Chapter 9: Radiating Systems, Multipole
Fields and Radiation

An Overview of Chapters on EM Waves : (covered in this course)
source term in wave equation boundary

Ch.7 none plane wave in oo space or in
two semi-oo spaces separated
by the x - y plane

Ch. 8 none conducting walls

Ch. 9 J, p~etet outgoing wave to oo

prescribed, as
in an antenna

Ch. 10 J, p~ei

induced by incident EM waves,
as in the case of scattering of a
plane wave by a dielectric object.

Ch. 14 moving charges,
such as electrons in a synchrotron

outgoing wave to o

outgoing wave to o

9.6 Spherical Wave Solutions of the Scalar
Wave Equation

Spherical Bessel Functions and Hankel functions : Although
this chapter deals with radiating systems, here we first solve the scalar
source-free wave equation in the spherical coordinate syatem. The
purpose is to obtain a complete set of spherical Bessel funtions and
Hankel functions, with which we will expand the fields produced by
the sources.

The scalar source-free wave equation is [see (6.32)]

vV (x,1) —C%;izy/(x,t) =0 (9.77)
Let y(x,) =" y(x,0)e""do (9.78)
= Each Fourier component satisfies the Helmholtz wave eq.
(V2 +k?)y(x,0) =0, (9.79)
where k=%

9.6 Spherical Wave Solutions... (continued)
In spherical coordinates, (V2 +k?)y =0 is Written

1.0 (g20v 1 1 2
Zﬂ(r 5r)+rsm959(9n659) r2 mn66¢ +k v =0
Let w =U(r)P(8)Q(p), we obtain

PQ 2dr( 2%$)+UQ d(sino%)+up L 0 | k2upQ =0

r?sin 9d¢
Multiply by r’sin®0  [The only term with g-dependence, so this
UP term must be a constant Let it be -m?.

sin? O & (r? 42) +k*r? + 514 (sin o ¢ )]+1d 2_0

r2sing 40

Psing do Qdg?
“I(1+1)~ T_mz
Dividing all terms by sin%, we see that
this is the only term with r-dependence. 21 +1(1—=m)!_ img
So it must be a constant. Let it be I(I +1) 4z (1+ I+ )|P (cosd)e
Thus, as in Sec. 3.1 of lecture notes, N

P =P/"(cosd), Q' (cosd); Q=e"?,e"™ = PQ=Y,,(6,¢)
rejected because of divergence at 6 =+x |

9.6 Spherical Wave Solutions... (continued)
U(r) is governed by & (r® 9)+k?r?U =1(1 +1)U. Rewrite U
as f, (r). Then, [d 124 g2 '“*1)] f,(r)=0 (9.81)

rdr

Let f,(r) = 1,2u|(r):>[ o +1d k2 “*1’22) }u,(r):o (9.83)
= uy(r)=J, l(kr), N,, l(kr) [Bessel functions of fractional order]

= fi( =4 Az I, 1(kr) uz |+ 1 (kr)

h® (kr) = j (kr) +in, (kr)

Ji(kr) =(5% 2 1 (kr)
Define <2kr) 3 and

0= (g} Ny )

hf’ (kr) = jy (kr) —iny (kr)
| spherical Bessel functions| | Hankel functions]

=y(x,0)=3 [A,%)h,(l) (kr) + ADH®) (kr)]v,m(e, #) [k=2] (9.92)




3.7 Laplace Equation in Cylindrical Coordinates;

Review .
Bessel Functions
24V _0 00 100 10 PP_o ,
\% ¢5(x)—0:>apz+pap+p2 8¢2+622 =0 i
Let #(X) = R(0)Q(¢)Z(2) T sp
z
7 27 0=z -ek /|
0z |
0’%Q . 2~ _ Fivep - y
= ﬁﬂ/ Q=0=0Q=e xﬁp\\\J
2 2 2
g;;+;g§+(k —;’)Z)R=O:>R=Jv(kp), N, (kp)

Review | 37 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

Bessel Functions : If we let x =k p, the equation for R takes
the standard form of the Bessel equation,

d?R, 1dR, (1_v?\Rr_
SRS (S LR
with solutions J,, (x) and N,,(x), from which we define the Hankel

functions:
HO (x) =3, () +iN,, (x)
H® (x) =3, (x) =N, (x)

and the modified Bessel functions (Bessel functions of imaginary
argument)

(3.77)

