Chapter 10: Scattering and Diffraction
10.1 Scattering at Long Wavelength

Differential Scattering Cross Section : Consider a plane wave
{Einc =g E e'm0™ {Assume free space}
Hioc =ng xEjyc /2 Zy =1y ! &
incident onto an object of dimension d <« A, where
€, can be real (linearly polarized) or complex [e.g.
for circularly polarized wave, €y, = % (ex tigy)].

<« d <A
Ei,. and H;,. will induce multipoles on the object, which in turn

generate scattered radiation (Eg., Hy. ). For 4> d, only the induced
p and m are important. From (9.19) and (9.36), we have

2 ikr
E.. =X € [(nxp)xn—nxm/c
S¢ = 4z, - [(nxp) ) / k] [in, far zonc] w (10.2)
H,. =nxEg/Z, HP = o (np) T =g {m)n s
EP = Zoﬂpxn E™ =Z,H" xn

Hence, to find E¢. and Hy, we need to find the induced p and m.
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10.1 Scattering at Long Wavelength (continued)

For scattering problems, a useful figure of merit is the scattered
power ralative to incident power. Furthermore, it is often important
to know the polarization state of the scattered radiation. Thus we
define a differential scattering cross section (with dimension m2) as

radiated power in n-direction with g-polarization
76(“ £ Mg ) — unit solid angle
QY 0>%0/= incident power in n-direction with &-polarization
0

n unit area
0

o

r

2 1 |exp 12 . .

oz, CRRONY {The meaning of o will
1 e w2

do 27, ‘80 Emc‘

become clear in (10.11).

Note: (1) For a circularly polarized state, € an be written
g, = %(sl tig,), where g L g,.
(i) ggand gy* L ny; eand e* L n; g)-g5*=1; g-e*=1
(111) £ 1s not necessarily the direction of E.. € *-E, gives
the e-component of E.

} (10.3)

10.1 Scattering at Long Wavelength (continued)

r2 ﬁ‘g*'Esc‘z

Rewrite (10.3): g—a(n,g; no’go): (10.3)
E‘SO >l<'Einc‘
Einc ZSOEOeiknO.X
Sub. K2 ek into (10.3)
Esc :472'80 eT[(nXp)xn—nxm/C]
2
d70.(“98; n0980)2k748*-[(nxp)xn]_a*.m
d (4”80E0)2 | C
—8*'[p—n(n'p)]
n, =g*p—(g*n)(n-p)
n — ok
2] =&ETP 0
2
r = kb lexp  (WEHM 10.4
dQ (4750Ep)’ &P c (10.4)

10.1 Scattering at Long Wavelength (continued)
Example 1: Scattering by a small (a << 1), uniform
dielectric sphere with p=p,, and arbitrary ¢

lu::u0:>m:0 E\. —
& =&/ gy (relative permitivity)

T
total electric field
From (4.56), we obtain the electric dipole moment p induced on

the scatterer by E;,. ikng-x

_80E0e
p= 47[30(8 +2)a Emc

| = 0 by assumption| (4.56) & (10.5)

Sub. (10.5) into 0'0—(4"‘2a*-p+(n><a>*<)-m/c2 (10.4)
72'80
3U(n,s; ng, &)= k*a® ‘frr \a 80‘ (10.6)

Question: (4.56) is derived for a dielectric sphere in a static field.
Why is it also valid for the time-dependent field here?
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Reminder 4.4 Boundary-Value Problems with Dielectrics (continued)

Example: A dielectric sphere is placed in a uniform electric field.
Find ¢ everywhere. Eo

We choose the spherical coordinates and divide the space into two
regions: I < a and r > a. In both regions, we have V>¢ = 0 with the

I
solution: ¢ = {r }{g ECOSZ; }{ } [Sec. 3.1 of lecture notes]
| (cos

¢ is independent of ¢. b = § A r! P (cos )
b.c.q @ is finite at cos@ =+1.; =

¢, 1s finite at r = 0. Pout = 2 [Blr +Cr I]P(COSQ)

Question: If | > 0, @y > © asr — oo, Why then keep the | > 0
terms in @y ?

ar. 10T, 1 9T,
VIi=—r+-—8 ——g.

Reminder -Value Problems with Dielectrics (continued)

—6+

or r a6 rsinf d¢

Rewrite: ¢, = Z Air R (cos@), dout = LBJ +Cir - 1JF’|(cos9)
I=

b.c. (1): @yt (oo) =—Eyz+const. = —E,r cos @ + const.

