
Chapter 9: Radiating Systems, Multipole 
Fields and Radiation

(covered in this course)An Overview of Chapters on EM Waves : (covered in this course)
                 source term in wave equation                   boundary               
Ch. 7 none

  An Overview of Chapters on EM Waves : 

plane wave in space or in Ch. 7                       none                          plane wave in  space or in
                                                                  two semi-  spaces separated 
                                                                  by t




he -  planex y

-

                                                                      
 Ch. 8                       none                                conducting walls 
 Ch. 9                    , ~ i te J                         outgoing wave to ,  g g                                          prescribed, as 
                          in an antenna                 

- Ch. 10                  , ~           i te J                outgoing wave to                 
                induced by incident EM waves,


y

                as in the case of scattering of a
                plane wave by a dielectric object.  
Ch 14 i h i Ch. 14                moving charges,                   outgoing wave to 
                such as electrons in a synchrotron
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9.6 Spherical Wave Solutions of the Scalar 
Wave EquationWave Equation

     Although Spherical Bessel Functions and Hankel functions :
this chapter deals with radiating systems, here we first solve the scalar 
source-free wave equation in the spherical coordinate syatem. The 
purpose is to obtain a complete set of spherical Bessel funtions and 
Hankel functions, with which we will expand the fields produced by p p y
the sources. 

source-frThe scalar wave equation isee [see (6.32)]source fr     The scalar  wave equation isee  [see
2

2 2
2 1

 (6.32)]
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22In spherical coordinates, is written( ) 0k   
9.6 Spherical Wave Solutions… (continued)
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2 2sinMultiply by r  The only term with -dependence, so this
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The only term with  dependence, so this 
term must be a constant. Let it be -m2
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2 m2Dividing all terms by sin , we see that 
this is the only term with -dependence.  
So it must be a constant. Let it be ( 1).
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    Thus, as in Sec. 3.1 of lecture notes,
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So it must be a constant. Let it be ( 1).l l  4 ( )! ll m 

(cos ),  (cos );  ,  ( , )lmP P Q Q e e PQ Y        
rejected because of divergence at    3

9.6 Spherical Wave Solutions… (continued)

2 22i d b ( ) ( 1) id dU( ) k l l
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( 1)22

 is governed by ( ) ( 1) . Rewrite  

as ( ) Then ( ) 0 (9 81)
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 ( ) ( ),  ( ) [Bessel functions of fractional order]

( ) 0

l l l

l

u r J kr N kr

r

  



2 2

1 11/ 2 1/ 2
2 2

1 1 ( ) ( ),  ( )
l l

l l lr r
f r J kr N kr

 

  

 
1
2

1
2

(1)
2( ) ( ) ( ) (

Define and
l lllkrj kr J kr h kr j k


  


) ( )lr in kr 


 
1
2

1
22

     Define  and 
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(1) (1) (2) (2)( ) ( ) ( ) ( ) [ ] (9 92)A h k A h k k   

spherical Bessel functions Hankel functions
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3.7 Laplace Equation in Cylindrical Coordinates; 
Bessel FunctionsReview

z
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where  and  are Bessel funJ N 

    
ctions of the first and second kind, 

respectively (see following pages).
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3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

If we let , the equation for takesx k RBessel Functions :
Review

 2 21

      If we let , the equation for  takes 
the standard form of the Bessel equation,

d R dR

x k R



Bessel Functions :

 2 2
2 2

1            1 0                                       (3.77)

with solutions

d R dR
x dxdx x

R   

( ) and ( ) from which we define the HankelJ x N xwith solutions 

(1)

( ) and ( ), from which we define the Hankel 
functions:

( ) ( ) ( )

J x N x

H J iN
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( ) ( ) ( )
                                                   (3.86)
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  ( ) ( ) ( )

and the modified Bessel functions (Be
  

ssel functions of imaginary 
argument)argument)

( ) ( )                                                  (3.100)I x i J ix
 

 
 1 (1)
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See Jackson pp 112 116 Gradshteyn & Ryzhik and Abramowitz     See Jackson pp. 112-116, Gradshteyn & Ryzhik, and Abramowitz 

& Stegun for properties of these special functions. 6
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9.6 Spherical Wave Solutions… (continued)
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(1) (2)See Jackson pp. 426-427 for further properties of , , , and .l l l lj n h h
p p ]
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9.6 Spherical Wave Solutions… (continued)