(3.86)

where J,, and N, are Bessel functions of the first and second kind, I, (x)=i"J,(ix) (3.100)
respectively (see following pages). K., (X) = %iv+1H @) (ix) (3.101)
14 14 '
i k . .
= 4 {Jv(kp) He";ﬂﬂ He iz} @3) See Jackson pp. 112-116, Gradshteyn & Ryzhik, and Abramowitz
N, (kp)| [e7"] (e~ 5 & Stegun for properties of these special functions. 6
9.6 Spherical Wave Solutions... (continued) 9.6 Spherical Wave Solutions... (continued)
:‘ 0 (%) [ jo(x=0)=1] . N (X) Expansion of the Green function : Solution of the Green(zq;g;ion

04} Jl(x) 02 I

"l J2(x)

From G. Afken,
"Mathematical Methods
for Physicists"

-02 -04 +

102221 3sin(x-12)

0 2 4 o 8 %[d X )
-0l F 03 |
-

=03
2

. SN I
(%) > (2|)i1)u[1_ 2021+3) +}

<1, 1 21-n)n 2
0y (x) = ,( x'+1) [1_2(1X_2|)+...

x>> |
n () ————1cos(x-17)

} h® (x) =L (i) " [= spatial
dependence of spherical waves.]
See Jackson pp. 426-427 for further properties of j;, n, h®, and h®.

(V2 +k?)G(x,x) = —475(x—X')
Is given by (derived in Sec. 6.4.)

n _ k=1 'in infinite space and for outgoing-
Gx.x) =5 [wave boundary condition. (6.40)

We may solve (6.36) in the same way as in Sec. 3.9, i.e. write
G(x,x) = X 01 (1,7Win (', ¥im (6.9
m

solve for g, (r,r’) forr >r" and r <r’ [where 5(x—x") = 0], and then
apply boundary conditions atr =0, r =00, and r =r’. The result is

o X I *
G(xx) =47k 2. j (ke )h® (k) > Yim (0,6 (0,4)
=l m=—
Equating the two expressions above for G(x, x’), we obtain

ik|x—x A I * ot
o) =4k G (KORD () 2 Yin (0,¢)Yin (0,9, (998)
= m=—

=]

where r_ and r, are, respectively, the smaller and larger of r and r’.
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Part |

9.6 Spherical Wave Solutions... (continued)

Summary of Differential Equations and Solutions :

Part 11

Source-free D.E. Laplace eq. V2¢ =0

Helmholtz eq. (V2 + kz)y/ =

point source b.c.: G(w0) =0 b.c.: outgoing wave

Solutions _ " .
Cartesian giax iy gVa®+pz g | {eleX ey elka? erc,
(Sec. 2.9) (Sec. 8.4)
img _kz 0° 12 im@ ik, z
eylindrical Jo(kr), e, e™, etc. Jm(JCZ k; rj,e ,82° etc.
(Sec. 3.7) (Sec. 8.7)
_ Yin(0.9), ', etc. Yy (6, 9), jj (kr), ny(kr), etc.
spherical (Secs. 3.1, 3.2) (Sec. 9.6)
D.E. with a V2G(x,x) = —475(x—x) | (V?+k?)G(x,x) = —475(x —X')

Solutions
(Green functions)

ik|x—x/
G=_1 G=¢
' x—x/

Series expansin
of Green function | E9S- (3.70), (3.148), (3.168)

Eq. (9.98)

9.6 Spherical Wave Solutions... (continued)

Summary of Differential Equations and Solutions :

Source-free D.E. Wave Eq. (VZ —ia—z)y/ =0

Helmholtz eq. (V* +k*)y =0

c2 o2
ikyx ikyy gikz?
" e 2% etc. A(xD) -
Solutions (Sec. 84) o d®x'dt
Cartesian Jm( [ k2 r),e‘m9 e’ etc. ’ [t S (S - }
{cylindrical (;Zec 87) {%J(x )
h . I . . 4 S ! r
peneal | v, (@4, §i k), k), et T )z
(Sec. 9.6)
) (Vz—ii)G (x,t,x',t")
D.E. witha (V2 +k*)G(x,x") = -475 (x — X')

point source =—-4ro(x—x")o(t-t")

b.c.: outgoing wave b.c.: outgoing wave

i ikjx—x
Solutions e x|
(Green functions) | C ~ ‘x x| [Eq. (6.40)]

t ‘
G (x,t,xt) = [ i }[Eq (6.44)]