= By =const; B, =-Ey; B(1>1)=0 Pl(coseé’)
= COS
b.c. (i0): ¢n () = ot (@) [ = E{"(a) = E?" (a)]
c Ay =By+Cy/a ®)
:>A1a':B|a'+|—lI:> A =-E;+C /a’ 9)
a

A =C/a¥, 151 (10)

EEN in out
b.c. (iii): 6Er" (@) = 5B () = —& S dhn| _ =50 & ot _,

= elAa'™ = 5| 1B —(1+1)C; /a*? |

0=—¢,C,/a°, =0 (11)
=N =—¢g)[E,+2C,/a%], 1=1 (12)
elA =—g,(1+1)Cy /a2, 151 (13)

Reminder

4.4 Boundary-Value Problems with Dielectrics (continued)

(7), (11) = A, = B, = const. (let it be 0.)
3E0 . _ 6‘/6‘0—1 3

©), (12)= A = C2+elgy’ > G _(5/50+2ja B

(10), (13)= A =C, =0 forl>1

; ~—_|This is the only way 3) &
do=— E,r cos (6) can both be satisfied.
2+¢&/ g
= lgyg—1_ a’ 4.54
Bout =—E0rcose+%Eo—zcose (4.54)
S /80 +2 r
applied field el ey—

dipole field with p = 47, a3E0

J [ef. (410)]

polarization
- ¢4 charge [see (4.58)]

+
+
+
§ —
+
+

+
E due to polarization charge

/7‘\_
total electric field 7

10.1 Scattering at Long Wavelength (continued)
We define the n-n, plane as the scattering plane. Let n, be along
the z-axis and n lie on the X-z plane. The orientations (&, ¢) of unit

vectors g, ¢ and £ are specified accordingly as follows

. 4) [polarization of J .

incident wave
polarization state
X

e = (5+86, 0) | of scattered wave
|| to scattering plane

polarization state
e@ _(z =z

direction
of incident

55 o of scattered wave
| L to scattering plane

where g, 1s on the X - y plane making an angle ¢, with the x-axis, gD
is on the X - Z (scattering) plane, g? (=ey)is L to the scattering plane,
and n, £V, and £? are mutually orthogonal. Polarization vector (g)

of the incident wave and polarization states [s(l), 8(2)] of the scattered
wave are all assumed to be real, representing linear polarization. 8




10.1 Scattering at Long Wavelength (continued)
Applying Eq. (1) in Ch. 3 of lecture notes:
cosy =sin@sin &' cos(g—¢')+cosdcos &’
[y : angle between (6, ¢) and (&', ¢')]
togy=(5, ), g = (5+86, 0), and

| direction

Z+6 T of incident

wave n,
,8(2)

g? = Z, %), we obtain ¢ £ y
eV g, —sm( +6’)sm%cos(0—¢0)+cos(%+6’)cos%
= cos ¢y cosd
8(2)-50:sin%sin%cos(%—(/ﬁo)+cos%cos%
=sin ¢,
Rewrite (10.6): gd(na n,,g,)=k*a’ H;Z\g*.ao\z
_ ig k*a® gr ‘ OF ‘ =k*a® grézzcos ¢Ocos 0
o =K' 6§:+2 ey = ka5 ) sin 9

10.1 Scattering at Long Wavelength (continued)
Assume that the incident radiation has a fixed direction n,, but
is unpolarized (i.e. ¢ is random). We take the average over ¢, :

8r12

<dQ>¢o 2zdo do ddy = 2 |g+2| 08 0 n Mo
5 9 (10.7)
<M> L iy g, kial o]
@/, ~2zlo 0~ 2 er+2 r
% 40

'_

<d > <do1l> l+cos? 6

where I1 (0) gives the degree of polarlzatlon of the scattered radiation.

< > <d°1|>
.2 o/ 1:
sin” @ {: IOOA)llnearlyﬂ} (10.9)
2

polarized at 8 =%

‘FD

1
< > <““> —k‘a 6§rr+2 Li1+cos?0)  (10.10)
a1 o gl ka<1]  (10.11)

er+2

—[/d 87z 1446
= <0>¢0—I<d—g>¢od9 $z%a
Question 1: In (10.10), why add powers instead of adding fields? ,

10.1 Scattering at Long Wavelength (continued)

(10.11) gives (o) o < 7a®, impling that only a small fraction
of the radiation incident on the dielectric sphere is scattered. This
is true even if the scatterer is a perfectly conducting sphere (with
radius < A). See next example.