Solution of the Green equationExpansion of the Green function :
2 2

      Solution of the Green equation
      ( ) ( , ) 4 ( )                                        (6.36)
i i b (d i d i S 6 4 )

     k G
Expansion of the Green function :

x x x x
is given by (derived in Sec. 6.4.)

i( , )


 
ikeG

x x
x x n infinite space and for outgoing- (6.40)b d diti

 
  

( , )  G x xx x

*

     (6.40)wave boundary condition.
    We may solve (6.36) in the same way as in Sec. 3.9, i.e. write

  

*( , ) ( , ) ( , ) ( , ),

solve for ( ) f

      


l lm lm

lm
G g r r Y Y

g r r

x x

or and [where ( ) 0] and then     r r r r x xsolve for ( , ) flg r r

(1) *

or  and  [where ( ) 0],  and then
apply boundary conditions at 0,  ,  and . The result is  
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0
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Equating the two expressions

     
 
   

l
l lm lml

l m l
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above for ( ) we obtainG x x     Equating the two expressions
(1) *

 above for ( , ), we obtain
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0
where  and  are, respectively, the smaller and larger of  and .
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9.6 Spherical Wave Solutions… (continued)Part I

 2 2 2

                      

Source-free D.E. Laplace eq. 0 Helmholtz eq. 0k     

Summary of Differential Equations and Solutions :

 
2 2

p q q

  Solutions
Cartesian etci x i y z   

 

 etcyx zik yik x ik ze e e



Cartesian ,  ,  , etc.

 

i x i ye e e   




2 2

,  ,  , etc.
        (Sec. 8.4)       (Sec. 2.9)

etc( ) t zim kz ik zim

e e e
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2  , , , etc.( ),  ,  , etc.
        (Sec. 3.7)         (Sec. 8

( ) t
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l
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spherical




( , ),  , etc.
    (Secs. 3.1, 3.2)

l
lmY r 




2 2 2

( , ),  ( ),  ( ),  etc.
        (Sec. 9.6)
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2 2 2( , ) 4 ( ) ( ) ( , ) 4 ( )D.E. with a 
point source b.c.: ( ) 0           b.c.: outgoing wave

G k G
G

            
 

x x x x x x x x

      Solutions 
(Green funct

1  [Eq. (6.40)]ions)
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ikeG G
 

   
x x

x x x x

  Series expansin Eqs. (3.70), (3.148), (3.168) Eq. (9.98)of Green function
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9.6 Spherical Wave Solutions… (continued)Part II

   22 

Summary of Differential Equations and Solutions :
   2 2 2

2 2
2 1Source-free D.E. Helmholtz eq. 0 Wave Eq. 0
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( , , , )
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x x
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(Green functions)  [Eq. (6.40)] ( , , , ) [Eq. (6.44)]
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  x x x x
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9.1 Radiation of a Localized Oscillating Source
R i f I h W E ti d S l ti

2
2 2

2 1
0

      
                                                 (6.15)

c t
 


     

Review of Inhomogeneous Wave Equations and Solutions :

 in free space and A

2
2 2

2 1
0

    
                                              

c t

c t







   A A J       (6.16)





in free space,  and 
satisfy Lorenz gauge.

 
  

A

22 1
     Basic structure of the inhomogenous wave equation: 

4 ( ) (6 32)f t  



    x2 2 4 ( , )                                             (6.32)

     Solution of (6.32) with outgoing-wave b.c.: 
c t

f t  


  x

( , x 3) ( , ) ( , , , ) ( , )         (6.45)

( )
int t d x dt G t t f t 



      

 

 
x x

x x x x
( ) in (6 45)f t xhomogeneous solution

where ( , , , )                              (6.44)
( )ct t

G t t
 


   
   



x x

x x
x x

( , ) in (6.45)
is evaluated at
the retarded time.

f txhomogeneous solution

22 1

is the solution of 

( ) 4 ( ) ( )( )G t t t t          

x x

x x x x (6 41)2 2 ( , , , ) 4 ( ) ( )    ( )
c t

G t t t t 


 x x x x         (6.41)
with outgoing wave b.c. 11

Using (6 45) (assume 0) on (6 15) & (6 16) we obtain the
9.1 Radiation of a Localized Oscillating Source (continued)

     Using (6.45) (assume 0) on (6.15) & (6.16), we obtain the
gereral solutions for  and ,  which are valid for arbitrary  and .




