
Chapter 10: Scattering and Diffraction

Consider a plane waveDifferential Scattering Cross Section :
10.1 Scattering at Long Wavelength
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10.1 Scattering at Long Wavelength (continued)

the scattered
power ralative to incident po
     For scattering problems, a useful  is  

. Furthermore, it is often important 
to know the polarization state of the scat

figure 

tered r

of me

adiat

ri

i
we

t
r

on Thus weto know the polarization state of the scattered radiation. 
2

radiated power in direction with polarization
differ

Thus we 
define a  (with dimential scattering cross secti ensioon n ) asm

n ε

n
 

0
0 0

radiated power in -direction with -polarization
unit solid angle

incident power in -direction with -pol0
, ;  ,d

d

 

n

n

ε

εn ε n ε arization

 
n 0 n 0p p0 

22 1
2

unit area

The meaning of will*

 

scZr  ε E
   
d

r
0

0

2
21

02

The meaning of  will     (10.3)become clear in (10.11).*

scZ

incZ

 
   ε E

           : (i) For a circularly polarized state,  an be written
                   
    Note ε

1
1 2 1 22

 ( ),  where .i   ε ε ε ε ε1 2 1 22

0 0 0 0 0

( ),

             (ii)  and * ;   and * ;  * 1;  * 1
(iii) is not necessarily the direction of * gives



     ε ε n ε ε n ε ε ε ε
ε E ε E            (iii)  is not necessarily the direction of . *  gives 

                   the -component o
sc scε E ε E

ε f .scE 2

22 1

10.1 Scattering at Long Wavelength (continued)

  0

22 1
2

0 0 21
0

*
     Rewrite (10.3): , ;  ,              (10.3)

*
Z sc

i

d
d

r








ε E
n ε n ε

ε E

0

0 02

0 0

     
ik

inc

ni cZ

E e 


n xE ε

ε E

 
0

2

0 0

4

     Sub.    into (10.3) 
( )

ikr

inc

k e
sc r c



    E n p n n m

  4
0 0; * [( ) ]d k    n ε n ε ε n p n

2

*  n mε 
 20 0

0 0 4
, ;  , [( ) ]d E    n ε n ε ε n p n       cε

  *   ε p n n p


  n 0 n

  

0

* ( * ) ( )
*

    
 
ε p ε n n p
ε p



   
d



 

r
 

4
2

2

4
( *)                               *                    (10.4)

E
k

c
    n ε mε p

d  0 04 E c

3

10.1 Scattering at Long Wavelength (continued)

Example 1: Scattering by a small (a << ) uniform
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 A dielectric sphere is placed in a uniform electric field.:     Example
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10.1 Scattering at Long Wavelength (continued)
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a iqr

y

r dr d d e    


      

0 0

vacuum
( ,  ) 

         
         

      
0+ 12 1

0 1
  2

ya iqr y
iqr y

r dr e


 
    

 


n

2 30
4 cos sin  sin( ) 4   a
q

a qa qa
q q

r qr dr        
 

* 2 sin c

Thus, from (10.31) (let 0) 

( * )sc qa qak 



 



ε A osqa 
31

6
21

sin ,  0x x x x  0 0

2
0( * )sc

D
q qk 

 ε ε 3

0 2 3 ( * )qa

q
q

k 

 
  

21
2cos 1 ,  0x x x  0

0 2 3
03   ( * )qa k a 


 ε ε
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10.2 Perturbation Theory of Scattering (continued)

2

Optional

0 0

2

20 (0)

* 2 3
03

*
    Sub. into  (10.28)( * ) sc sc

qaD
d
d

k a 





 



 ε A ε A

D
ε ε

 
0

2 24 6
0Born0 3   lim *       (10.32)d

d k a 
 

D

ε ε 
0Born0

2 24 6
0

3

1
2in agreement with * (10.6) in the limit r

dqa

d
d k a










 ε ε

0

2
1.

rd

r


  

 
 

Q ti (10 6) d (10 32) b th i th diff ti l tt iQuestion: (10.6) and (10.32) both give the differential scattering
cross section (dd) of a dielectric sphere with radius much
smaller than the wavelength. (10.6) is valid for arbitrary values of
r (  /0). It reduces to (10.32) in the limit r → 1. A physical
effect in included in (10.6) [but not in (10.32)] that keeps dd at
a finite value in the limit r→∞ ? What is it? Explain why it keepsr p y p
dd finite.
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10.2 Perturbation Theory of Scattering (continued)

Blue Sky and Red Sunset: Scattering by gases

0 0 0 0      (4.34)  
Macroscopically we have

molN N           D E P D E p = E E E
Blue Sky and Red Sunset: Scattering by gases