Example 2: Scattering by a small perfectly conducting sphere

The incident radiation will induce both electric and magnetic
dipole moments (p and m) on the conductor. p and m are given by

p= 47zgoa3Einc [See Sec. 3.3 of lecture notes. ] (10.12)
m=—2za’H;,, [See next problem.] (10.13)
E, . =& E,elm0™
From < Hinc =Mo ><Einc/zo [Z, = m]} (oD
B8~ g e pH(nxes)-m/cf (10.4)
we obtain §2 = k*a® ‘8* € — L (mxe*)-(m ><80)‘2 (10.14) ,,

10.1 Scattering at Long Wavelength (continued)

As in Example 1, for unploarized incident radiation, (10.14) yields

<:|Z”>¢O =L2a6(cose—%)2 " Hno o1s
- (42 . :<‘;§;>¢0 +<‘§g>¢0 — k*aS[3 (1+ cos? ) —cos 6]  (10.16)
T(6) = 3sin” 0 [peak at @ = 60°] (10.17)

51+ cos’ 0)—8cos b
<a>¢0:j<dg> dQ=97k%a® < 7a’ [ka<1]

Again, we find (o), < ra’. By geometric optics, the scatterer (a
conductor) would be opaque to the incident radiation, and the incident
radiation would have been totally blocked [ (o) "= 7a?]. This example
demonstrates that geometric optics completely breaks down for A > a,
where we need physical optics, as in scattering/diffraction theory. 12




10.1 Scattering at Long Wavelength (continued)
Problem: Derive the dipole moment in (10.13): m =— 27za3HinC.

Solution: Since 4 > a, we
may assume H;,. to be uniform.

For a perfect conductor, we
have E = B =0 inside the sphere. o

In Sec. 9.3, we have shown that in the near zone (r <« 1), the
magnetic dipole radiation has negligible E-field. Hence, we assume

VxB=-2E ~0 outside the sphere and write B =V ¢. Then,
V-B=0 = V2¢ = (0 with the solution: [Sec. 3.1 of lecture notes]
ol emo o]

Q" (cos 0)
subject to boundary conditions:

B(r — o) = sioHijpce,
B (r=a)=0=44 =

This model is valid for r < A,
which is sufficient for us to
find the dipole moment of a
sphere with radius < A.

= #(r —> 0) = pgyHinez = pyHjncr cos @

10.1 Scattering at Long Wavelength (continued)

I m i
Rewrite ¢ = H (cos0)
Q" (cos ) — cosd
@ is independent of ¢. 3 | _1-1
b.c.{¢ is finite at cos@=+1.| ¢_|§0[A1r rar }PI(COSQ)

b.c. §(r > 0) = pyHjpcrcosd = A = pyHjpe & A =0if (=1

P (cos0)

= ¢=ppHyrecos@+ 3 Cr 'R (cos )
1=0

Cl)cosﬁ § -

be S4 =0 = (upHinc - LC,R (cosf) =0
= C, =1 ma’Hy, & Cy =01fz¢1

3
== mCI’COS@+2,an Hinc €

I+2

cosd
r2
ﬂoa3
=> B(due to the sphere) = V@(2nd term) = Hinc

2cos e, +sinbey

r3

Comparing with (5.41), we find that this is a magnetic dipole field

produced by a (induced) dipole moment of m =— 27ra3HinC.

Optional | 70,2 Perturbation Theory of Scattering

General Theory: Conside a slightly non-uniform medium with

£(x) = gy + de(x) In Sec. 10.1, ¢ of the scatterer can be
{ of any value, but the solution is more
H(X) = py +Ou(x)

restricted by the scatterer geometry.
where g, and 4, are independent of x and t (¢, and z, are not

necessarily the free space values.)