 



in

A J

03
( ) ( , )( , ) 1 

( ) 4 (

 
 

 
  



        

ct t tt
d x dt

t

x x

x x
J xA x

x 0
 (6.48), (9.2)

) / 
 
   

  tx( , ) 4 (  tx 0, ) /
     In general, the sources, ( , ) and ( , ), contain a static part

d ti d d t t F t ti ( ) d ( ) (9 2) i th



 

   
t

t t
x

J x x
Jand a time dependent part. For static ( ) and ( ),  (9.2) gives the

static  and  in Ch. 5 and 



J x x

A Ch. 1, respecticely.

30 ( )   ( ) ( )                                             (5.32)
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 d x J xA x A x
x x xx    

31 ( )   ( ) ( )       (1.17)
4

 



   

 d x xx x
x x

source
  xx

04 x x
Question: It is stated on p. 408 that (9.2) is valid provided no 

boundary surfaces are present Why? [See discussion below (6 47)boundary surfaces are present. Why? [See discussion below (6.47) 
in Ch. 6 of lectures notes.] 12



9.1 Radiation of a Localized Oscillating Source (continued)

      Only time-dependent sources can 
radiate. Radiation from moving charges are treated in Ch. 13 and 

Fields by Harmonic Sources :
g g

Ch. 14. Here,  specialize to sources of the form (as in an antenna): 
( , ) ( ) i tt e  x x( , ) ( )

                                                              (9.1)
( , ) ( )

S b (9 1) i (9 2) d h i i b i

i t

t e

t e 





J x J x

0

     Sub. (9.1) into (9.2) and carry out the -integration, we obtain

( ) ( ( )) withi t

t

t e  



A A xx A x 3 (9 3)( )
iked x


 

x x
J x0( , ) ( ( ))  with 

4
t e


 A A xx A x ,     (9.3)

where .

( )

c

d x

k 



 J x

x x

     
c

We shall assume that J(x) is independent of A(x), i.e. the 
ill t b ff t d b th fi ld th di t Oth isource will not be affected by the fields they radiate. Otherwise, 

(9.3) is an integral equation for A(x).

13

(9 3): We specialize to harmonic sourcesA simpler derivation of
9.1 Radiation of a Localized Oscillating Source (continued)

22 1

     (9.3): We specialize to harmonic sources
from the outset. Then, only (6.16) is required.

A simpler derivation of  

2
2 2

2 1
0  ( , ) ( , ) ( , )                               (6.16)

Let (
c t

t t t


   A x A x J x

J x ) ( ) and ( ) ( )i t i tt e t e   J x A x A x    Let (J x

 2 2
0

, ) ( )  and ( , ) ( )   

( ) ( )  [inhomogeneous Helmholtz wave eq.] 

t e t e

k 

 

    

J x A x A x

A x J x 

 2 2

    The Green equation for the above equation is

( ) 4 ( )k G    x x x x (6 36)  ( , ) 4 ( )                                   kk G     x x x x (6.36)
    Solution of (6.36) with outgoing wave b.c. 

     ( , )                                                           (6.40)
ik

ik

k
eG






 

x x

x xx x

0 03 3
4 4 ( ) ( , ) ( ) ( ), 

w

ik
k

ed x G d x 
 




       

x x

x xA x x x J x J x

hich is (9 3)which is (9.3).
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9.1 Radiation of a Localized Oscillating Source (continued)

ik 
30     Rewrite (9.3),     ( ) ( ),                  (9.3)

4

iked x



 


x x

A x J x
x x

0
1 (everywhere)        (9.4)

Maxwell eqs give
  


H A

0
     Maxwell eqs. give 

(outside the source)      (9.5)

h 377 (i

iZ
k

Z


 


E H

d f f 297)0 0 0where 377  (iZ     mpedance of free space, p. 297).
     Thus, given the source function ( ),  we may in principle evaluate J x

( ) from (9.3) and then obtain the fields  and  from (9.4) and 
(9.5). 
A x H E
( )

     Note that  dei te  pendence has been assumed for ,  hence for all 
other quantities which are expressed in terms of

J
Jother quantities which are expressed in terms of .

