Chapter 9: Radiating Systems, Multipole Fields and Radiation

An Overview of Chapters on EM Waves: (covered in this course) source term in wave equation boundary

Ch. 7

Ch. 8

none

Ch. 9

Ch. 10
J, $\rho \sim e^{-i \omega t}$
induced by incident EM waves, as in the case of scattering of a plane wave by a dielectric object.
Ch. 14
moving charges,
plane wave in ∞ space or in two semi- ∞ spaces separated by the $x-y$ plane
conducting walls
outgoing wave to ∞
outgoing wave to ∞
$\mathbf{J}, \rho \sim e$
prescribed, as in an antenna

9.6 Spherical Wave Solutions of the Scalar Wave Equation

Spherical Bessel Functions and Hankel functions: Although this chapter deals with radiating systems, here we first solve the scalar source-free wave equation in the spherical coordinate syatem. The purpose is to obtain a complete set of spherical Bessel funtions and Hankel functions, with which we will expand the fields produced by the sources.

The scalar source-free wave equation is [see (6.32)]

$$
\begin{equation*}
\nabla^{2} \psi(\mathbf{x}, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi(\mathbf{x}, t)=0 \tag{9.77}
\end{equation*}
$$

Let $\psi(\mathbf{x}, t)=\int_{-\infty}^{\infty} \psi(\mathbf{x}, \omega) e^{-i \omega t} d \omega$
\Rightarrow Each Fourier component satisfies the Helmholtz wave eq.

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) \psi(\mathbf{x}, \omega)=0 \tag{9.79}
\end{equation*}
$$

where $k \equiv \frac{\omega}{C}$

9.6 Spherical Wave Solutions... (continued)

In spherical coordinates, $\left(\nabla^{2}+k^{2}\right) \psi=0$ is written

$$
\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \psi}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial \psi}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} \psi}{\partial \varphi^{2}}+k^{2} \psi=0
$$

Let $\psi=U(r) P(\theta) Q(\varphi)$, we obtain
$P Q \frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d U}{d r}\right)+U Q \frac{1}{r^{2} \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P}{d \theta}\right)+U P \frac{1}{r^{2} \sin ^{2} \theta} \frac{d^{2} Q}{d \varphi^{2}}+k^{2} U P Q=0$
Multiply by $\frac{r^{2} \sin ^{2} \theta}{U P Q} \quad \begin{aligned} & \text { The only term with } \varphi \text {-dependence, so this } \\ & \text { term must be a constant. Let it be }-m^{2} .\end{aligned}$
$\sin ^{2} \theta[\underbrace{\frac{1}{U} \frac{d}{d r}\left(r^{2} \frac{d U}{d r}\right)+k^{2} r^{2}}_{=l(l+1)}+\frac{1}{P \sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d P}{d \theta}\right)]+\underbrace{\frac{1}{Q} \frac{d^{2} Q}{d \varphi^{2}}}=0$
Dividing all terms by $\sin ^{2} \theta$, we see that this is the only term with r-dependence.
So it must be a constant. Let it be $l(l+1)$.

$$
\frac{=-m^{2}}{\sqrt{\frac{2 l+1}{4 \pi} \frac{(l-m)!}{(l+m)!}} P_{l}^{m}(\cos \theta) e^{i m \varphi}}
$$

Thus, as in Sec. 3.1 of lecture notes,

$$
P=P_{\ell}^{m}(\cos \theta), Q_{\ell}^{m}(\cos \theta) ; Q=e^{i m \varphi}, e^{-i m \varphi} \Rightarrow P Q=Y_{l m}(\theta, \varphi)
$$

9.6 Spherical Wave Solutions... (continued)
$U(r)$ is governed by $\frac{d}{d r}\left(r^{2} \frac{d U}{d r}\right)+k^{2} r^{2} U=l(l+1) U$. Rewrite U
as $f_{l}(r)$. Then, $\left[\frac{d^{2}}{d r^{2}}+\frac{2}{r} \frac{d}{d r}+k^{2}-\frac{l(l+1)}{r^{2}}\right] f_{l}(r)=0$
Let $f_{l}(r)=\frac{1}{r^{1 / 2}} u_{l}(r) \Rightarrow\left[\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r}+k^{2}-\frac{(l+1 / 2)^{2}}{r^{2}}\right] u_{l}(r)=0$
$\Rightarrow u_{l}(r)=J_{l+\frac{1}{2}}(k r), N_{l+\frac{1}{2}}(k r)$ [Bessel functions of fractional order]
$\Rightarrow f_{l}(r)=\frac{1}{r^{1 / 2}} J_{l+\frac{1}{2}}(k r), \frac{1}{r^{1 / 2}} N_{l+\frac{1}{2}}(k r)$
Define $\left\{\begin{array}{l}j_{l}(k r)=\left(\frac{\pi}{2 k r}\right)^{\frac{1}{2}} J_{l+\frac{1}{2}}(k r) \\ n_{l}(k r)=\left(\frac{\pi}{2 k r}\right)^{\frac{1}{2}} N_{l+\frac{1}{2}}(k r) \\ \uparrow\end{array}\right.$ and $\left\{\begin{array}{l}h_{l}^{(1)}(k r)=j_{l}(k r)+i n_{l}(k r) \\ h_{l}^{(2)}(k r)=j_{l}(k r)-i n_{l}(k r)\end{array}\right.$ spherical Bessel functions \quad Hankel functions
$\Rightarrow \psi(\mathbf{x}, \omega)=\sum_{l m}\left[A_{l m}^{(1)} h_{l}^{(1)}(k r)+A_{l m}^{(2)} h_{l}^{(2)}(k r)\right] Y_{l m}(\theta, \phi) \quad\left[k=\frac{\omega}{c}\right]$

3.7 Laplace Equation in Cylindrical Coordinates;
 Bessel Functions

$$
\nabla^{2} \phi(\mathbf{x})=0 \Rightarrow \frac{\partial^{2} \phi}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial \phi}{\partial \rho}+\frac{1}{\rho^{2}} \frac{\partial^{2} \phi}{\partial \varphi^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}=0
$$

Let $\phi(\mathrm{x})=R(\rho) Q(\varphi) Z(z)$

$$
\Rightarrow\left\{\begin{array}{l}
\frac{\partial^{2} Z}{\partial z^{2}}-k^{2} Z=0 \Rightarrow Z=e^{ \pm k z} \\
\frac{\partial^{2} Q}{\partial \varphi^{2}}+v^{2} Q=0 \Rightarrow Q=e^{ \pm i v \varphi} \\
\frac{\partial^{2} R}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial R}{\partial \rho}+\left(k^{2}-\frac{v^{2}}{\rho^{2}}\right) R=0 \Rightarrow R=J_{v}(k \rho), N_{v}(k \rho)
\end{array}\right.
$$

where J_{v} and N_{v} are Bessel functions of the first and second kind, respectively (see following pages).

$$
\Rightarrow \phi=\left\{\begin{array}{l}
J_{v}(k \rho) \tag{3}\\
N_{v}(k \rho)
\end{array}\right\}\left\{\begin{array}{l}
e^{i v \varphi} \\
e^{-i v \varphi}
\end{array}\right\}\left\{\begin{array}{l}
e^{k z} \\
e^{-k z}
\end{array}\right\}
$$

Review 3.7 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)
Bessel Functions: If we let $x=k \rho$, the equation for R takes the standard form of the Bessel equation,

$$
\begin{equation*}
\frac{d^{2} R}{d x^{2}}+\frac{1}{x} \frac{d R}{d x}+\left(1-\frac{v^{2}}{x^{2}}\right) R=0 \tag{3.77}
\end{equation*}
$$

with solutions $J_{V}(x)$ and $N_{v}(x)$, from which we define the Hankel functions:

$$
\left\{\begin{array}{l}
H_{v}^{(1)}(x)=J_{v}(x)+i N_{v}(x) \tag{3.86}\\
H_{v}^{(2)}(x)=J_{v}(x)-i N_{v}(x)
\end{array}\right.
$$

and the modified Bessel functions (Bessel functions of imaginary argument)

$$
\left\{\begin{array}{l}
I_{v}(x)=i^{-v} J_{V}(i x) \tag{3.100}\\
K_{v}(x)=\frac{\pi}{2} i^{v+1} H_{v}^{(1)}(i x)
\end{array}\right.
$$

See Jackson pp. 112-116, Gradshteyn \& Ryzhik, and Abramowitz \& Stegun for properties of these special functions.
9.6 Spherical Wave Solutions... (continued)

Expansion of the Green function: Solution of the Green equation

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{6.36}
\end{equation*}
$$

is given by (derived in Sec. 6.4.)