VxE=-8 = VxVxgE+g2VxB=0 1)
2
VxH=2 = 80§V><,u0H=,uOgO%D (2)
2
OH-2)= VxngOE+SO§V><(B—,u0H):—,uog()%D (3)
VxVxD=V(V-D)-V’D=-V’D (4)
H_/

The purpose of the above manipulation

= Pfree =7 s to obtain this small quantity, which
B)-4)=> can be treated as a perturbation.
V2D - 15, ;%D =~V XV x (D= £E) + £ 5V (B~ soH) (10.22)

10.2 Perturbation Theory of Scattering (continued)

Optional

Assume D, E, B, H~e ', (10.22) =
(V2 + 1tyg0@>)D =~V xV x (D — gyE) —iggoV x (B 1oH)  (10.23)
2
k

ik|x—x’

(V? +k»)G(x,X') = —475(x - X)= G(x.x) = %" Hence,
— (0) 1 3 re'k"‘_x‘ \Y% XV' (D—gOE)
D=D + 471J.d X ‘X—X" {"'igOG)V’X(B—/JOH) (1024)

Note: (i) D(0) is an incident plane wave which satisfies the homo-
geneous Helmholtz eq. [i.e. the RHS of (10.23) = 0]
(11) (10.24) is an integral relation, not a solution.

Let the integrand in (10.24) be of '/
J

dimension d and r > d, then x —x/|
=r—n-x and we can write D as KR x| k(o)

D=DO + A $ with ‘X_xf‘ = forr >d
3 x'e —ikn-x’ V'xV'x (]) gOE) neglect
Id (10.26)
+iggV'x (B - 1y H) §




Optional 10.2 Perturbation Theory of Scattering (continued)
jd 3x'e KXy g [a is any vector function of x.]
d3x’e iknx’ day 6aX 6az oay aax
integration j Lex ( oy ot 2k y( te; (G ox' )]
by parts —ik
YRS = [d x'e n"[lex(k a, —kzay)+ey(---)+ez(-~)]
= [d*xe™*™¥i(kxa)=[d*xe ik (nxa)

= The end result is to replace "V" with "ikn"

/ nx(D-gyE)[xn
(10.26) = Ay =X [d3xe | y QS oF) (10.27)
0 nx (B ﬂoH)
\s*- A ‘ €: polarization
From (10.3), we obtain —— = *5— | vector of the (10.28)
dQ ‘D(O)‘ scattered wave
Note: (i) A, gives the scattered field D, = A, e™"/r [hence H,
through (10.2)]. A, 1s NOT a vector potential.
(1) (10.27) 1s an integral equation for A, NOT a solution. .

Optional

10.2 Perturbation Theory of Scattering (continued)

Born Approximation: Rewrite (10.27)
A = %Jd3x'e_ik“'xl {[nx(D —&E)]xn —%nx(B —,uOH)} (10.27)
For a linear medium,

D(x) =[¢&, + de(x) | E(x) D-¢,E = 5¢(x)E
{B(x) — [t + S(x) | H(x) {B ~ ptgH = Su(x)H
We see from (10.29) that the integrand of (10.27) is composed of

small quantities 0cE and ouH. To first order in o€ and Ju, we only

(10.29)

need to use the zero order (or unperturbed) E® and H? for E and
H in 0¢E and ouH. Thus, we write

D-&,E =5s(x)E ~ %&(X) p© | This approx., called the

& Born approx., turns the
integral eq. (10.27) into
a solution for Ag..

(10.30)
OH(X) B (0)

Ho

B — uyH = ou(x)H =

Optional

10.2 Perturbation Theory of Scattering (continued)

Let the unperturbed fields be those of a plane wave,
D@ (x) = £,Dye™™*, B (x) = \/‘TOn x D (x)

Sub. D(O) (X) and B( )(X) into (10 30) /\/\,> O ——'9110

then sub. (10.30) into (10.27), and finally "“g
multiply the result by £*/D, n
Se(x')
8* A(l) 2 |q X, *-80 TO
I ) (10.31)

+(nxg*)-(nyxgy) ", —
where g = k(ny —n). The absolute square of (10.3 1) gives the

differential scattering cross section through (10.28).

do _ ‘8*'A5c‘2
dQ D(O)2

(10.28)

Optional

10.2 Perturbation Theory of Scattering (continued)

Example: Scattering by a uniform dielectric sphere with
e=gtdgand u =y,

J‘d IqX
_ra.n2 (27
_jor dr'f;

y=1
_ a r2 1 Liqry
=27, r'=dr’ [Iqr e }y:_l

_Ax (e ’ r_ acosqga Sil’lqa
—?’Tjorsm(qr)dr _47{— 2 + 7 }

y y
1 ’_J% . / ’
d¢"[ dcoserelqrcose

Thus, from (10.31) (let ou =0)
g Ag _ K2 @(8*.8 ){sinqa—qacosqa}
20 0

Dy q3
ga—0 k2 3 55 (8 £ )

) g
SinX ~ X—¢ X, X > 0
1

2
cosX=l-5x, x>0

20




Optlonal 10.2 Perturbation Theory of Scattering (continued)

2
Sub. % =k?a’ g * (£%£) into do _le L (10.28)
ga—0 dQ ‘D(O)‘
2
~ k43l o lgx.g [?
:ql;go(dg)mm_k a® 2| Jg* g (10.32)
in agreement with d 2 =k*a® ggr > \s 30‘ (10.6) in the limit

& =¢lgg > 1.

