a damped oscillation which does not have a 
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single frequency. To exame the frequency of ( ). we write 
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Use (8.88), assume E(t) = 0 for t < 0
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The frequency spectrum is best seen form the field energy
8.8 Cavity Power Loss and Q (continued)

     The frequency spectrum is best seen form the field energy 
distribution in -space  
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(frequency space definition of ) (8 91)
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Fig. 8.8

0

0

 (frequency-space definition of )      (8.91)

Note:  is the resonant frequency 




 Q Q

0      Q
 

0

          of the cavity in the absence of
          any loss.  is the resonant 
          frequency in the presence of
          losses. In most cases, the ,
          difference is insignificant. 





8.8 Cavity Power Loss and Q (continued)

0

      
stored energy(i) Use the :time-space definition

Q

Q 

Physical Interpretation of :

0

0 0

(i) Use the : 
power loss

2     2

time space definition Q

f


   wave period0 0
0

stored energy
d

f




wave period

decay time of     
power loss

stored energy 2

d

dQ







(48)

stored energy

(48) h th t Q hi h lt f th l i

0
0

gy 2                      
power loss

dQ  


                       (48)

(48) shows that Q, which results from the power loss, is
approximately 2 times the number of oscillations during the
decay time. A larger Q value implies that the field energy can be
stored in the cavity for a longer time. Hence, Q is often referred
to as the quality factor.



8.8 Cavity Power Loss and Q (continued)

For a lossy cavity, a resonant mode can be excited not just at

0frequency-space definition(ii) Use the :  (see Fig. 8.8)Q 


y y, j
one frequency (as is the case with a lossless cavity) but at a range
of frequencies () The resonant frequency (0+ see Fig 8 8)of frequencies (). The resonant frequency (0+ see Fig. 8.8)
of a lossy cavity is the frequency at which the cavity can be excited
with the largest inside field amplitude given the same sourcewith the largest inside-field amplitude, given the same source
power. The resonant width  of a mode
i l h f di id d Fig. 8.8is equal to the resonant frequency divided
by the Q value of that mode (see Fig. 8.8).

0      Q
 Note that each mode has a different Q value.

Figure 8.8 can be easily generatedg y g
in experiment to measure the
Q value.Q value.



8.8 Cavity Power Loss and Q (continued)

d
0

stored energy                  
power loss

Q

     Using the results of Sec. 8.1, we can calculate Q (but not ) 
due to the ohmic loss. We first calculate the zero order  and  of 


E H

a specific cavity assuming , then use the zero order  and  
to calculate and power loss
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  effs daK (6.133)
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8.8 Cavity Power Loss and Q (continued)

F l f (d t h i l ) f t l dQ     Formulae for  (due to ohmic loss) for rectangular and 
cylindrical cavities can be found in, for example, R. E. Collin, 
"F d ti f Mi E i i " 503 d 506

Q

"Foundation of Microwave Engineering", p. 503 and p. 506. 
     Q due to oth  If there are several types of

l i it ( d t I d li l ) Q
er types of losses :

power losses in a cavity (e.g. due to Im  and coupling losses),  
can be expressed as follows: 

 Q

0
stored energy                         
(power loss)





n

Q                        (49)
n

n

1 1 (50) 
n-th type of power loss

                                                                 (50)

where  (Q due to the n-th type of power loss) is given by


n n

n

Q Q
Q

0

(Q yp p ) g y
stored energy
(power loss)



n

n

Q

Q



(power loss)n



8.8 Cavity Power Loss and Q (continued)

A Comparison between Waveguides and Cavities
Waveguide CavityWaveguide                          Cavity                      .

Function            transport EM energy            store EM energy

Characteri- dispersion relation and        resonant frequency
zation attenuation constant and Qzation                attenuation constant             and Q

Examples of transport of high (1) particle accelerationExamples of         transport of  high          (1) particle acceleration
applications          power microwaves       (2) frequency measurement
(mostly for (such as multi kW(mostly for           (such as multi-kW
microwaves,        waves for long-range
0 3 300 GH ) d d i0.3-300 GHz)      radars and communi-

cations)



High-Q Microwave/Material Applicatorg Q pp

t d
0

stored energy
(power loss)n

Q 



n

n

Conductor loss dielectric loss radiation loss diffraction loss



Conductor loss, dielectric loss, radiation loss, diffraction loss…

Homework of Chap. 8Homework of Chap. 8

Problems: 2, 3, 4, 5, 6,, , , , ,
18, 19, 20