[x- X\

Series expansin

of Green function Eq. (9.98)
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9.1 Radiation of a Localized Oscillating Source
Review of Inhomogeneous Wave Equations and Solutions :

ViP- c2 at CD ==p/% in free space, ® and A (6.15)
V2A A J satisfy Lorenz gauge. (6.16)
at ~Ho '
Basic structure of the inhomogenous wave equation:
Vay —7?;{/ —4rf (x,t) (6.32)

Solution of (6.32) with outgoing-wave b.c.:
l//(x,t)/:7 Win(x,0)+ [d3X [dUG" (x,t,x,t') f (x',1) (6.45)
[homogeneous solution| _| f(x',t") in (6.45)

[x—x }

—(t-") |4,

+ reny [ c is evaluated at
where G™ (x,1,x',t') = x—x the retarded time,| (6-44)

is the solution of

(V2 - Zatz)G (x,t,x,t') = 475 (x - x)S(t -t') (6.41)
with outgoing wave b.c.
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9.1 Radiation of a Localized Oscillating Source (continued)

Using (6.45) (assume y;, =0) on (6.15) & (6.16), we obtain the
gereral solutions for A and @, which are valid for arbitrary J and p.

Alx,t ot | (eI (x'
(x.1) ERER jdt” Hod (X'.1) (6.48),(9.2)
o(x.t)|  4x x=x] p(x',t) ] &

In general, the sources, J(x',t") and p(x',t"), contain a static part

and a time dependent part. For static J(x) and p(x), (9.2) gives the
static A and @ in Ch. 5 and Ch. 1, respecticely.

A(x)=A(x) = ﬂOjd er(x) @/ (5.32)
X— X ' X
D(x) = D(x) = [d3x p(X) <S°“r°e (1.17)
Are, x—x/|

Question: It is stated on p. 408 that (9.2) is valid provided no

boundary surfaces are present. Why? [See discussion below (6.47)

in Ch. 6 of lectures notes.] 12




9.1 Radiation of a Localized Oscillating Source (continued)

Fields by Harmonic Sources : Only time-dependent sources can
radiate. Radiation from moving charges are treated in Ch. 13 and
Ch. 14. Here, specialize to sources of the form (as in an antenna):

plx.t) = p(x)e”*
J(x,t) = J(x)e 't
Sub. (9.1) into (9.2) and carry out the t'-integration, we obtain

ik|x—x/|

(9.1)

e

x=x'

J(x), (9.3)

A(x,t) = A(x)e 7 with A(x) = Z‘O [d®x
T

where k = %

We shall assume that J(x) is independent of A(x), i.e. the
source will not be affected by the fields they radiate. Otherwise,
(9.3) is an integral equation for A(x).
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9.1 Radiation of a Localized Oscillating Source (continued)

A simpler derivation of (9.3): We specialize to harmonic sources
from the outset. Then, only (6.16) is required.

VZA(x,1) —C%gt%A(x,t) =~ d (x,1) (6.16)
Let J(x,t) = J(x)e " and A(x,t) = A(x)e '
=N (V2 + kZ)A(x) = —uJ(x) [inhomogeneous Helmholtz wave eq.]

The Green equation for the above equation is

(v2 + kZ)Gk (x,X) = -475(x - X)) (6.36)
Solution of (6.36) with outgoing wave b.c.
, ik|x—x/|
Gy (x,x) = e‘x_x,‘ (6.40)

ik|x—x/|

= A(x) = [d°X'G (x,x) {2 J(x) = 42 [d°x'®
which is (9.3).

J(x'),

x—x

14

9.1 Radiation of a Localized Oscillating Source (continued)

ik x—x/|
Rewrite (9.3), A(x)=“0[d3% " J(x), (9.3)
A x—x/|
H-= LOV x A (everywhere) (9.4)

Maxwell egs. give :
E= 'ZTOV xH (outside the source) (9.5)
where Z = /19 /€9 =377 Q (impedance of free space, p. 297).

Thus, given the source function J(x), we may in principle evaluate
A(x) from (9.3) and then obtain the fields H and E from (9.4) and
(9.5).

Note that e 7 dependence has been assumed for J, hence for all
other quantities which are expressed in terms of J.