Question: (10.6) and (10.32) both give the differential scattering
cross section (do/dQY) of a dielectric sphere with radius much
smaller than the wavelength. (10.6) is valid for arbitrary values of
& (= € /gy). It reduces to (10.32) in the limit & — 1. A physical
effect in included in (10.6) [but not in (10.32)] that keeps do/dQ at

a finite value in the limit g, — 00 ? What is it? Explain why it keeps
do/dQ finite.

21

10.2 Perturbation Theory of Scattering (continued)
Blue Sky and Red Sunset: Scattering by gases
D=gE+P (434)= D=gy)E+Np=¢)E+ Ny &E =¢E
Macroscopically, we have p: dipole moment per molecule
g:go(“‘N?/mol) P = Vmo1é0E

Microscopically, we may write | ¥moi: molecular polarizability
[see (4.72) & (4.73)]

N: no of molecules/unit volume

< &, when spreaded over
the size of the molecule

E(X) =)+ ZVmol€00(X—X ) = 06(X) =&)X Ymo0(x—x;j) (10.33)
J J

Since £(x) fluctuates microscopically with a weak variation dg(x),
we may apply the perturbation theory just developed.
Sub. 58(X) into (10.31), then sub. (10.31) into (10.28), we obtain

g% = 16 L \ymm\ e* so\ F(q), [assume ou = 0]
5 |for randomly (11str1buted molecules |
_ s olaxj iq(xj—xj) v [ total no of molecules
where F(q) ZJ: © % % © [(incoherent radiation) 10. 19)2

10.2 Perturbation Theory of Scattering (continued)

We now relate y,,, to the macroscopic quantities &, n, and N.

€|

& 21 _2(n-]) =
8_50(1+N7mol) = Vmol = ON Tanz (N ) index of
do refraction

=13 = e*gy F
aQ 16 2‘7m0|‘ ‘ 0‘ (q) :\/%z

4”2N2‘n 1‘ e* 50‘ F(q)

= Total scattering cross section per molecule is given by

~FQq )Ida dQ [F(q):total number of scatterers]
€
2 1 2 0
:W\ R et N N D
2% In—1?  |e*eg =cos(5-0)=sing (10.34)
3zN e
j_lsm fdcos@ =7 g
g is on the g)-n
plane for dipole
scatterer (p.458).
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10.2 Perturbation Theory of Scattering (continued)
Let | be the intensity (power/unit area) of the incident wave, then

dl B (10.34) and (10.35) describe what
—=—-INo =-la, ) ; .
dx 4 is known as Rayleigh scattering.
2k
where o = No = 3—\n 1\ [attenuation coefficient] (10.35)
7N
Discussion :

) 4 Violet light (1 =410 nm) is scattered more than
(i) aock” = {red light (2 = 650 nm) by a factor of (630)* = 6.3.
(i1) In (10.35),n—-1= % Nymo (see last page). Hence, o oc N 1f
atoms (or molecules) of the same type are added or taken out.
(ii1) The atoms in a gas radiate incoherently, but the charges within
an atom radiate coherently. Suppose there are 10 electron-ion
pairs in each atom and we were able to split all the atoms into
a gas of single electron-ion pairs, each with the same p. Then, the
macroscopic N remains the same, but the split pairs no longer
radiate coherently, resulting in a scattered intensity 10 times

weaker. This explains the factor in (10.35) (See p. 468). 24




10.2 Perturbation Theory of Scattering (continued)

In the earth atmosphere, « is a

function of X. Then,
VAT
dl (X) _ ‘ Winter solstice

N _| (X)Q(X) ) 7 21 December
dx =

= 1(x)=1,

e—joxa(x)dx

the Solar System", \\‘.‘« Vermnal equinox

—="s 21March

Royal Astro. Soc.
1 Questions:

| (i) Why is the sky blue
i instead of violet?
o6 (i1) Why is it more likely

0.8F 0.8

0.6

/1

to get a sunburn in
the summer?