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\left[\begin{array}{l}
\text { in infinite space and for outgoing- } \tag{6.40}\\
\text { wave boundary condition. }
\end{array}\right]
$$

We may solve (6.36) in the same way as in Sec. 3.9, i.e. write

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\sum_{l m} g_{l}\left(r, r^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi)
$$

solve for $g_{l}\left(r, r^{\prime}\right)$ for $r>r^{\prime}$ and $r<r^{\prime}$ [where $\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)=0$], and then apply boundary conditions at $r=0, r=\infty$, and $r=r^{\prime}$. The result is

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=4 \pi i k \sum_{l=0}^{\infty} j_{l}\left(k r_{<}\right) h_{l}^{(1)}\left(k r_{>}\right) \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi)
$$

Equating the two expressions above for $G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$, we obtain

$$
\frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=4 \pi i k \sum_{l=0}^{\infty} j_{l}\left(k r_{<}\right) h_{l}^{(1)}\left(k r_{>}\right) \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi)
$$

where $r_{<}$and $r_{>}$are, respectively, the smaller and larger of r and r^{\prime}.

Summary of Differential Equations and Solutions :

Source-free D.E.	Laplace eq. $\nabla^{2} \phi=0$	Helmholtz eq. $\left(\nabla^{2}+k^{2}\right) \psi=0$
Solutions $\left\{\begin{array}{l}\text { Cartesian } \\ \text { cylindrical } \\ \text { spherical }\end{array}\right.$	$\left\{\begin{array}{l} e^{i \alpha x}, e^{i \beta y}, e^{\sqrt{\alpha^{2}+\beta^{2} z}}, \text { etc. } \\ \text { (Sec. 2.9) } \\ J_{m}(k r), e^{i m \theta}, e^{k z}, \text { etc. } \\ \text { (Sec. 3.7) } \\ Y_{l m}(\theta, \phi), r^{l}, \text { etc. } \\ (\text { Secs. 3.1, 3.2) } \end{array}\right.$	$\left\{\begin{array}{l} e^{i k_{x} x}, e^{i k_{y} y}, e^{i k_{z} z}, \text { etc. } \\ \quad(\text { Sec. 8.4) } \\ J_{m}\left(\sqrt{\frac{\omega^{2}}{c^{2}}-k_{z}^{2}} r\right), e^{i m \theta}, e^{i k_{z} z}, \text { etc. } \\ \text { (Sec. 8.7) } \\ Y_{l m}(\theta, \phi), j_{l}(k r), n_{l}(k r), \text { etc. } \\ \text { (Sec. 9.6) } \end{array}\right.$
D.E. with a point source	$\begin{gathered} \nabla^{2} G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \\ \text { b.c.: } G(\infty)=0 \end{gathered}$	$\left(\nabla^{2}+k^{2}\right) G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ b.c.: outgoing wave
Solutions (Green functions)	$G=\frac{1}{\left\|x-\mathbf{x}^{\prime}\right\|}$	$G=\frac{e^{i k\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}$ [Eq. (6.40)]
Series expansin of Green function	Eqs. (3.70), (3.148), (3.168)	Eq. (9.98)

Summary of Differential Equations and Solutions:

Source-free D.E.	Helmholtz eq. $\left(\nabla^{2}+k^{2}\right) \psi=0$	Wave Eq. $\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) \psi=0$
Solutions Cartesian cylindrical spherical	$\left\{\begin{array}{l} e^{i k_{x} x}, e^{i k_{y} y}, e^{i k_{z} z}, \text { etc. } \\ \text { (Sec. 8.4) } \\ J_{m}\left(\sqrt{\frac{\omega^{2}}{c^{2}}-k_{z}^{2}} r\right), e^{i m \theta}, e^{i k_{z} z}, \text { etc. } \\ \text { (Sec. 8.7) } \\ Y_{l m}(\theta, \phi), j_{l}(k r), n_{l}(k r), \text { etc. } \\ \text { (Sec. 9.6) } \end{array}\right.$	$\begin{aligned} & \left\{\begin{array}{l} \mathbf{A}(\mathbf{x}, t) \\ \Phi(\mathbf{x}, t) \end{array}\right\}=\iint d^{3} x^{\prime} d t^{\prime} \\ & \left.\qquad \frac{\delta\left[t^{\prime}-\left(t-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}{c}\right)\right]}{4 \pi\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}\right] \end{aligned} \begin{aligned} & \mu_{0} \mathbf{J}\left(\mathbf{x}^{\prime}, t^{\prime}\right) \\ & \rho\left(\mathbf{x}^{\prime}, t^{\prime}\right) / \varepsilon_{0} \end{aligned}$
D.E. with a point source	$\left(\nabla^{2}+k^{2}\right) G\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)$ b.c.: outgoing wave	$\begin{aligned} &\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial^{2}}\right) G^{+}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right) \\ &=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}\right) \end{aligned}$ b.c.: outgoing wave
Solutions (Green functions)	$\begin{equation*} G=\frac{e^{i k\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|} \text { [Eq. (6.40)] } \tag{6.44} \end{equation*}$	$G^{+}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right)=\frac{\delta\left[t^{\prime}-\left(t-\frac{\left\|x-x^{\prime}\right\|}{c}\right)\right]}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}[E q .($
Series expansin of Green function	Eq. (9.98)	

9.1 Radiation of a Localized Oscillating Source

Review of Inhomogeneous Wave Equations and Solutions:

$\begin{cases}\nabla^{2} \Phi-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \Phi=-\rho / \varepsilon_{0} \\ \nabla^{2} \mathbf{A}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{A}=-\mu_{0} \mathbf{J} & \quad\left[\begin{array}{l}\text { in free space, } \Phi \text { and } \mathbf{A} \\ \text { satisfy Lorenz gauge. }\end{array}\right]\end{cases}$
Basic structure of the inhomogenous wave equation:

$$
\begin{equation*}
\nabla^{2} \psi-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \psi=-4 \pi f(\mathbf{x}, t) \tag{6.32}
\end{equation*}
$$

Solution of (6.32) with outgoing-wave b.c.:

$$
\begin{equation*}
\psi(\mathbf{x}, t)=\psi_{i n}(\mathbf{x}, t)+\int d^{3} x^{\prime} \int d t^{\prime} G^{+}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right) f\left(\mathbf{x}^{\prime}, t^{\prime}\right) \tag{6.45}
\end{equation*}
$$

| whemogeneous solution $G^{+}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right)$ |
| :---: |\(=\frac{\delta\left[t^{\prime}-\left(t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}\right)\right]}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \leftarrow \begin{aligned} \& f\left(\mathbf{x}^{\prime}, t^{\prime}\right) in (6.45)

\& is evaluated at

\& the retarded time.\end{aligned}\)
is the solution of

$$
\left(\nabla^{2}-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\right) G^{+}\left(\mathbf{x}, t, \mathbf{x}^{\prime}, t^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(t-t^{\prime}\right)
$$

with outgoing wave b.c.