     : The charge distribution  and scalar potential  are not 
i d f h d i i f

Note  
J

d ? ?( )hH Erequired for the determination of  and ? w ? ( )hyH E
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9.1 Radiation of a Localized Oscillating Source (continued)

ik x x
30     -  ( ) ( )       (9.3)

4

iked x



 


x x

Near Field Expansion of A x J x
x x

     Before going into algebraic details, we may readily observe some
general properties of ( ) near the source ( ).r A x 

ik x x     For  x
*

1

outside the source and  (or 1), we let 1 
1 1and use 4 ( , ) ( , ). (3.70)

ik

ll
lm lml

r kr e
r Y Y



    



  



 

x x 

10
and use 4 ( , ) ( , ).           (3.70)

2 1
    Since , we have  and .

lm lmll m l
Y Y

l r
r r r r r r

      

 

 
 
   

x x
source

  xx    

0 1
1 1( ) ( , )

2 1 lmlm
Y

l r
  

 


A x 3 *

0
( ) ( , )   (9.6)

l l
lm

l l
d x r Y  




       J x

1kr 
     The integral in (9.6) yields multipole coefficients as in (4.2). Thus,
(9.6) shows that, for 1,  ( ) can be decomposed into multipole kr A x

1kr 

( ) , , ( ) p p
fields, which fall ( 1)off as  just as , but with 
the dependence. However, we will show later that, far from the

the static multipole fieldsl

i t
r

e 

 

the  dependence. However, we will show later that, far from the 
source ( 1), ( ) behaves as an outgoing spherical wave. 

e
kr A x
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W i f t d ( ) ith tF ll E i f A( ) A

9.1 Radiation of a Localized Oscillating Source (continued)

     : We may in fact expand ( ),  without
approximations, by using (9.98). For  outside the source, we have 

H (9 98) b itt 

Full Expansion of A(x) A x
x

,  . Hence, (9.98) can be written

4 (
ike

r r r r

ik j k

 

 

    
x x

x x

(1) *) ( ) ( ) ( )
l

r h kr Y Y   

      4 (l

e ik j k x x
( )

0

30

) ( ) ( , ) ( , )

S b ( ) ( )hi i i b i

lm

ik

lml
l m l

ed

r h kr Y Y 



 







 

 
x x

A 30

(1) 3 *

     Sub. t ( ) ( )
4

( ) ( ) ( ) ( ) ( ) ( ) (9 1

his equation into , we obtain 

1)

ed x

ik h k Y d j k Y




   

 


    





A x J x
x x

A J(1) 3
0

,

(1) (

( ) ( ) ( , ) ( ) ( ) ( , ),  (9.11)

ikr

lm l lml
l m

e

ik h kr Y d x j kr Y          A x J x

2 1)!! l nl(1) (where ( )l
eh kr  1

0

2 1)!!
( )

( 1) (2 )!

( )l

n

n
n

n

l
i kr

l n

a ikr





source
  xx    

0 1
( 1) (2 )!

(2 1)!!(2 2 )!! !with  ( 1,  1, )

(See Abramowitz & Stegun "Handbook of Mathematical Functions "
n

l n
l l n n a aa  
     

(See Abramowitz & Stegun, Handbook of Mathematical Functions,  
 p. 439.)
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(9 11) is We now assume 1 (i ean exact expression for ( ) kdA x 
9.1 Radiation of a Localized Oscillating Source (continued)

1kd ( )

     (9.11) is . We now assume 1 (i.e.
source dimension wavelength). Then, 1 and ( ) reduces to

( )

an exact expression for ( )

l
l

kr

kd
kr j kr

k 

 



A x 
 

(9 88)

xd  

            1       kd 

n 
1

( )
(2 1)!!            ( )                             l kr

kr
lj kr   

(1) (2 1)!!

                               (9.88) 

S b ( ) ( )
ikr l ne lh k ik

 xd
( ,  ,  )
( )
r
r
 
 


   

x
x

x   
, J  

(1)
1 0

(2 1)!!
( )

    Sub. ( ) ( )  

and (9.88) into (9.11), we obtain

n
nl l n

e l
i kr

h kr a ikr



( ,  ,  )r  x

1
21

1 22 1
0

( , ) [1 ( ) ( ) ( ) ]
( )

and (9.88) into (9.11), we obtain

l
ikr le

lm ll r
Y a ikr a ikr a ikr 

     
A x


(1)

  
 0 3

( )
(

   
) ld x r Y


  

A x
J x *,

 
( , )

(1) is the combination of (9 6) and (9 12) in Jackson It is valid for

(1)
l m

lm  


 
 
  

(1) is the combination of (9.6) and (9.12) in Jackson. It is valid for
1 and any  outside the source. The region outside the source is

commonly divided into 3 zones

     
kd x

(by their different physical characters):commonly divided into 3 zones (by their different physical characters):
        The near (static) zone:           ( 1)
          The intermediate (induction) zone: ( 1)

d r kr
d r kr





  

  
( ) ( )

        The far (radiation) zone:     (d r kr   1)
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11.1.2 Electric Dipole Radiation
Griffiths

p

Consider two point charges of +q and qConsider two point charges of +q and –q
separating by a distance d(t). Assume d(t) can 
be expressed in sinusoidal formbe expressed in sinusoidal form.