sunrise, 0.2 (1i1) Hot summer/cold
sunset \{ winter results mostly

from a different cause
than in (i1). What is it;?5

0.4

0.2F

I
I
K
I
[} .
0.4 [1\violet red
I
|
[}
I
1

NN R N Lo o1 1111 11111111110

0 10 20 30 40
[3r(x)dx in Atmosphere

10.5 Scalar Diffraction Theory

plane wave
g lowest-order approximation
1 ray tracing (geometrical optics)
—
next-order approximation
plane wave diffraction theory (physical optics)
—
—d _;,W» d such that these
— b T 2 lines are almost parallel
- First minimum (complete cancellation)

occurs atdsinfd =1 = Hz% ifd> A.
Nature of the diffraction problem: Physically, the diffraction
problem here is not separable from the scattering problem. However,
the treatments are different. The scattering problem treated in this
chapter assumes A >> d. The scalar diffraction theory is most valid
when d >>/, for which it gives the next-order correction to the
geometrical optics (see p. 478). 26

10.5 Scalar Diffraction Theory (continued)

Justification of the Scalar Diffraction Theory: Physically,
electronic responses (J, p) of the aperture material to the incident
wave generate electromagnetic fields in addition to dissipating some
of the incident wave. Far from the edges of the aperture, J and p
principally result in reflection of the incident wave, while J and p
near the edges produce fields that pass to the right of the aperture
together with the incident wave. The superposed fields form the
diffraction pattern. In the far zone of the diffraction region ( >a few
A from the aperture), the fields take the form of an EM wave, which
obeys diffraction

E=7Z,Hxn [see(9.19)] region

— incident —>
—

radiation
field in the
far zone

— wave

where Z, = (y4,/&)"* is the impedance

of vacuum, and n is the direction of %\
wave propagation. _—

complicated fields
in the near zone 27

10.5 Scalar Diffraction Theory (continued)

Thus, E, H, and n are mutually orthogonal, and the amplitudes of
E and H have a known ratio Z,. Therefore, one component of the
fields gives most of the information (phase and intensity, but not the
polarization) about the far fields. This justifies a scalar theory for the
diffraction phenomenon and explains why it has been the basis of
most of the work on diffraction.

The Kirchhoff Integral Formula: In the scattering problem, we
calculate the scattered fields due to J and p associated with the dipole
moments induced by the incident fields. In the diffraction problem,
the fields are produced in part by the induced J and p on the aperture
material, but J and o do not appear explicitly in field equations. They
are implicit in the boundary conditions. The Kirchhoff integral
formula expresses the diffracted fields in terms of the boundary fields.
Determination of the near fields requires accurate handling of the
b.c.’s (very few cases can be solved completely). However, the far
fields can be fairly accurately determined with crude b.c.’s. 28




10.5 Scalar Diffraction Theory (continued)

Refer to the figures to the right. S; is an

opaque surface with aperture(s) on it. The

diffraction region (Region II) is the volume !

enclosed by S; and S,. Sources
Let W(x,t) = ¥(x)e ' be a scalar field

(a component of E or B), then
(v2 + kz)‘P(x) =0, k=a/c (10.73)

Note: ¥ gives the phase and intensity, but not S
the polarization, of the fields. .

Below, we will express W in Region II in terms
of ¥ and %—\5 on the boundary surfaces by making
use of Green's thm.
0
@V -V x = (07 -y O (139)

29

10.5 Scalar Diffraction Theory (continued)
Rewrite jv(¢V21//—t//V2¢)d3X:§>S (¢?ﬁ—l//2ﬁ)da (1.35)
Introduce a Green's function G(x, x") satisfying
(V2 +k?)G(x,x) =-5(x—x') (10.74)
Apply (1.35) to the volume enclosed by S; and S,

(Region IT) and let w =¥ and ¢ =G. Sources
k¥ (x) —k2G(x,x)-5(x—x')

[, XIG(x,x) VAP (x') - P(x') VG (x,X)]

= —q531+52 daTG(x,x)n"- V¥ (x)-¥x)n'-V'G(x,x')] ]
For an observation point x inside region II,

Y(x)= <j551+82 daf?(x)n’'-V'G(x,x)-G(x,x)n'-V'P(x)]  (10.75)

Note: n" is inwardly directed into the volume instead of outwardly
directed as in (1.35). 30

Is this a gOOd choice? 10.5 Scalar Diffraction Theory (continued)

ikR

Solution of (10.74): G(x,x') = ar WithR=x- X' (10.76)

Green function with
outgoing wave b.c.