Note: The charge distribution o and scalar potential @ are not

required for the determination of H and E? (why?)
15

9.1 Radiation of a Localized Oscillating Source (continued)

ik x—x/|

e
x=x'
Before going into algebraic details, we may readily observe some
general properties of A(x) near the source (r < A).
For x outside the source and r < A (or kr «1), we let e

Near-Field Expansion of A(x) = Zlo I d=x’ J(x') (9.3)
T

ikjx—x'] _ 1

o | I *
and use =4zry ¥ iT—<Y|m(¢9’, ?" )i (0, 0). (3.70)
x—x/| —0m—1 2l +1 r>Jrl :
Sincer >r',wehaver, =randr_=r". @/
1 1

S A® 4L Y Yin(0,0)[ 43I (0, 0) (9.6)

* 1=om—1 2l +1 ¢!+
kr <1

The integral in (9.6) yields multipole coefficients as in (4.2). Thus,
(9.6) shows that, for kr «<1, A(x) can be decomposed into multipole

fields, which fall off as r~(*V just as the static multipole fields, but with

the 71t dependence. However, we will show later that, far from the

source (kr > 1), A(x) behaves as an outgoing spherical wave. .




9.1 Radiation of a Localized Oscillating Source (continued)

Full Expansion of A(x): We may in fact expand A(x), without
approximations, by using (9.98). For x outside the source, we have
r, =|x/=r, r_=x|=r". Hence, (9.98) can be written

Ik‘x x‘

o =4k R ) 2 Y (0.6 i (0.6)

Ik‘x x‘

x=x

A() = ik 2 0 (k)Y (6, 8) [ d3XT(X) y (Kr Wi (0, 4), (9.10)

Sub. this equation into A(x) = Zlojd x'E J(x'), we obtain
T

where hf“(krpL{}f 5 a, (ikr)" , X
TR x

n"l | source
(2|(1)|)|(§| 2?1))“n' (ao =1, al=—l,---)

(See Abramowitz & Stegun, "Handbook of Mathematical Functions,"
p. 439.)

with a, =
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9.1 Radiation of a Localized Oscillating Source (continued)

(9.11) is an exact expression for A(x). We now assume kd <1 (i.e.

source dimension < wavelength). Then, kr’ <1 and j; (kr’) reduces to
_ (k)
K = @reyn

elkr21-pn |

Sub. h® (kr) = © T E z a, (ikr)"

and (9.88) into (9.11), we obtaln ! 0 o)

A) = 2I+lY,m(0 ?) em [1+ al(lkr)+a2(|kr) +- 4 (|kr) ]
X
| m IdSX'J( )rrlYlm(ey ¢)
(2) is the combination of (9.6) and (9.12) in Jackson. It is valid for
kd <« 1 and any x outside the source. The region outside the source is

commonly divided into 3 zones (by their different physical characters):

The near (static) zone: d<r<i (=kr«l)
The intermediate (induction) zone:d <r~A4 (= kr ~1)
The far (radiation) zone: d<ikr (=kr>1)

18

Griffiths o o
11.1.2 Electric Dipole Radiation
Consider two point charges of +q and —q 8z r
separating by a distance d(t). Assume d(t) can I 9 2
be expressed in sinusoidal form.

T

The result is an oscillating electric dipole:
p(t) =qd(t)z = qd cos(wt)z = p, cos(wt)z, where p, =qd.

The retarded potential is:

1 r't) .,
V=, j/’( : )i
1 Jgycos[ao(t—-,/c)] g,cos[a(t—- /c)]
47[80 2, o

19

Griffiths

Electric Dipole Radiation: Approximations

Approximation #1: Make this physical dipole into a perfect dipole.
d<<r

Estimate the spearation distances by the law of cosines.

:\/rz Frdcosd+(d/2)* = r(ljt%cose)

1 = 1(liricos@)

R ¢ 2r

cos[@(t — -, /¢)] = cos[e(t - E) + “2)—3 c0s 6]

_ cos[a(t — ) cos(2 cos 0) 7 sinfe(t - )sin(2% cos )
c 2C c 2C

Approximation #2: The wavelength is much longer than the dipole
size. c A
d<<—=—
o 2r