9.1 Radiation of a Localized Oscillating Source (continued)

Using (6.45) (assume $\psi_{i n}=0$) on (6.15) \& (6.16), we obtain the gereral solutions for \mathbf{A} and Φ, which are valid for arbitrary \mathbf{J} and ρ.

$$
\left\{\begin{array}{l}
\mathbf{A}(\mathbf{x}, t) \tag{6.48}\\
\Phi(\mathbf{x}, t)
\end{array}\right\}=\frac{1}{4 \pi} \int d^{3} x^{\prime} \int d t^{\prime} \frac{\delta\left[t^{\prime}-\left(t-\frac{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}{c}\right)\right]}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\left\{\begin{array}{l}
\mu_{0} \mathbf{J}\left(\mathbf{x}^{\prime}, t^{\prime}\right) \\
\rho\left(\mathbf{x}^{\prime}, t^{\prime}\right) / \varepsilon_{0}
\end{array}\right\}
$$

In general, the sources, $\mathbf{J}\left(\mathbf{x}^{\prime}, t^{\prime}\right)$ and $\rho\left(\mathbf{x}^{\prime}, t^{\prime}\right)$, contain a static part and a time dependent part. For static $\mathbf{J}(\mathbf{x})$ and $\rho(\mathbf{x})$, (9.2) gives the static \mathbf{A} and Φ in Ch. 5 and Ch. 1, respecticely.

$$
\begin{align*}
& \mathbf{A}(\mathbf{x})=\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{\mathbf{J}\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{5.32}\\
& \Phi(\mathbf{x})=\Phi(\mathbf{x})=\frac{1}{4 \pi \varepsilon_{0}} \int d^{3} x^{\prime} \frac{\rho\left(\mathbf{x}^{\prime}\right)}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{1.17}
\end{align*}
$$

Question: It is stated on p. 408 that (9.2) is valid provided no boundary surfaces are present. Why? [See discussion below (6.47) in Ch. 6 of lectures notes.]

Fields by Harmonic Sources: Only time-dependent sources can radiate. Radiation from moving charges are treated in Ch. 13 and Ch. 14. Here, specialize to sources of the form (as in an antenna):

$$
\begin{align*}
& \rho(\mathbf{x}, t)=\rho(\mathbf{x}) e^{-i \omega t} \\
& \mathbf{J}(\mathbf{x}, t)=\mathbf{J}(\mathbf{x}) e^{-i \omega t} \tag{9.1}
\end{align*}
$$

Sub. (9.1) into (9.2) and carry out the t^{\prime}-integration, we obtain

$$
\begin{align*}
& \mathbf{A}(\mathbf{x}, t)=\mathbf{A}(\mathbf{x}) e^{-i \omega t} \text { with } \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right), \tag{9.3}\\
& \operatorname{erg} k=\underline{\omega}
\end{align*}
$$

where $k \equiv \frac{\omega}{C}$.
We shall assume that $\mathbf{J}(\mathbf{x})$ is independent of $\mathbf{A}(\mathbf{x})$, i.e. the source will not be affected by the fields they radiate. Otherwise, (9.3) is an integral equation for $\mathbf{A}(\mathbf{x})$.
9.1 Radiation of a Localized Oscillating Source (continued)

A simpler derivation of (9.3): We specialize to harmonic sources from the outset. Then, only (6.16) is required.

$$
\begin{equation*}
\nabla^{2} \mathbf{A}(\mathbf{x}, t)-\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}} \mathbf{A}(\mathbf{x}, t)=-\mu_{0} \mathbf{J}(\mathbf{x}, t) \tag{6.16}
\end{equation*}
$$

Let $\mathbf{J}(\mathbf{x}, t)=\mathbf{J}(\mathbf{x}) e^{-i \omega t}$ and $\mathbf{A}(\mathbf{x}, t)=\mathbf{A}(\mathbf{x}) e^{-i \omega t}$
$\Rightarrow\left(\nabla^{2}+k^{2}\right) \mathbf{A}(\mathbf{x})=-\mu_{0} \mathbf{J}(\mathbf{x})$ [inhomogeneous Helmholtz wave eq.]
The Green equation for the above equation is

$$
\begin{equation*}
\left(\nabla^{2}+k^{2}\right) G_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=-4 \pi \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right) \tag{6.36}
\end{equation*}
$$

Solution of (6.36) with outgoing wave b.c.

$$
\begin{gather*}
G_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{6.40}\\
\Rightarrow \mathbf{A}(\mathbf{x})=\int d^{3} x^{\prime} G_{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \frac{\mu_{0}}{4 \pi} \mathbf{J}\left(\mathbf{x}^{\prime}\right)=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right),
\end{gather*}
$$

which is (9.3).
9.1 Radiation of a Localized Oscillating Source (continued)

Rewrite (9.3), $\quad \mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right)$,
Maxwell eqs. give $\begin{cases}\mathbf{H}=\frac{1}{\mu_{0}} \nabla \times \mathbf{A} & \text { (everywhere) } \\ \mathbf{E}=\frac{i Z_{0}}{k} \nabla \times \mathbf{H} & \text { (outside the source) }\end{cases}$
where $Z_{0}=\sqrt{\mu_{0} / \varepsilon_{0}}=377 \Omega$ (impedance of free space, p. 297).
Thus, given the source function $\mathbf{J}(\mathbf{x})$, we may in principle evaluate $\mathbf{A}(\mathbf{x})$ from (9.3) and then obtain the fields \mathbf{H} and \mathbf{E} from (9.4) and (9.5).

Note that $e^{-i \omega t}$ dependence has been assumed for \mathbf{J}, hence for all other quantities which are expressed in terms of \mathbf{J}.

Note: The charge distribution ρ and scalar potential Φ are not required for the determination of \mathbf{H} and \mathbf{E} ? (why?)

9.1 Radiation of a Localized Oscillating Source (continued)

Near-Field Expansion of $\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right)$
Before going into algebraic details, we may readily observe some general properties of $\mathbf{A}(\mathbf{x})$ near the source ($r \ll \lambda$).

For \mathbf{x} outside the source and $r \ll \lambda$ (or $k r \ll 1$), we let $e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \approx 1$
and use $\frac{1}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=4 \pi \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2 l+1} \frac{r_{<}^{l}}{r_{>}^{l+1}} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right) Y_{l m}(\theta, \varphi)$.
Since $r>r^{\prime}$, we have $r_{>}=r$ and $r_{<}=r^{\prime}$.
$\Rightarrow \underset{\mathrm{kr}<1}{\mathbf{A}(\mathbf{x})} \mu_{0} \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \frac{1}{2 l+1} \frac{1}{r^{l+1}} Y_{l m}(\theta, \varphi) \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) r^{\prime l} Y_{l m}^{*}\left(\theta^{\prime}, \varphi^{\prime}\right)$
The integral in (9.6) yields multipole coefficients as in (4.2). Thus, (9.6) shows that, for $k r \ll 1, \mathbf{A}(\mathbf{x})$ can be decomposed into multipole fields, which fall off as $r^{-(l+1)}$ just as the static multipole fields, but with the $e^{-i \omega t}$ dependence. However, we will show later that, far from the source ($k r \gg 1$), $\mathbf{A}(\mathbf{x})$ behaves as an outgoing spherical wave.