- (note V'R =-VR)

= V6= (§6) VR= k(1) S L
i ﬁ_ elkR

Hence, 4R 4n R2

W) =~ s, da S [ VW) +ik (14 ) B w(x) ] (10.77)

We assume that ¥ on 82 is transmitted through S; Then, ‘IJ\S
and the contribution to the integral in (10.77) from S, vanishes as the
inverse of the radius of the sphere. Assume further that the radius goes
to infinity and hence neglect the contribution from S,. (10.77) then
gives the Kirchhoff integral formula

- \P(x)=—ﬁjslda'%n'-[vw(x%ik(1+¢)R\P(x')] (10.79)

da‘lf

Y in Region II 1s now expressed in terms of ¥ an on S;. .

10.5 Scalar Diffraction Theory (continued)
Kirchhoff Approximation: Rewrite (10.79),

Y= [ da'e [V'\P(x')+ ik(l+$)%‘1’(x’)} (10.79)

(10.79) is an integral equation for Y. It becomes a solution for ¥
under the Kirchhoff approximation, which consists of

1.¥ and %—lﬁ vanish everywhere on S; except in the openings.

2. ¥ and %—\ﬁ in the openings are those of the incident

wave in the absence of any obstacles. cources
There are, however, mathematical inconsistencies with
the Kirchhoff approximation'

I

1.If¥Y and Vamsh on any finite surface, then ¥ = 0 everywhere
(true for both Laplace and Helmholtz equations).
2.(10.79) does not yield on S; the assumed values of ¥ and %—‘If

Approximations made here work best for 4 < d, and fail badly for
A ~dorAd>d (d: size of the aperture or obstacle). See p.478.
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10.5 Scalar Diffraction Theory (continued)

Remove the mathematical inconsistencies in the Kirchhoff
Approximation by the choice of a proper Green function.

If ¥ is known on the surface S, a Dirichet Green function Gp (x,X),
satisfying Gp (x,x')=0 for x' on S is required.

A generalized Kirchhoff integral:

Y(x)= js daT¥(x)n’-V'G(x,x")] (10.81)

Consider a plane screen with aperature (s). The method of images
can be used to give the Dirichlet Green functions explicit form:

(10.84)

w1 [gikR kR
GD(X,X)—M(R— R’ )

':(X_X,ay_y'az'i'zr)

P . - R —(X— X; /' 7 — ZI
e where { x-X'=(x=x,y-y,2-2)
=X—
kR i ' ’ ’
T (14 L) "R p(x)da’ (10.85)
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10.5 Scalar Diffraction Theory (continued)

A Special Case*: Diffraction of spherical waves originating

from a point source at P..
ikR

P(x)=2" (by Kirchhoff approximation) (5)

RS
= V¥Y(X)= (1+kR )RS G(x,x) = 42;2 (6)

Sub. (5), (6) into (10.79), assume kR & kR > 1 and hence neglect
O(kR ) and O( ) terms, we obtain
ik(R+
P(P)= I | dare L (- %) 7)

RR, R, R .
(observatlon)
p 9%
point

Py (point source) I

* More cases can be found in Marion & ¢ (origin of coordinates)
Heald, “Classical Electromagnetic
Radiation,” following Eq. (12.14). l
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10.5 Scalar Diffraction Theory (continued)

As we will see from the following example, the scalar diffraction
theory agrees with observations, although it is highly artificial.
Example: Diffraction by a circular disk. For simplicity, we assume
(1) P, and P are on the axis of the disk.

(i1) P4 and P are at equal distance from the disk.

R, =R
da’ = 27rdr RZ=r?+b>= r'dr'=RdR

B Hence, da’ = 27RdR ®)
n'-%z—cos@-—ﬁ, n'-R-cosg=12 N

10.5 Scalar Diffraction Theory (continued)

k(R+
Sub. (8) into W(P) = K [ da are Rs>nr.(1;s_l;) o
2|kR
:>‘P(P)_—|kbj.\/—2 o OR ©)
Integrating by parts [J‘alz udv = uv‘zlz _I;‘z vdu, u = é’ dv = e?MRyR]
p2ikR [* ez'kR
Y(P)=-ikb
2ikR?| 722 3 N R3
(integrating by parts again)
Q2ikR |* Q2ikR |7 he2ikvd?+b?
=—ikb| —— -5 tor |2 (10)
2ikR?| 27 4K°RY| 2(d +b )
—_
negligible,
since kR > 1 36




10.5 Scalar Diffraction Theory (continued)
Questions: 5
: : ) 2 2 2 12
(i) Intensity at P: 1(P)oc|¥(P) =b /[4(d +b ) 1 (11)
Since I (P) > 0 for all b, there is always a bright spot (Fresnel

bright spot) at any point on the axis. What is the physical reason?
20kR

(i) lim ' (P) = (12)

2b
In the limit of no obsticle (d — 0), W(P) reduces to the exact
solution for a point source at P, i.e. the approximate solution in (10)
becomes the exact solution in (12). What is the mathematical reason?