20




Griffiths _ Griffiths _
The Retarded Scalar Potential The Retarded Scalar Potential
o . C
cos[a(t —~, /c)] = cos[w(t —E)] cos(az)—gcos 0) Fsin[a(t —E)]sin(az)—gcos 0) Approximation #3: at the radiation zone. —<<r
@
=1 idCOS
2 The retarded scalar potential is:
= cos[a(t — L)] Fsin[o(t —L)]a)—dcos %
¢ ¢ 2 V(r,t) ;M{—Qsin[w(t—i)}
Are,r | C c
The retarded scalar potential is:
r . r.,od 1 d
cosfoft~ )]st~ D) 50 c0s0 |+ 2 cos0) Three approximations
V(rt)= c ¢ 2 r-2r
" A r ) r.,od 1 d
0 {cos[a)(t—E)]+sm[a)(t—E)]Z—Ccose}?(l—zcose) d<<r d <<£(: zi) Ly
@ @
;M{—Qsin[a)(t—£)+lcos[a)(t—£)]}
Areyr C cr c =d<< A<
21 22
Griffiths _ Griffiths L .
The Retarded Vector Potential 'he Electromagnetic Fields and Poynting Vector
The retarded vector potential is OA 1P w? sin@
determined by the current density. E=-VV-—==-=—(——)cos[o(t __)]9
ot 4 mELC T
sin@
I(t)——z——qoa)sm otz B=VxA-= 'u°4poc (—— ) cos[w (t——)](P
My (It 42 —qosinfo(t—-/c)]z | 1 w® sin@
N e - dz S=(ExB) =t B S0, oo (t——)]
0
~ _ FoPo® sm[a)(t——)]z @d << A<<r o
Arxr The total power radiated is
Retarded potentials: <Po f{s}-da Ho Po@ J‘(S'” ‘9) 2 5in 0d0d
V(r,t) = —o? {Cosesm[ (t——)} E-_vv_-2A , ., s
A a _ tpie’
y [OND) B=VxA 127c
A(r,t) = -2 sm[a)(t——)]z

23
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9.2 Electric Dipole Fields and Radiation
Rewrite (1):
2I+1Y|m(49 ®) e|+l [1+ al(lkr)+a2(|kr) +---+ay (ikr) ]} "
bm | [d3xI(x )r"Y,m(e' #)
Take the | =0 term [Yyg = IIf 3 dxdydz

=)
and denote it by AP (x) JE —ﬂdydz[/iﬁ/ [ X de}
p _ =0 ,Uo elkr 13 N
AP =AW =B[N | e ey

AX)=1p X

= _ o ek 9.16
4z Por (9.16) give no contrlbutlon because J
where p = J.xp(x )d=x (4.8) is localized: J%’dy = Jyfd =0

(9.16) gives the electric dipole
contribution to the solution. It is
valid for kd <1 and any x outside

the source.
Question: Why is there no monopole
term (see p. 410)?

= —[xV -Jd>x

— [Jd3x =[xV -Jd3x

= —ia)jxp(x)dsx =—iop
\_W__J

op _
V-J+Z£=0P »

9.2 Electric Dipole Fields and Radiation (continued)

Rewrite (9.16): AP (x)=—“02pel” (9.16)

From (9.4), HP =LV x AP and from (9.5), E” =%yxHP

- ) 1 i)

o i - (9.18)
E :Mgo{k (nxp)xn€- +[3n n-p)- p]( )e }
In the far zone (kr > 1), (9.18) reduces to a spherlcal wave
HP = Ck nxp)er component
{ ( ) p Y _n (9.19)

£P = 27 f@/
In (9.19), we see that EP and HP o k<1

are in phase, and E?, HP ;and n are

mutually perpendicular. This is a general property of EM waves in

unbounded, uniform space. Given any two of these quantities, we

can find the third.
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9.2 Electric Dipole Fields and Radiation (continued)

HP =5 (nxp) & (1- k)
EP _4;‘9 {kz(nxp)xn +[3n(n-p)- p](é—i';)eikr}

r

(9.18)

In the near zone (kr < 1), (9.18) reduces to
HP = Iw (nxp) p component

of source n
o o)
kd <1
«d-

(i) EP and HP are 90° out of phase = average power =0.

(ii) EP has the same spatial pattern as that of the static electric
dipole in (4.13), but with e‘i“’tdependence.

(iii) 11o|H | ~ (kr)? &, |EF = E-field energy > B-field energy.

Questions: (i) Why does EP have the static field pattern?

(ii) To obtain (9.20), we have neglected a few terms in (9.18).