Full Expansion of $\mathbf{A}(\mathbf{x})$: We may in fact expand $\mathbf{A}(\mathbf{x})$, without approximations, by using (9.98). For \mathbf{x} outside the source, we have $r_{>}=|\mathbf{x}|=r, r_{<}=\left|\mathbf{x}^{\prime}\right|=r^{\prime}$. Hence, (9.98) can be written
$\frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}=4 \pi i k \sum_{l=0}^{\infty} j_{l}\left(k r^{\prime}\right) h_{l}^{(1)}(k r) \sum_{m=-l}^{l} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) Y_{l m}(\theta, \phi)$
Sub. this equation into $\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right)$, we obtain

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\mu_{0} i k \sum_{l, m} h_{l}^{(1)}(k r) Y_{l m}(\theta, \phi) \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) j_{l}\left(k r^{\prime}\right) Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right) \tag{9.11}
\end{equation*}
$$

where $h_{l}^{(1)}(k r)=\frac{e^{i k r}(2 l-1)!!}{i(k r)^{l+1}} \sum_{n=0}^{l} a_{n}(i k r)^{n}$

with $a_{n}=\frac{(-1)^{n}(2 l-n)!}{(2 l-1)!!(2 l-2 n)!!n!}\left(a_{0}=1, a_{1}=-1, \cdots\right)$
(See Abramowitz \& Stegun, "Handbook of Mathematical Functions," p. 439.)
(9.11) is an exact expression for $\mathbf{A}(\mathbf{x})$. We now assume $k d \ll 1$ (i.e. source dimension \ll wavelength). Then, $k r^{\prime} \ll 1$ and $j_{l}\left(k r^{\prime}\right)$ reduces to

$$
\begin{equation*}
\left.j_{l}\left(k r^{\prime}\right)\right|_{k r^{\prime} \ll 1}=\frac{\left(k r^{\prime}\right)^{l}}{(2 l+1)!!} \tag{9.88}
\end{equation*}
$$

Sub. $h_{l}^{(1)}(k r)=\frac{e^{i k r}(2 l-1)!!}{i(k r)^{l+1}} \sum_{n=0}^{l} a_{n}(i k r)^{n}$ and (9.88) into (9.11), we obtain

$$
\mathbf{A}(\mathbf{x})=\mu_{0} \sum_{l, m}\left\{\begin{array}{l}
\frac{1}{2 l+1} Y_{l m}(\theta, \phi) \frac{e^{i k r}}{r^{l+1}}\left[1+a_{1}(i k r)+a_{2}(i k r)^{2}+\cdots+a_{l}(i k r)^{l}\right] \tag{1}\\
\cdot \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) r^{\prime \prime} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)
\end{array}\right\}
$$

(1) is the combination of (9.6) and (9.12) in Jackson. It is valid for $k d \ll 1$ and any \mathbf{x} outside the source. The region outside the source is commonly divided into 3 zones (by their different physical characters):

$$
\begin{array}{lll}
\text { The near (static) zone: } & d \ll r \ll \lambda & (\Rightarrow k r \ll 1) \\
\text { The intermediate (induction) zone: } & d \ll r \sim \lambda & (\Rightarrow k r \sim 1) \\
\text { The far (radiation) zone: } & d \ll \lambda \ll r & (\Rightarrow k r \gg 1)
\end{array}
$$

Griffiths

11.1.2 Electric Dipole Radiation

Consider two point charges of $+q$ and $-q$ separating by a distance $d(t)$. Assume $d(t)$ can be expressed in sinusoidal form.

The result is an oscillating electric dipole:
 $\mathbf{p}(t)=q d(t) \hat{\mathbf{z}}=q d \cos (\omega t) \hat{\mathbf{z}}=p_{0} \cos (\omega t) \hat{\mathbf{z}}$, where $p_{0} \equiv q d$.

The retarded potential is:

$$
\begin{aligned}
V(\mathbf{r}, t) & =\frac{1}{4 \pi \varepsilon_{0}} \int \frac{\rho\left(\mathbf{r}^{\prime}, t_{r}\right)}{r} d \tau^{\prime} \\
& =\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{q_{0} \cos \left[\omega\left(t-r_{+} / c\right)\right]}{r_{+}}-\frac{q_{0} \cos \left[\omega\left(t-r_{-} / c\right)\right]}{r_{-}}\right\}
\end{aligned}
$$

Griffiths

Electric Dipole Radiation: Approximations

Approximation \#1: Make this physical dipole into a perfect dipole.

$$
d \ll r
$$

Estimate the spearation distances by the law of cosines.
$r_{ \pm}=\sqrt{r^{2} \mp r d \cos \theta+(d / 2)^{2}} \cong r\left(1 \mp \frac{d}{2 r} \cos \theta\right)$
$\frac{1}{r_{ \pm}} \cong \frac{1}{r}\left(1 \pm \frac{d}{2 r} \cos \theta\right)$
$\cos \left[\omega\left(t-r_{ \pm} / c\right)\right] \cong \cos \left[\omega\left(t-\frac{r}{c}\right) \pm \frac{\omega d}{2 c} \cos \theta\right]$
$=\cos \left[\omega\left(t-\frac{r}{c}\right)\right] \cos \left(\frac{\omega d}{2 c} \cos \theta\right) \mp \sin \left[\omega\left(t-\frac{r}{c}\right)\right] \sin \left(\frac{\omega d}{2 c} \cos \theta\right)$
Approximation \#2: The wavelength is much longer than the dipole
size.

$$
d \ll \frac{c}{\omega}=\frac{\lambda}{2 \pi}
$$

The Retarded Scalar Potential

Approximation \#3: at the radiation zone.

$$
\frac{c}{\omega} \ll r
$$

The retarded scalar potential is:

$$
V(\mathbf{r}, t) \cong \frac{p_{0} \cos \theta}{4 \pi \varepsilon_{0} r}\left[-\frac{\omega}{c} \sin \left[\omega\left(t-\frac{r}{c}\right)\right]\right.
$$

Three approximations

$$
\begin{aligned}
d \ll r \quad & d \ll \frac{c}{\omega}\left(=\frac{\lambda}{2 \pi}\right) \quad \frac{c}{\omega} \ll r \\
& \Rightarrow d \ll \lambda \ll r
\end{aligned}
$$

Griffiths

The Electromagnetic Fields and Poynting Vector

$$
\begin{aligned}
& \left\{\begin{array}{l}
\mathbf{E}=-\nabla V-\frac{\partial \mathbf{A}}{\partial t}=-\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi \varepsilon_{0} c}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \hat{\boldsymbol{\theta}} \\
\mathbf{B}=\nabla \times \mathbf{A}=-\frac{\mu_{0} p_{0} \omega^{2}}{4 \pi c}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right] \hat{\boldsymbol{\varphi}}
\end{array}\right. \\
& \mathbf{S}=\frac{1}{\mu_{0}}(\mathbf{E} \times \mathbf{B})=\frac{\mu_{0}}{c}\left\{\frac{p_{0} \omega^{2}}{4 \pi}\left(\frac{\sin \theta}{r}\right) \cos \left[\omega\left(t-\frac{r}{c}\right)\right]\right\}^{2} \hat{\mathbf{r}}
\end{aligned}
$$

The total power radiated is

$$
\begin{aligned}
<P\rangle & =\int\langle\mathbf{S}\rangle \cdot d \mathbf{a}=\frac{\mu_{0} p_{0}^{2} \omega^{4}}{32 \pi^{2} c} \int\left(\frac{\sin \theta}{r}\right)^{2} r^{2} \sin \theta d \theta d \phi \\
& =\frac{\mu_{0} p_{0}^{2} \omega^{4}}{12 \pi c}
\end{aligned}
$$

9.2 Electric Dipole Fields and Radiation

Rewrite (1):
$\mathbf{A}(\mathbf{x})=\mu_{0} \sum_{l, m}\left\{\begin{array}{l}\frac{1}{2 l+1} Y_{l m}(\theta, \phi) \frac{e^{i k r}}{r^{l+1}}\left[1+a_{1}(i k r)+a_{2}(i k r)^{2}+\cdots+a_{l}(i k r)^{l}\right] \\ \cdot \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) r^{\prime} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)\end{array}\right\}$
Take the $l=0 \operatorname{term}\left[Y_{00}=\frac{1}{\sqrt{4 \pi}}\right]$
and denote it by $\mathbf{A}^{p}(\mathbf{x})$

$$
\begin{align*}
\mathbf{A}^{p}(\mathbf{x}) & =\mathbf{A}(\mathbf{x})^{l=0}=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r} \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) \\
& =-\frac{i \mu_{0} \omega}{4 \pi} \mathbf{p} \frac{e^{i k r}}{r}, \tag{9.16}
\end{align*}
$$

where $\mathbf{p}=\int \mathbf{x}^{\prime} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime}$
(9.16) gives the electric dipole contribution to the solution. It is valid for $k d \ll 1$ and any \mathbf{x} outside the source.
Question: Why is there no monopole term (see p. 410)?