— The diffraction pattern of a disk (from
Halliday, Resnick, and Walker). Note the
Fresnel bright spot at the center of the
pattern. The concentric diffraction rings are
not predictable by (11), which applies only
to fields on the axis.
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10.5 Scalar Diffraction Theory (continued)

A historical anecdote about the Fresnel bright spot: (The following paragraphs
are taken from Halliday, Resnick, and Walker.)

“Diffraction finds a ready explanation in the wave theory of light. However, this
theory, originally advanced by Huygens and used 123 years later by Young to explain
double-slit interference, was very slow in being adopted, largely because it ran counter
to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early
nineteenth century, when Augustin Fresnel was a young military engineer. Fresnel, who
believed in the wave theory of light, submitted a paper to the French Academy of
Sciences describing his experiments and his wave-theory explanations of them.

In 1819, the Academy, dominated by supporters of Newton and thinking to
challenge the wave point of view, organized a prize competition for an essay on the
subject of diffraction. Fresnel won. The Newtonians, however, were neither converted
nor silenced. One of them, S. D. Poisson, pointed out the “strange result” that if
Fresnel’s theories were correct, then light waves should flare into the shadow region of
a sphere as they pass the edge of the sphere, producing a bright spot at the center of the
shadow. The prize committee arranged a test of the famous mathematician’s prediction
and discovered that the predicted Fresnel bright spot, as we call it today, was indeed
there! Nothing builds confidence in a theory so much as having one of its unexpected
and counterintuitive predictions verified by experiment.” 38

Benson

Newton’s Ring

When a lens with a large radius of curvature is place on a flat plate,
as in Fig. 37.19, a thin film of air is formed. When Newton is
illuminated with mono-chronomatic light, circular fringes, called
Newton’s Rings, can be seen.

_

Why the center spot is dark unlike Fresnel bright spot?

This 1s the wave nature. 39

10.8 Babinet’s Principle
Rewrite W(x) =l [¢ da’ e ' [ VW (x) +ik (1+5) B W(x) ] (10.79)
/no diffraction screen, imagimary surface

t
|
!
1
I
|

s » W(P) == Jdashed surface C )
‘ /diffraction screen
s | *Wa(P) == Lqashed surface )
| - complementary diffraction screen
s ' “Wb(P) = =37 qashed surface )

on the obatacle : ¥ and %—\r}; =0

By Kirchoff' .
y ITCROLLS approx {elsewhere ¥ and %—\E = those of the source ’

we have W(P) =Y, (P)+¥,(P) [Babinet's principle] 40




10.8 Babinet’s Principle (continued)
Example: a light beam of finite width

no screen

. PY(P)=0
: } finite width
-\, (P) «¥p(P)
—_— —_— N .
complementary

—y SN

™ screen
— 5 screen —

Babinet's principle = Y (P)=%,(P)+¥,(P)=0
= Ya(P)=-¥,(P)

41

Fresnel and Fraunhofer Diffraction: (see p.491)
There is a clear diffraction pattern only

when r > d. So, In integrals such as (10.77), q { T/
R(=| x —x'|) can be approximated by r(= x |) r

ikR

P

, where the phase r=[x

everywhere except in e ]
=y

angle KR must be evaluated more accurately.
Consider three length scales: r, d, and A.

n
T X
RZ‘X—X"Z(FZ—2rr,0089+r,2)1/2 X’E//?

N b2 ron2
IR G R R e

;
2
= {l—n‘r"#é(rr'zz—(n';;) )+--}:r—n-x’+21r[r’2—(n-x’)2+--}

= kR=0(kr)+O(kd)+0(*d) +...

If the 34 and higher terms are neglected, we have the Fraunhofer
diffraction (far field). If the 3™ term is kept, but higher order terms
are neglected, we have the Fresnel diffraction (near field). 2

Homework of Chap. 10

Problems: 2, 3, 7,424
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