But some of the neglected terms are still important in the near zone?
What are they and in what sense are they important? 27

EP =% [3n(n-p)-p]}

9.2 Electric Dipole Fields and Radiation (continued)

<g—'°> = time-averaged power in the far zone/unit solid angle
t
_1 Re[rzn.(Ep XHP*)} (9.21)

220 4 2
—=9k™ [(nxp)xn]| (9.22)
" 321 - 7
This vector gives the direction of EP, i.e. the
polarization of the radiation (see figure below.)

9.19)—~

= (P), = total power radiated = ° Zok pf (9.24)

In general, p = p,e'%e, + pye'/’)ey +p,e7e,. I p
a = =y, then p has a fixed direction, p = pye'
with po = pye, + pyey + p,e,, and

27 2
(80, = 5ok I sin6. (9.23)

Otherwise, the direction of p (hence <dQ> )
is still given by (9.24). dipole radiation pattern ”

vary with time, but (P),




9.3 Magnetic Dipole and Electric Quadrupole Field
Rewrite (1):

2|+1Ylm(9 ¢)e,+1[1+a1(|kr)+a2(|kr) +- +a,(|kr)] n

O Jd3XI)Y (@, ¢)
Take the | =1 terms [a; = 1]
AR ”0 ekr > (1- |kr) z Yim (6, ¢)jd3x’J(x)r’Y1m @',9¢"

l ¥

A(x) =

e

p. 109
Z Ylm(é? )Yy (6, ¢) o sin@singe'? ?)

" I I

2.n

+4icosecos 0'+ 2 sin@sing'e”' ¥ 7)
a T

= %[sin @sin 9'cos(¢—¢’) +¢0s0cos '] .

Scosy=,3nx

set | :1 in (3.68)

29

Thus,
A(X)I_l

9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)

ILlO elkr
ar r

(L-ik) [d*xJ(x)(n-x)

=0 1k {[d°x' I[(n-x)T + (n-I)x] +

=A%+ A™,

where A™(x) =" (nxm) ) (1~ £ ) |

electric quadrupole radiation

(9.30)

jdsx’%(x’xJ)xn}

magnetic dipole radiation

for kd <1 and any
x outside the source} (9.33)

with m = %j(xxJ)d x [magnetic dipole moment]. A™ gives the
magnetic dipole contribution through (9.4) and (9.5) (see p.15):

H" =

EM =

Zo 1.2 ikr
—22k?(nxm) € (1-

A&[{kz(nxm)xnei:r+[3n(n-m)—m](13—

i)

r

:';)e”“} (9.35)

(9.36)
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9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)
In the far zone (kr > 1), we have the spherical wave sloution:

P\ _ 4
H" = K (n><m)><nerk <E> 327 2k |m><n|
=
~ m Zo 142 irection of E™
E"=ZH" xn (P), =22 k* |m| => direction o

In the near zone (kr <1), | (i) E™ and H™ are 90° out of phase

H" :%[Sn(n-m)—m]% ) :>maverage power =0._
i r - (i) H™ has the same spatial pattern
EM = %(“xm)% as that of the static magnetic dipole
T

in (5.56), but with e '“'dependence.
(iii) B-field energy > E-field energy.

The electric quadrupole radiation,

discussed in (9.37)-(9.52), is more quadrupole
complicated. Here, we only illustrate its Iﬁt’gﬂ?n -

radiation pattern by the figure to the right.
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Comparison between Static and Time-dependent Cases

relations . S . r-dependence of E
multipole definition of multipole o -
between p, expansion moments and B (d : dimension
J,E,and B P of the source)
1+2
spherical q= jp(x’)dgx’ EorBocl/r™
harmonics 3 _Forr ~d, all multipole
; SE expansion p=|xp(x)d>x fields can be significant.
static PX) ) [(3.70)] or I For r > d, multipole
case J(x) & B(x) Taylor series Qjj = J(3x§ Xj— "'25ij )p(x')d3x’ fields are dominated by
[(4.10)] of 3 the lowest-order
| 1 ‘ m =%Ix'><J(x')d X' nonvanishing term.
x—X/

There is no time-dependent | (8) near zone }:i»tr >>| 32
monopole for an isolated EorBuce '@y
source (see p. 410). Approx. the same field

p, Qjj, and m have the pattern and r-dependence
_ p(x) E(x)| | spherical same expressions as those as for thel c_orrlespondmgh
time- 1 lol 1 harmonics | O their static counterparts, static multipole, but wit
dependent expansion but with the e ! time € lled dependter;_cef(_hlegce
case J(x) B(x) [(9.98)] of dependence. cg ? quast-sta '; 1€ dS‘)
— EM waves eik‘x—x’ In time-dependent cases, (b) far zone irkr>>—i a)t>>
W electric multipoles can EBoxe Ir
generate B-fields and (spherical EM waves)
magnetic multipoles can All multipole fields «c 1/,
generate E-fields. relative power levels
unchanged with distance. o/