$$
\left\lvert\, \begin{gather*}
\iiint J_{x} d x d y d z \tag{1}\\
=\iint d y d z\left[\left.x J_{X}\right|_{-d}-\int x \frac{\partial J_{x}}{\partial x} d x\right] \\
=-\iiint(\frac{\partial J_{x}}{\partial x}+\underbrace{\frac{\partial J_{y}}{\partial y}+\frac{\partial J_{z}}{\partial z}}) d x d y d z
\end{gather*}\right.
$$

$$
\text { give no contribution because } \mathbf{J}
$$

$$
\begin{equation*}
\text { is localized: } \int \frac{\partial J_{y}}{\partial y} d y=\left.J_{y}\right|_{-d} ^{d}=0 \tag{4.8}
\end{equation*}
$$

$$
=-\int x \nabla \cdot \mathbf{J} d^{3} x
$$

$$
\Rightarrow \int \mathbf{J} d^{3} x=-\int \mathbf{x} \nabla \cdot \mathbf{J} d^{3} x
$$

$$
\begin{aligned}
& =-i \omega \underbrace{\mathbf{x} \rho(\mathbf{x}) d^{3} x}_{\nabla \cdot \mathbf{J}+\frac{\partial \rho}{\partial t}=0}=-i \omega \mathbf{p},
\end{aligned}
$$

9.2 Electric Dipole Fields and Radiation (continued)

Rewrite (9.16): $\mathbf{A}^{p}(\mathbf{x})=-\frac{i \mu_{0} \omega}{4 \pi} \mathbf{p} \frac{e^{i k r}}{r}$
From (9.4), $\mathbf{H}^{p}=\frac{1}{\mu_{0}} \nabla \times \mathbf{A}^{p}$ and from (9.5), $\mathbf{E}^{p}=\frac{i Z_{0}}{k} \nabla \times \mathbf{H}^{p}$
$\Rightarrow\left\{\begin{array}{l}\mathbf{H}^{p}=\frac{c k^{2}}{4 \pi}(\mathbf{n} \times \mathbf{p}) \frac{e^{i k r}}{r}\left(1-\frac{1}{i k r}\right) \\ \mathbf{E}^{p}=\frac{1}{4 \pi \varepsilon_{0}}\left\{k^{2}(\mathbf{n} \times \mathbf{p}) \times \mathbf{n} \frac{e^{i k r}}{r}+[3 \mathbf{n}(\mathbf{n} \cdot \mathbf{p})-\mathbf{p}]\left(\frac{1}{r^{3}}-\frac{i k}{r^{2}}\right) e^{i k r}\right\}\end{array}\right.$
In the far zone $(k r \gg 1)$, (9.18) reduces to a spherical wave

$$
\left\{\begin{array}{l}
\mathbf{H}^{p} \simeq \frac{c k^{2}}{4 \pi}(\mathbf{n} \times \mathbf{p}) \frac{e^{i k r}}{r} \tag{9.19}\\
\mathbf{E}^{p} \simeq Z_{0} \mathbf{H}^{p} \times \mathbf{n}
\end{array}\right.
$$

In (9.19), we see that \mathbf{E}^{p} and \mathbf{H}^{p}
are in phase, and $\mathbf{E}^{p}, \mathbf{H}^{p}$, and \mathbf{n} are mutually perpendicular. This is a general property of EM waves in unbounded, uniform space. Given any two of these quantities, we can find the third.

> 9.2 Electric Dipole Fields and Radiation (continued)

$$
\left\{\begin{array}{l}
\mathbf{H}^{p}=\frac{c k^{2}}{4 \pi}(\mathbf{n} \times \mathbf{p}) \frac{e^{i k r}}{r}\left(1-\frac{1}{i k r}\right) \tag{9.18}\\
\mathbf{E}^{p}=\frac{1}{4 \pi \varepsilon_{0}}\left\{k^{2}(\mathbf{n} \times \mathbf{p}) \times \mathbf{n} \frac{e^{i k r}}{r}+[3 \mathbf{n}(\mathbf{n} \cdot \mathbf{p})-\mathbf{p}]\left(\frac{1}{r^{3}}-\frac{i k}{r^{2}}\right) e^{i k r}\right\}
\end{array}\right.
$$

In the near zone ($k r \ll 1$), (9.18) reduces to

$$
\begin{cases}\mathbf{H}^{p} \simeq \frac{i \omega}{4 \pi}(\mathbf{n} \times \mathbf{p}) \frac{1}{r^{2}} & \begin{array}{c}
\mathbf{p} \text { component } \\
\text { of source }
\end{array} \\
\mathbf{E}^{p} \simeq \frac{1}{4 \pi \varepsilon_{0}}[3 \mathbf{n}(\mathbf{n} \cdot \mathbf{p})-\mathbf{p}] \frac{1}{r^{3}} & \underbrace{\mathbf{x}}_{<d \rightarrow} k d \ll 1\end{cases}
$$

(i) \mathbf{E}^{p} and \mathbf{H}^{p} are 90° out of phase \Rightarrow average power $=0$.
\Rightarrow
(ii) \mathbf{E}^{p} has the same spatial pattern as that of the static electric dipole in (4.13), but with $\mathrm{e}^{-i \omega t}$ dependence.
(iii) $\mu_{0}|H|^{2} \sim(k r)^{2} \varepsilon_{0}|E|^{2} \Rightarrow \mathbf{E}$-field energy $\gg \mathbf{B}$-field energy.

Questions: (i) Why does \mathbf{E}^{p} have the static field pattern?
(ii) To obtain (9.20), we have neglected a few terms in (9.18).

But some of the neglected terms are still important in the near zone? What are they and in what sense are they important?
9.2 Electric Dipole Fields and Radiation (continued)
$\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=$ time-averaged power in the far zone/unit solid angle

$$
\begin{equation*}
=\frac{1}{2} \operatorname{Re}\left[r^{2} \mathbf{n} \cdot\left(\mathbf{E}^{p} \times \mathbf{H}^{p^{*}}\right)\right] \tag{9.21}
\end{equation*}
$$

(9.19)
$=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}|\underbrace{(\mathbf{n} \times \mathbf{p}) \times \mathbf{n}}|^{2}$
This vector gives the direction of $\mathbf{E}^{\text {p }}$, i.e. the polarization of the radiation (see figure below.)
$\Rightarrow\langle P\rangle_{t}=$ total power radiated $\left.=\frac{c^{2} Z_{0} \mathrm{k}^{4}}{12 \pi} \right\rvert\, \mathbf{p}^{2}$
In general, $\mathbf{p}=p_{x} e^{i \alpha} \mathbf{e}_{x}+p_{y} e^{i \beta} \mathbf{e}_{y}+p_{z} e^{i \gamma} \mathbf{e}_{z}$. If $\alpha=\beta=\gamma$, then \mathbf{p} has a fixed direction, $\mathbf{p}=\mathbf{p}_{0} e^{i \alpha}$ with $\mathbf{p}_{0}=p_{x} \mathbf{e}_{x}+p_{y} \mathbf{e}_{y}+p_{z} \mathbf{e}_{z}$, and

$$
\begin{equation*}
\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{c^{2} Z_{0}}{32 \pi^{2}} k^{4}|\mathbf{p}|^{2} \sin ^{2} \theta \tag{9.23}
\end{equation*}
$$