0 0

The result is an oscillating electric dipole:
ˆ ˆ ˆ( ) ( ) cos( ) cos( ) ,   where .t qd t qd t p t p qd    p z z z

The retarded potential isThe retarded potential is

0

( , )1( , )
4

rtV t d 



 

rr
r0

0 0

4
cos[ ( / )] cos[ ( / )]1

4
q t c q t c


    

  
 

r
r r

1904  
 
 r r

Electric Dipole Radiation: Approximations
Griffiths

p pp

Approximation #1: Make this physical dipole into a perfect dipole. 

Estimate the spearation distances by the law of cosines. 
d r

2 2

p y

cos ( 2) (1 cos )
2
dr rd d r
r

     r
2

1 1 (1 cos )
2

r
d

r r
 

r 2r rr
cos[ ( / )] cos[ ( ) cos ]

2
r dt c t
c c

     r
2

cos[ ( )]cos( cos ) sin[ ( )]sin( cos )
2 2

c c
r d r dt t
c c c c

      
2 2c c c c

Approximation #2: The wavelength is much longer than the dipole 
i

20
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cd 
 

 



The Retarded Scalar Potential
Griffiths

cos[ ( / )] cos[ ( )]cos( cos ) sin[ ( )]sin( cos )
2 2

r d r dt c t t        r

1 cos
2

2 2
d
c

c c c c
 

 

cos[ ( )] sin[ ( )] cos
2

r r dt t
c c c
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The Retarded Scalar Potential
Griffiths

Approximation #3: at the radiation zone.
c r

The retarded scalar potential is:



The retarded scalar potential is:
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Three approximations
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The Retarded Vector Potential
Griffiths

The retarded vector potential is 
determined by the current density.
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The Electromagnetic Fields and Poynting Vector
Griffiths
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R it (1)
9.2 Electric Dipole Fields and Radiation

1
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     Rewrite (1): 
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contribution to the solution. It is
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Question: Why is there no monopole   
term (see p. 410)? 25
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9.2 Electric Dipole Fields and Radiation (continued)
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    In the far zone ( 1), (9.18) reduces to a spherical wave    
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d     In (9.19), we see that  and 
are in phase, and ,  , and  are
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p p
E H

E H n
mutually perpendicular. This is a general property of EM waves in
unbounded, uniform space. Given any two of these quantities, we
can find the third.
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9.2 Electric Dipole Fields and Radiation (continued)
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o(i)  and  are 90  out of phase average power 0. p pE H
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( ) p g p
(ii)  has the same spatial pattern as that of the static electric
      dipole in (4.13), but with e dependence. 
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 d po e ( . 3), but w t e depe de ce.
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0 0ii) ( ) -field energy -field energy.

(i) Wh d h th t ti fi ld tt ?
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E (i) Why does  have the static field pattern? 
     (ii) To obtain (9.20), we have neglected a few terms in (9.18). 
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o

p     Questions E

the neglected terms are still important in the near zone?But some f o the neglected terms are still important in the near zone? 
What are they and in what sense are they important? 27

time averaged power in the far zone/unit solid angledP
9.2 Electric Dipole Fields and Radiation (continued)
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This vector gives the direction of Ep , i.e. the 
polarization of the radiation (see figure below.)
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Otherwise, the direction of (hence )dP
dp        Otherwise, the direction of  (hence )

    vary with time, but  is still given by (9.24).
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 dipole radiation pattern 
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9.3 Magnetic Dipole and Electric Quadrupole Field
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9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)
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9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)

In the far zone ( 1) we have the spherical wave sloution:kr
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     In the far zone ( 1), we have the spherical wave sloution:
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as that of the static magnetic dipole
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     as that of the static magnetic dipole
     in (5.56), but with e dependence.
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The electric quadrupole radiation, 
di d i (9 37) (9 52) i quadrupole

(iii) -field energy -fB E ield energy.

discussed in (9.37)-(9.52), is more 
complicated. Here, we only illustrate its 

di i b h fi h i h

quadrupole 
radiation 
pattern 



radiation pattern by the figure to the right. 
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Comparison between Static and Time-dependent Cases
relations dependence ofr E    relations     -dependence of   multipole   definition of multipole    between ,     and  ( : dimension   expansion    moments    , , and     of the source)
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Induced Electric and Magnetic DipolesInduced Electric and Magnetic Dipoles
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9.4 Center-Fed Linear Antenna