Induced Electric and Magnetic Dipoles

(a) (b)
Figure 9.4 Distortion of (a) the tangential magnetic field and (b) the normal electric
field by a small aperture in a perfectly conducting surface. The effective dipole
moments, as viewed from above and below the surface, are indicated beneath.
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9.4 Center-Fed Linear Antenna

A Qualitative Look at the Center - Fed Linear Antenna :
Traveling wave

C
Energy | —= L g i; L' —_—
source Transmission |
line T~
R Center-fed linear antenna
LC oscillator
...... b
du=Ex Y
ISR | RS, ]
near zone far zone

In the near zone, E and B are principally generated by p and J,
respectively (= largely static field patterns). In the far zone, E and

B are regenerative through 4 Band  E (= EM waves). “

9.4 Center-fed Linear Antenna (continued)

Detailed Analysis: The center-fed linear antenna is a case of
special interest, because it allows the solution of (9.3) in closed form
for any value of kd, whereas in Secs. 9.2 and 9.3, we assume kd<<1.

ik x—x'|
e
x—x]
where J(x) = I sin (*¢ —k|z) 5(x)5(y)e,
dr2 , ,sin (% —k \z’\)e"‘"‘"‘"

_ Ml
=N A(x)_ezﬂj_dlzdz R~

d d
z2=0.J(0)=J(-2) > -——z-l J EZ—DJ
(ii) I is the peak current ’—E_l ;D J

only when kd > 7.

A(x) :2‘70[ [d3x J(x), (9.3)

(9.53)

Note: (i) J is symmetric about

Question: The antenna appears to be an open circuit. How can
there be current flowing on it?
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9.4 Center-fed Linear Antenna (continued)

2 2 1 2 r 12 1
X—x=(r*=2rr'cos 6 +r'?)? = rfl— (40X )2 n
r
. 1 2 ' 2 1 2 ' 2 2
R G R N
:r—n-x'+%[r'2—(n-x')2]+--- r=|x (2)

=x-x|=r-n-x ifr>r r'=x
Hence, if r > d, we can write |x—x'|=r—z'cosé.

,uoleikr 4/2 'Sin(%_k‘zr‘)e—ikz'cose

=A(X)~xe, —— 9.54
M3 g L r-z'cosé (5:54)
r>d ~r

ikr | cos(*d cos@)—cos(kd
—e, ﬂo'e ( 2 2) ( 2 ) (955)
27kr sin“ @4
Note: z'cos @ in - can be neglected if r > d. But z'cos &

in e/k(r=2¢%s6) makes an important contribution to the phase
angle even at r > d. 36




9.4 Center-fed Linear Antenna (continued)

(9.16 &9.19)
In the far zone, [E-Z,Hxn | [H= 1VXA nxA:\H\ ksm:’\A\
(), = bRe[FnExH' ]2 Y Z\H\Zi 2 oA’ @
7,12|€0s(*§ cos 9) — cos (¥} ) for r > d
87:2 sin @ ' | and any kd

7,2 |cos?(Zcos@)/sin® 0, kd =z
- 4cos*(ZcosO)/sin 0, kd =2x

half-wave antenna full(-i\ga\_/eza;;\)tenna
(kd = 7x) -

P Z dp (superposition of 2 half-wave

a0 Ny dQ | antennas excited in phase
g ,

q % most coherent
d
APl
4% “ less coherent
narrower beam width 37

9.4 Center-fed Linear Antenna (continued)

Rewrite (9.56)
<di> 2 cos(%cosé’)—cos("d)‘2 [
dQ/t g2 sing '

2
Limiting case (dipole approximation): kd <1 (i.e. 1>d)
cosx:l—x—z2 (x<x1)
{cos(kdcos §)=1-%0"cos?

cos( ) 1— k2d2

forr>d
and any kd :| (9.56)

N <di> 20,21 SN l+"OI2
dQ/t — gx? sin@
_Z,12 4 -2 .
=02 (kd)”sin“ @ [valid for kd <« 1] 4)
This has the same k and & depedence as in (9.23, electric dipole),
which was derived by assuming kd <« 1. 38