Otherwise, the direction of \mathbf{p} (hence $\left\langle\frac{d P}{d \Omega}\right\rangle_{t}$)
vary with time, but $\langle P\rangle_{t}$ is still given by (9.24).

dipole radiation pattern ${ }_{2}$

9.3 Magnetic Dipole and Electric Quadrupole Field

Rewrite (1):
$\mathbf{A}(\mathbf{x})=\mu_{0} \sum_{l, m}\left\{\begin{array}{l}\frac{1}{2 l+1} Y_{l m}(\theta, \phi) \frac{e^{i k r}}{r^{l+1}}\left[1+a_{1}(i k r)+a_{2}(i k r)^{2}+\cdots+a_{l}(i k r)^{l}\right] \\ \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) r^{\prime \prime} Y_{l m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)\end{array}\right\}$
Take the $l=1$ terms [$a_{1}=-1$]
$\mathbf{A}(\mathbf{x})^{l=1}=\frac{\mu_{0}}{3} \frac{e^{i k r}}{r^{2}}(1-i k r) \underbrace{\sum_{m=-1,0,1} Y_{1 m}(\theta, \phi) \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right) r^{\prime} Y_{1 m}^{*}\left(\theta^{\prime}, \phi^{\prime}\right)}$

set $l=1$ in (3.68)
9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)

In the far zone ($k r \gg 1$), we have the spherical wave sloution:

$$
\left\{\begin{array} { l }
{ \mathbf { H } ^ { m } \simeq \frac { k ^ { 2 } } { 4 \pi } (\mathbf { n } \times \mathbf { m }) \times \mathbf { n } \frac { e ^ { i k r } } { r } } \\
{ \mathbf { E } ^ { m } \simeq Z _ { 0 } \mathbf { H } ^ { m } \times \mathbf { n } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\left.\left\langle\frac{d P}{d \Omega}\right\rangle_{t} \simeq \frac{Z_{0}}{32 \pi^{2}} k^{4} \right\rvert\, \underbrace{\mathbf{m} \times\left.\mathbf{n}\right|^{2}}_{\bullet} \\
\langle P\rangle_{t} \simeq \frac{Z_{0}}{12 \pi} k^{4}|\mathbf{m}|^{2} \Rightarrow \text { direction of } \mathbf{E}^{m}
\end{array}\right.\right.
$$

In the near zone ($k r \ll 1$),

$$
\left\{\begin{array}{l}
\mathbf{H}^{m} \simeq \frac{1}{4 \pi}[3 \mathbf{n}(\mathbf{n} \cdot \mathbf{m})-\mathbf{m}] \frac{1}{r^{3}} \\
\mathbf{E}^{m} \simeq \frac{Z_{0} k}{4 \pi i}(\mathbf{n} \times \mathbf{m}) \frac{1}{r^{2}}
\end{array}=\right.
$$

(i) \mathbf{E}^{m} and \mathbf{H}^{m} are 90° out of phase \Rightarrow average power $=0$.
(ii) \mathbf{H}^{m} has the same spatial pattern as that of the static magnetic dipole in (5.56), but with $\mathrm{e}^{-i \omega t}$ dependence.
(iii) B-field energy $\gg \mathbf{E}$-field energy.

The electric quadrupole radiation, discussed in (9.37)-(9.52), is more complicated. Here, we only illustrate its radiation pattern by the figure to the right.

Thus,

$$
\begin{align*}
& \mathbf{A}(\mathbf{x})^{l=1}=\frac{\mu_{0}}{4 \pi} \frac{e^{i k r} r}{r}\left(\frac{1}{r}-i k\right) \int d^{3} x^{\prime} \mathbf{J}\left(\mathbf{x}^{\prime}\right)\left(\mathbf{n} \cdot \mathbf{x}^{\prime}\right) \tag{1}\\
& =\frac{\mu_{0}}{4 \pi} \frac{e^{i k r}}{r}\left(\frac{1}{r}-i k\right) \tag{9.30}
\end{align*} \underbrace{\iint d^{3} x^{\prime} \frac{1}{2}\left[\left(\mathbf{n} \cdot \mathbf{x}^{\prime}\right) \mathbf{J}+(\mathbf{n} \cdot \mathbf{J}) \mathbf{x}^{\prime}\right]}_{\text {electric quadrupole radiation }}+\underbrace{\left.\int d^{3} x^{\prime} \frac{1}{2}\left(\mathbf{x}^{\prime} \times \mathbf{J}\right) \times \mathbf{n}\right\}}_{\text {magnetic dipole radiation }}
$$

$$
\begin{equation*}
=\mathbf{A}^{Q}+\mathbf{A}^{m}, \tag{9.33}
\end{equation*}
$$

where $\mathbf{A}^{m}(\mathbf{x})=\frac{i k \mu_{0}}{4 \pi}(\mathbf{n} \times \mathbf{m}) \frac{e^{i k r}}{r}\left(1-\frac{1}{i k r}\right)\left[\begin{array}{l}\text { for } k d \ll 1 \text { and any } \\ \mathbf{x} \text { outside the source }\end{array}\right]$
with $\mathbf{m}=\frac{1}{2} \int(\mathbf{x} \times \mathbf{J}) d^{3} x$ [magnetic dipole moment]. \mathbf{A}^{m} gives the magnetic dipole contribution through (9.4) and (9.5) (see p.15):

$$
\left\{\begin{array}{l}
\mathbf{H}^{m}=\frac{1}{4 \pi}\left\{k^{2}(\mathbf{n} \times \mathbf{m}) \times \mathbf{n} \frac{e^{i k r}}{r}+[3 \mathbf{n}(\mathbf{n} \cdot \mathbf{m})-\mathbf{m}]\left(\frac{1}{r^{3}}-\frac{i k}{r^{2}}\right) e^{i k r}\right\} \\
\mathbf{E}^{m}=-\frac{Z_{0}}{4 \pi} k^{2}(\mathbf{n} \times \mathbf{m}) \frac{e^{i k r}}{r}\left(1-\frac{1}{i k r}\right) \tag{9.36}
\end{array}\right.
$$

Comparison between Static and Time-dependent Cases

	relations between ρ, \mathbf{J}, \mathbf{E}, and \mathbf{B}	multipole expansion	definition of multipole moments	r-dependence of \mathbf{E} and \mathbf{B} (d : dimension of the source)
static case	$\begin{aligned} \rho(\mathbf{x}) & \leftrightarrow \mathbf{E}(\mathbf{x}) \\ \mathbf{J}(\mathbf{x}) & \leftrightarrow \mathbf{B}(\mathbf{x}) \end{aligned}$	spherical harmonics expansion [(3.70)] or Taylor series [(4.10)] of $\frac{1}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}$	$\begin{aligned} & q=\int \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\ & \mathbf{p}=\int \mathbf{x}^{\prime} \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\ & Q_{i j}=\int\left(3 x_{i}^{\prime} x_{j}^{\prime}-r^{\prime 2} \delta_{i j}\right) \rho\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \\ & \mathbf{m}=\frac{1}{2} \int \mathbf{x}^{\prime} \times \mathbf{J}\left(\mathbf{x}^{\prime}\right) d^{3} x^{\prime} \end{aligned}$	\mathbf{E} or $\mathbf{B} \propto 1 / r^{l+2}$ For $r \sim d$, all multipole fields can be significant. For $r \gg d$, multipole fields are dominated by the lowest-order nonvanishing term.
timedependent case	$\begin{gathered} \left\{\begin{array}{c} \rho(\mathbf{x}) \\ \hat{\imath} \\ \mathbf{J}(\mathbf{x}) \end{array}\right\} \end{gathered} \leftrightarrow\left\{\begin{array}{c} \mathbf{E}(\mathbf{x}) \\ \hat{\imath} \\ \mathbf{B}(\mathbf{x}) \end{array}\right\}$	spherical harmonics expansion [(9.98)] of $\frac{e^{i k\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|}$	There is no time-dependent monopole for an isolated source (see p. 410). $\mathbf{p}, Q_{i j}$, and \mathbf{m} have the same expressions as those of their static counterparts, but with the $e^{-i \omega t}$ time dependence. In time-dependent cases, electric multipoles can generate \mathbf{B}-fields and magnetic multipoles can generate \mathbf{E}-fields.	(a) near zone $\lambda \gg r \gg d$ $\mathbf{E} \text { or } \mathbf{B} \propto e^{-i \omega t} / r^{l+2}$ Approx. the same field pattern and r-dependence as for the corresponding static multipole, but with $e^{-i \omega t}$ dependence (hence called quasi-static fields.) (b) far zone $r \gg \lambda \gg d$ $\mathbf{E}, \mathbf{B} \propto e^{i k r-i \omega t} / r$ (spherical EM waves) All multipole fields $\propto 1 / r$, relative power levels unchanged with distance.