 0

     Macroscopically, we have
            1

Microscopically we may write
molN    0

: dipole moment per molecule

: molecular polarizability
mol 




p
p E

     Microscopically, we may write : molecular polarizability 
          [see (4.72) & (4.73)]

: no of molecules/unit volume

mol

N



0, when spreaded over 
the size of the molecule


0 0 0   ( ) ( )  ( ) ( )   (10.33)
j

mol j mol j
j

              x x x x x x
the size of the molecule

  
jj

   Since ( ) fluctuates microscopically with a weak variation ( ),
we may apply the perturbation theory just developed.

 x x
y pp y p y j p

     Sub. ( ) into (10.31), then sub. (10.31) into (10.28), we obtain
d

 x
4 2 2* ( ) [assume 0]k F ε ε q     d

d


 

2 0

2
16

t t l f l l

* ( ),  [assume 0]mol

ii

k F


    

 

ε ε q
for randomly distributed molecules

  total no of molecules
(incoherent radiation)where ( ) (10.19) j jj ii

j j j
F e e  


        

q x xq xq
22

W l h i i i d N

10.2 Perturbation Theory of Scattering (continued)

  0 2
0

1 2( 1)1

     We now relate  to the macroscopic quantities ,  ,  and . 

       1    
mol

mol mol
nn

N N N

n N

N



 

   
       index of 

4
2

0
2 2

016
* ( )

mol mol
d

mold

N N N
k F


 

  ε ε q

index of 
refraction

0
1n 

 
4

2 2
22

04
         1 * ( )k

N
n F


  ε ε q

0

Total scattering cross sect
1

ion per molecule is given by

[ ( ) : total number of scatterers]d d F   q
04

2 2

( )

2 1 22
00 14

   [ ( ) : total number of scatterers]

  1 cos *

F d

k
N

d F

n d d



 

 

   

q q

ε ε
n

4
2

2 2 00 1

2
4
2

3
                                                                 1  k

N

N

n



 

 

 
         (10.34) 0 2* cos sin     ε ε

0is on the -  
plane for dipole

n 

23 N 1 2 4
31sin cosd  

plane for dipole 
scatterer (p.458).
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10.2 Perturbation Theory of Scattering (continued)

Let be the intensity (power/unit area) of the incident wave thenI     Let  be the intensity (power/unit area) of the incident wave, then

         ,

I
dI IN I
dx

     (10.34) and (10.35) describe what 
is known as Rayleigh scattering

4
22where 1  [attenuation coefficient]           (10.35)

3

dx
kN n
N

 


 
is known as Rayleigh scattering.

4

3
    :

Violet light (
(i)

N
Discussion

k



   4650
410 nm) is scattered more than  




  (i) k   4650
410

1
2

red light ( 650 nm) by a factor of ( ) 6.3.
 (ii) In (10.35), 1  (see last page). Hence,  if moln N N


 



 

 


       atoms (or molecules) of the same type are added or taken out.
(iii) The atoms in a gas radiate incoherently, but the charges within 
       an atom radiate coherently. Suppose there are 10 electron-ion
       pairs in each atom and we were able to split all the atoms into 

f i l l i i h i h h Th h       a gas of single electron-ion pairs, each with the same . Then, the 
       macroscopic  remains the same, but the split pairs no longer 

radiate coherently resu

p
n

lting in a scattered intensity 10 times       radiate coherently, resu
1

lting in a scattered intensity 10 times 
       weaker. This explains the factor  in (10.35) (See p. 468).N 24



inclination 

10.2 Perturbation Theory of Scattering (continued)

I h h h i oangle: 23.5     In the earth atmosphere,  is a 
function of Then,  x. 



 sun  ( )         ( ) ( ) dI x I x x
dx

 

from "Atlas of
the Solar System", 
Royal Astro. Soc. 

0  
0

( )      ( )
x x dxI x I e  

  (i) Why is the sky blue 
: 

 
Questions

0 8

1

0 8

1

       instead of violet?
   (ii) Why is it more likely 

b i
0.6

0.8

/I
0 0.6

0.8

       to get a sunburn in 
       the summer?
(iii) Hot summer/cold

0.4

I /
 

0.4

high

redviolet

(iii) Hot summer/cold 
      winter results mostly 

from a different cause0 10 20 30 40
0

0.2

0

0.2high
noon sunrise,

sunset

      from a different cause
      than in (ii). What is it?