9.4 Center-fed Linear Antenna (continued)
Radiation Resistance and Equivalent Circuit:
. 2
J(x) = Isin(*¢ —k| 2])5(x)5(y)e, ~ kZdl (1— %) S(X)3(Y)e,
lo (peak current, -+ |z|<d)

dp\ X Z,l? 4: 2 Zgld 22
Thus, from (4), <dQ>t~512;;2 (kd)*sin? g = 720, (kd)sin® ¢ (9.28)

2 1 Zol?
= (P), ~[(5),dQ=["dg[" dcosO(d5) =2t (kd)*  (9.29)
R,,q: radiation resistance.

= Rrads | Rrag 15 part of the field definition of
impedance, see 2nd term in (6.137).

where Ry,q =22 (kd)? = 5(kd)? ohms [See pp. 412-3]

—iwt

i d Equivalent
i circuit for
- . — m Rrad a center-fed
1> circult 2 oSt antenna
dimensions 39

9.4 Center-fed Linear Antenna (continued)
Problems:

1. The full-wave antenna radiation in (9.57) can be thought of as the
superposition of two half-wave antennas, one above the other,
excited in phase. Demonstrate this by rederiving dP/dQ for the
full-wave antenna [(9.57), kd = 2] by surperposing the fields of
two half-wave antennas (each of length d/2, see figure below).

2. If the two half-wave antennas in problem 1 are excited 180" out of
phase, derive dP/dQ again by the method of superposition.

3. Plot the approximate angular distribution of dP/dQ in problems 1
and 2. Explain the difference qualitatively.

antenna 1 of
length 4 — 5 i
’2 These 3 line are nearly
parallel when point P is
far from the antenna, as

coso is assumed here. 20

antenna 2 of

single antenna  length § —
of length d




9.4 Center-fed Linear Antenna (continued)

Solutionto problem 1 Principle of superposition requires that we
add the fields (not the powers) of the 2 antennas, each of total Iength

Rewrite (9.55)

kd kd
A =, 401" cos('§ cos6) - cos('§)
z 2
27kr sin“ g

(9.55) applies to a single antenna of total length d (see fig. above.)

So the field of each of the 2 antennas in this problem can be obtained
from (9.55) by replacing d in (9.55) with % and expressing r with
respect to the center of each antenna (i.e. by r, and r,).

ikr; 5 kd kd antenna 1
sgle™ ™ {cos( C cos@) cos(4d )} -

272K 5 antenna 2 51}
where , =r—9cosg and r, =r + 9 cosé.

We may approximate r; , in the denominator of (5) by r, but must
use the correct r, , for the phase angles in the exponential terms.

N

A1,2 =€,

sin @

N

9.4 Center-fed Linear Antenna (continued)
It is assumed that each antenna in this problem is excited in the
half-wave pattern, hence we set k % =z in (5) and the superposed
field of the 2 antennas (excited in phase) is given by

ikr [e—i%cose N ei%cose] cos(% cosd)

Ho |
A=A +A,=e, 20 "¢ 6
1t A= sin2g (6)
e Lo | ikr cosz(gcose) , . q ),
=€, — &~ —— 5 —— antennal 5
L xokr sin® @ 2

. antenna 2 4

From (3), (35, :Z—(’ZkzrzsmzmA\2 2 }
zol2
272

Solution to problem 2

If the two half-wave antennas in problem 1 are excited 180° out
of phase, we simply replace the "+" sign in (6) with a"—" sign.

cos? 2.cos 0)/sin2 0 {Same as the full Wave}

solution in (9.57)
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9.4 Center-fed Linear Antenna (continued)

Thus
’ ikrr —i%Z iZ cos 0 COS(Z COS &
A:Al_AZZeZ&LeIkr[e |2cose_e|2cose](22)
7 kr sin® @
~ ie, Ho | ikr sm(’zfcose-)(zzos(gcose) d
7 kr sin @ antenna 1 §
From (3), (&), =;—°2k2r23in29\A\2 antenna 2 444

Z,12 sin (”cosé’)cos (7 c0s0) _ 297 sin (7[0089)

2”2 sin 6 o sin? o
Solutionto problem 3:

o= o

in phase = dipole radiation phase = quadrupole radiation

Question: How does a phased array antenna work?
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Homework of Chap. 9

Problems: 3, 6,65, 14,
16, 17, 22, 23
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