Induced Electric and Magnetic Dipoles

Figure 9.4 Distortion of (a) the tangential magnetic field and (b) the normal electric field by a small aperture in a perfectly conducting surface. The effective dipole moments, as viewed from above and below the surface, are indicated beneath.

9.4 Center-Fed Linear Antenna

A Qualitative Look at the Center - Fed Linear Antenna :

In the near zone, \mathbf{E} and \mathbf{B} are principally generated by ρ and \mathbf{J}, respectively (\Rightarrow largely static field patterns). In the far zone, \mathbf{E} and \mathbf{B} are regenerative through $\frac{d}{d t} \mathbf{B}$ and $\frac{d}{d t} \mathbf{E}(\Rightarrow$ EM waves).
9.4 Center-fed Linear Antenna (continued)

Detailed Analysis: The center-fed linear antenna is a case of special interest, because it allows the solution of (9.3) in closed form for any value of $k d$, whereas in Secs. 9.2 and 9.3, we assume $k d \ll 1$.

$$
\begin{equation*}
\mathbf{A}(\mathbf{x})=\frac{\mu_{0}}{4 \pi} \int d^{3} x^{\prime} \frac{e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \mathbf{J}\left(\mathbf{x}^{\prime}\right) \tag{9.3}
\end{equation*}
$$

where $\mathbf{J}(\mathbf{x})=I \sin \left(\frac{k d}{2}-k|z|\right) \delta(x) \delta(y) \mathbf{e}_{z}$
$\Rightarrow \mathbf{A}(\mathbf{x})=\mathbf{e}_{z} \frac{\mu_{0} I}{4 \pi} \int_{-d / 2}^{d / 2} d z^{\prime} \frac{\sin \left(\frac{k d}{2}-k\left|z^{\prime}\right|\right) e^{i k\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}$
Note: (i) \mathbf{J} is symmetric about $z=0 . \mathbf{J}(z)=\mathbf{J}(-z) \rightarrow$
(ii) I is the peak current only when $k d \geq \pi$.

Question: The antenna appears to be an open circuit. How can there be current flowing on it?

$$
\begin{aligned}
& \text { 9.4 Center-fed Linear Antenna (continued) } \\
& \left|\mathbf{x}-\mathbf{x}^{\prime}\right|=\left(r^{2}-2 r r^{\prime} \cos \theta+r^{\prime 2}\right)^{\frac{1}{2}}=r\left[1-\left(\frac{2 n \cdot \mathbf{x}^{\prime}}{r}-\frac{r^{\prime 2}}{r^{2}}\right)\right]^{\frac{1}{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \approx r-\mathbf{n} \cdot \mathbf{x}^{\prime} \text { if } r \gg r^{\prime} \quad r^{\prime}=\left|\mathbf{x}^{\prime}\right|
\end{aligned}
$$

Hence, if $r \gg d$, we can write $\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \simeq r-z^{\prime} \cos \theta$.

$$
\begin{align*}
& \Rightarrow \mathbf{A}(\mathbf{x}) \approx \mathbf{e}_{z} \frac{\mu_{0} I e^{i k r}}{4 \pi} \int_{-d / 2}^{d / 2} d z^{\prime} \frac{\sin \left(\frac{k d}{2}-k\left|z^{\prime}\right|\right) e^{-i k z^{\prime} \cos \theta}}{\underbrace{r-z^{\prime} \cos \theta}_{\approx}} \tag{9.54}\\
& r \gg d \tag{9.55}\\
&>\mathbf{e}_{z} \frac{\mu_{0} I e^{i k r}}{2 \pi k r}\left[\frac{\cos \left(\frac{k d}{2} \cos \theta\right)-\cos \left(\frac{k d}{2}\right)}{\sin ^{2} \theta}\right]
\end{align*}
$$

Note: $z^{\prime} \cos \theta$ in $\frac{1}{r-z^{\prime} \cos \theta}$ an be neglected if $r \gg d$. But $z^{\prime} \cos \theta$
in $e^{i k\left(r-z^{\prime} \cos \theta\right)}$ makes an important contribution to the phase angle even at $r \gg d$.

In the far zone,

$\mathbf{H}=\frac{1}{\mu_{0}} \nabla \times \mathbf{A}=\frac{i k}{\mu_{0}} \mathbf{n} \times \mathbf{A} \Rightarrow|\mathbf{H}|=\frac{k \sin \theta|\mathbf{A}|}{\mu_{0}}$

$$
\begin{equation*}
\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{1}{2} \operatorname{Re}\left[r^{2} \mathbf{n} \cdot \mathbf{E} \times \mathbf{H}^{*}\right] \stackrel{Z_{0}}{2} r^{2}|\mathbf{H}|^{2} \stackrel{\downarrow}{=} \frac{Z_{0}}{2 \mu_{0}^{2}} k^{2} r^{2} \sin ^{2} \theta|\mathbf{A}|^{2} \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{Z_{0} I^{2}}{8 \pi^{2}}\left|\frac{\cos \left(\frac{k d}{2} \cos \theta\right)-\cos \left(\frac{k d}{2}\right)}{\sin \theta}\right|^{2},\left[\begin{array}{l}
\text { for } r>d \\
\text { and any } k d
\end{array}\right] \tag{9.56}\\
& =\frac{Z_{0} I^{2}}{8 \pi^{2}} \begin{cases}\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right) / \sin ^{2} \theta, & k d=\pi \\
4 \cos ^{4}\left(\frac{\pi}{2} \cos \theta\right) / \sin ^{2} \theta, & k d=2 \pi\end{cases}
\end{align*}
$$

half-wave antenna
full-wave antenna

$$
(k d=\pi)
$$ $(k d=2 \pi)$

Rewrite (9.56)

$$
\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{Z_{0} I^{2}}{8 \pi^{2}}\left|\frac{\cos \left(\frac{k d}{2} \cos \theta\right)-\cos \left(\frac{k d}{2}\right)}{\sin \theta}\right|^{2},\left[\begin{array}{l}
\text { for } r \gg d \tag{9.56}\\
\text { and any } k d
\end{array}\right]
$$

Limiting case (dipole approximation): $k d \ll 1$ (i.e. $\lambda \gg d$)

$$
\begin{align*}
& \cos x \simeq 1-\frac{x^{2}}{2}(x \ll 1) \\
& \Rightarrow\left\{\begin{array}{l}
\cos \left(\frac{k d}{2} \cos \theta\right) \simeq 1-\frac{k^{2} d^{2}}{8} \cos ^{2} \theta \\
\cos \left(\frac{k d}{2}\right) \simeq 1-\frac{k^{2} d^{2}}{8}
\end{array}\right. \\
& \Rightarrow\left\langle\frac{d P}{d \Omega}\right\rangle_{t} \approx \frac{Z_{0} I^{2}}{8 \pi^{2}}\left|\frac{1-\frac{k^{2} d^{2}}{8} \cos ^{2} \theta-1+\frac{k^{2} d^{2}}{8}}{\sin \theta}\right|^{2} \\
&=\frac{Z_{0} I^{2}}{512 \pi^{2}}(k d)^{4} \sin ^{2} \theta \quad[\text { valid for } k d \ll 1] \tag{4}
\end{align*}
$$