Traveling waveC
A Qualitative Look at the Center - Fed Linear Antenna :

Energy i
L

R C f d li

gy
source Transmission

 line
i

L

i

          
 LC oscillator

R Center-fed linear antenna

+
i

near zone


far zone
i

   In the near zone,  and  are principally generated by  and ,
respectively ( largely static field patterns). In the far zone, and




E B J
Erespectively ( largely static field patterns). In the far zone, and

 are regenerative through and  ( EM waves).d d
dt dt
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Detailed Analysis: The center-fed linear antenna is a case of
9.4 Center-fed Linear Antenna (continued)

Detailed Analysis: The center fed linear antenna is a case of
special interest, because it allows the solution of (9.3) in closed form
for any value of kd, whereas in Secs. 9.2 and 9.3, we assume kd<<1

30    ( ) ( ),                                  (9.3)
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The antenna appears to be an open circuit. How can
       

:
  

    Question
            there be current flowing on it? 35
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9.4 Center-fed Linear Antenna (continued)
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9.4 Center-fed Linear Antenna (continued)

ik 
(9.16 & 9.19)
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9.4 Center-fed Linear Antenna (continued)

Rewrite (9 56)
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   Rewrite (9.56)
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   This has the same  and  depedence as in (9.23, electric dipole), 
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:Radiation Resistance and Equivalent Circuit
9.4 Center-fed Linear Antenna (continued)
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Problems:
9.4 Center-fed Linear Antenna (continued)

1. The full-wave antenna radiation in (9.57) can be thought of as the
superposition of two half-wave antennas, one above the other,p p , ,
excited in phase. Demonstrate this by rederiving dPd for the
full-wave antenna  kd = 2 by surperposing the fields of   y p p g
two half-wave antennas (each of length d/2, see figure below).

2. If the two half-wave antennas in problem 1 are excited 180° out of

P

phase, derive dPd again by the method of superposition.
3. Plot the approximate angular distribution of dPd in problems 1

1r

P
and 2. Explain the difference qualitatively.
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2

antenna 1 of
length d 

Th 3 li l
2

  d


r
1

0z 
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2
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antenna 2 of
length d 

These 3 line are nearly
 parallel when point  is
far from the antenna as

P
2

  d

2r

i l

0z 

2
d

4 cosd 
2length d   far from the antenna, as

is assumed here.
2single antenna

of length d 40



: Principle of superposition requires that weSolution to problem 1
9.4 Center-fed Linear Antenna (continued)

2

     : Principle of superposition requires that we
add the fields (not the powers) of the 2 antennas, each of total length . 

Rewrite (9 55)

d
Solution to problem 1
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     Rewrite (9.55)
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    (9 55) applies to a single antenna of total length (see fig above )d
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d

     (9.55) applies to a single antenna of total length  (see fig. above.)
So the field of  each of  the 2 antennas in this problem can be obtained

d

from (9 55) by replacing in (9 55) with and expressing withdd r
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d


r

1r

   
1 2

1 2

2from (9.55) by replacing  in (9.55) with  and expressing  with 
respect to the center of each antenna (i.e. by  and ).  
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4 4cos  and cos .
We may approximate in the denominator of (5) by , but must

d dr r
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1,2

     We may approximate  in the denominator of (5) by , but must
use the correct  for the phase angles in the exponential terms.
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It i d th t h t i thi bl i it d i th
9.4 Center-fed Linear Antenna (continued)

2

    It is assumed that each antenna in this problem is excited in the
half-wave pattern, hence we set  in (5) and the superposeddk 
field of the 2 antennas (excited in phase) is given by 
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same as the full wave        cos cos sin  solution in (9.57)
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S l i bl 2


  

o
    : 
     If the two half-wave antennas in problem 1 are excited 180  out

Solution to problem 2

of phase, we simply replace the " " sign in (6) with a " " sign. 
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9.4 Center-fed Linear Antenna (continued)

2 2cos cos0 2
1 2 2

     Thus, cos( cos )
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sin

     From (3), sinZdP
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 22 28sin sin

    : Solution to problem 3
 



in phase dipole radiation
  out of 
phase quadrupole radiation

                   
 phase

 How does a phased array antenna work?     :Question 43

Homework of Chap. 9Homework of Chap. 9

Problems: 3, 6, 8, 9, 14,, , , , ,
16, 17, 22, 23
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