This has the same k and θ depedence as in (9.23, electric dipole), which was derived by assuming $k d \ll 1$.
9.4 Center-fed Linear Antenna (continued)

Radiation Resistance and Equivalent Circuit:

$\mathbf{J}(\mathbf{x})=I \sin \left(\frac{k d}{2}-k|z|\right) \delta(x) \delta(y) \mathbf{e}_{z} \approx \underbrace{\frac{k d}{2}} I\left(1-\frac{2|z|}{d}\right) \delta(x) \delta(y) \mathbf{e}_{z}$
Thus, from (4), $\left\langle\frac{d P}{d \Omega}\right\rangle_{t} \approx \frac{Z_{0} I^{2}}{512 \pi^{2}}(k d)^{4} \sin ^{2} \theta=\frac{Z_{0} I_{0}^{2}}{128 \pi^{2}}(k d)^{2} \sin ^{2} \theta$

$$
\begin{align*}
\Rightarrow\langle P\rangle_{t} & \approx \int\left\langle\frac{d P}{d \Omega}\right\rangle_{t} d \Omega=\int_{0}^{2 \pi} d \phi \int_{-1}^{1} d \cos \theta\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{Z_{0} I_{0}^{2}}{48 \pi}(k d)^{2} \tag{9.29}\\
& =\frac{I_{0}^{2}}{2} R_{r a d}, \quad\left[\begin{array}{l}
R_{\text {rad }}: \text { radiation resistance. } \\
R_{\text {rad }} \text { is part of the field definition of } \\
\text { impedance, see 2nd term in (6.137). }
\end{array}\right]
\end{align*}
$$

where $R_{r a d} \equiv \frac{Z_{0}}{24 \pi}(k d)^{2} \approx 5(k d)^{2}$ ohms [See pp. 412-3.]

Equivalent circuit for a center-fed antenna

Problems:

1. The full-wave antenna radiation in (9.57) can be thought of as the superposition of two half-wave antennas, one above the other, excited in phase. Demonstrate this by rederiving $d P / d \Omega$ for the full-wave antenna $[(9.57), k d=2 \pi]$ by surperposing the fields of two half-wave antennas (each of length $d / 2$, see figure below).
2. If the two half-wave antennas in problem 1 are excited 180° out of phase, derive $d P / d \Omega$ again by the method of superposition.
3. Plot the approximate angular distribution of $d P / d \Omega$ in problems $1{ }_{P}$

The full-wave antenna radiation in (9.57) c
superposition of two half-wave antennas,
excited in phase. Demonstrate this by red
full-wave antenna $[(9.57), k d=2 \pi]$ by sur
two half-wave antennas (each of length $d / 2$,
If the two half-wave antennas in problem 1
phase, derive $d P / d \Omega$ again by the method of
Plot the approximate angular distribution of
and 2. Explain the difference qualitatively.
z

single antenna of length d

9.4 Center-fed Linear Antenna (continued)

Solution to problem 1: Principle of superposition requires that we add the fields (not the powers) of the 2 antennas, each of total length $\frac{d}{2}$.

Rewrite (9.55)
$\mathbf{A}(\mathbf{x})=\mathbf{e}_{z} \frac{\mu_{0} I e^{i k r}}{2 \pi k r}\left[\frac{\cos \left(\frac{k d}{2} \cos \theta\right)-\cos \left(\frac{k d}{2}\right)}{\sin ^{2} \theta}\right] \xrightarrow[\frac{d}{2}]{\frac{d}{2} \underbrace{\theta}_{2}} \mathbf{n}$
(9.55) applies to a single antenna of total length d (see fig. above.) So the field of each of the 2 antennas in this problem can be obtained from (9.55) by replacing d in (9.55) with $\frac{d}{2}$ and expressing r with respect to the center of each antenna (i.e. by r_{1} and r_{2}).

$$
\begin{equation*}
\mathbf{A}_{1,2}=\mathbf{e}_{z} \frac{\mu_{0} I e^{i k r_{1,2}}}{2 \pi k r_{1,2}}\left[\frac{\cos \left(\frac{k d}{4} \cos \theta\right)-\cos \left(\frac{k d}{4}\right)}{\sin ^{2} \theta}\right], \tag{5}
\end{equation*}
$$

where $r_{1}=r-\frac{d}{4} \cos \theta$ and $r_{2}=r+\frac{d}{4} \cos \theta$.
antenna $2 \frac{d}{2}$
We may approximate $r_{1,2}$ in the denominator of (5) by r, but must use the correct $r_{1,2}$ for the phase angles in the exponential terms.

It is assumed that each antenna in this problem is excited in the half-wave pattern, hence we set $k \frac{d}{2}=\pi$ in (5) and the superposed field of the 2 antennas (excited in phase) is given by

$$
\begin{align*}
& \mathbf{A}=\mathbf{A}_{1}+\mathbf{A}_{2}=\mathbf{e}_{z} \frac{\mu_{0}}{2 \pi} \frac{I}{k r} e^{i k r}\left[e^{-i \frac{\pi}{2} \cos \theta}+e^{i \frac{\pi}{2} \cos \theta}\right] \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta} \tag{6}\\
&=\mathbf{e}_{z} \frac{\mu_{0}}{\pi} \frac{I}{k r} e^{i k r} \frac{\cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta} \\
& \text { From (3), } \left.\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{z_{0}}{2 \mu_{0}^{2}} k^{2} r^{2} \sin ^{2} \theta \right\rvert\, \mathbf{A}^{2} \\
& \text { antenna } \left.1 \frac{d}{2} \right\rvert\, y \\
& \hline
\end{align*}
$$

Solution to problem 2:

If the two half-wave antennas in problem 1 are excited 180° out of phase, we simply replace the " + " sign in (6) with a " - " sign.

9.4 Center-fed Linear Antenna (continued)

Thus,
$\mathbf{A}=\mathbf{A}_{1}-\mathbf{A}_{2}=\mathbf{e}_{z} \frac{\mu_{0}}{2 \pi} \frac{I}{k r} e^{i k r}\left[e^{-i \frac{\pi}{2} \cos \theta}-e^{i \frac{\pi}{2} \cos \theta}\right] \frac{\cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta}$

$$
=-i \mathbf{e}_{z} \frac{\mu_{0}}{\pi} \frac{I}{k r} e^{i k r} \frac{\sin \left(\frac{\pi}{2} \cos \theta\right) \cos \left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta}
$$

From (3), $\left\langle\frac{d P}{d \Omega}\right\rangle_{t}=\frac{Z_{0}}{2 \mu_{0}^{2}} k^{2} r^{2} \sin ^{2} \theta|\mathbf{A}|^{2}$
$\begin{array}{ll}\text { antenna } 1 \frac{d}{2} \\ \text { antenna } 2 & \frac{d}{2}\end{array}$

$$
=\frac{Z_{0} I^{2}}{2 \pi^{2}} \frac{\sin ^{2}\left(\frac{\pi}{2} \cos \theta\right) \cos ^{2}\left(\frac{\pi}{2} \cos \theta\right)}{\sin ^{2} \theta}=\frac{Z_{0} I^{2} \sin ^{2}(\pi \cos \theta)}{8 \pi^{2}} \frac{\sin ^{2} \theta}{}
$$

Solution to problem 3:

Homework of Chap. 9

Problems: 3, 6, 8, 3, 14,
$16,17,22,23$

in phase \Rightarrow dipole radiation
 out of
phase \Rightarrow quadrupole radiation

Question: How does a phased array antenna work?