0 10 20 30 40
in Atmosphere
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plane wave
10.5 Scalar Diffraction Theory

lowest-order approximation
d

plane wave

ray tracing (geometrical optics)d

t d i ti
plane wave

next-order approximation
diffraction theory (physical optics)

d r Assume  such that these
2 lines are almost parallel

r d
p

First minimum (complete cancellation) 
occurs at sin    if .dd d      

Nature of the diffraction problem: Physically, the diffraction
problem here is not separable from the scattering problem. However,
the treatments are different The scattering problem treated in this
chapter assumes   d. The scalar diffraction theory is most valid
when d >>, for which it gives the next-order correction to the
geometrical optics (see p. 478). 26

10.5 Scalar Diffraction Theory (continued)

i i i i i h i llJustification of the Scalar Diffraction Theory: Physically,
electronic responses (J, ) of the aperture material to the incident
wave generate electromagnetic fields in addition to dissipating some
of the incident wave. Far from the edges of the aperture, J and 
principally result in reflection of the incident wave, while J and 
near the edges produce fields that pass to the right of the aperture
together with the incident wave. The superposed fields form the
diffraction pattern. In the far zone of the diffraction region ( >a fewp g (
λ from the aperture), the fields take the form of an EM wave, which
obeysobeys

h Z ( / )1/2 i th i d
0 [see (9.19)]Z E H n

where Z0 = (0/0)1/2 is the impedance
of vacuum, and n is the direction of
wave propagation.

27

10.5 Scalar Diffraction Theory (continued)

Thus, E, H, and n are mutually orthogonal, and the amplitudes of, , , y g , p
E and H have a known ratio Z0. Therefore, one component of the
fields gives most of the information (phase and intensity but not thefields gives most of the information (phase and intensity, but not the
polarization) about the far fields. This justifies a scalar theory for the
diffraction phenomenon and explains why it has been the basis ofdiffraction phenomenon and explains why it has been the basis of
most of the work on diffraction.

The Kirchhoff Integral Formula: In the scattering problem weThe Kirchhoff Integral Formula: In the scattering problem, we
calculate the scattered fields due to J and  associated with the dipole
moments induced by the incident fields In the diffraction problemmoments induced by the incident fields In the diffraction problem,
the fields are produced in part by the induced J and  on the aperture
material but J and  do not appear explicitly in field equations Theymaterial, but J and  do not appear explicitly in field equations. They
are implicit in the boundary conditions. The Kirchhoff integral
formula expresses the diffracted fields in terms of the boundary fieldsformula expresses the diffracted fields in terms of the boundary fields.
Determination of the near fields requires accurate handling of the
b c ’s (very few cases can be solved completely) However the farb.c.’s (very few cases can be solved completely). However, the far
fields can be fairly accurately determined with crude b.c.’s. 28



10.5 Scalar Diffraction Theory (continued)

1     Refer to the figures to the right. S  is  
. The

an
opaque surface with aperture(s) on it

1 2

diffraction region (Region II) is the volume
enclosed by S  and S .              Let ( , ) ( )  be a scai tt e   x x lar field
(a component of  or ), thenE B

 2 2

( p ),

( ) 0, (10.73)k k c    x

:  gives the phase and intensity, but not 
              the polarization, of the fields.
     Note 

     Below, we will express  in Region I I in terms 
of  and  on the boundary surfaces by making 



2 2 3

y y g
use of Green's thm. 

( )( ) ( )

n

d d   



 
 2 2 3                 (1.35)( ) ( )v sd x da

n n
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10.5 Scalar Diffraction Theory (continued)

2 2 3     Rewrite           (1.35)

Introduce a Green's function ( ) satisfying

( ) ( )v sd x da
n n

G

       
    

 


 
x x


2 2

     Introduce a Green s function ( , ) satisfying 

( , ) ( )                                            (10.74)( )
G

k G      

x x

x x x x
     Appl 1 2y (1.35) to the volume enclosed by  and   
(Region II) and let and .

S S
G   

2 ( )

3 2 2

(Region II) and let  and .

[ ( ) ( ) ( ) ( )]

k
G

d G G

 
 



         

x 
2 ( , ) ( )k G    x x x x

3 2 2     [ ( , ) ( ) ( ) ( , )]

[ ( , ) ( ) ( ) ( , )] 
v

s s

d x G G

da G G

         

             




x x x x x x

x x n x x n x x
1 2

[ ( ) ( ) ( ) ( )]

     For a
s s

n observation point  inside region II,  



x

1 2
   (10.75)

: is inwardly directed into the volume instead of outward

( ) [ ( ) ( , ) ( , ) ( )]

ly
s s da G

Note

G
             



x x n x x x x n x

n


     :  is inwardly directed into the volume instead of outwardly 
              directed as

Note n
 in (1.35). 30

10.5 Scalar Diffraction Theory (continued)

S l ti f (10 74) ith (10 76)( )
ikReG  R

Is this a good choice?

4     Solution of (10.74):   with .           (10.76)( , ) R
eG     R x xx x

(note: )R R R   RGreen function with 
outgoing wave b c

 


 4    ( , ) 1
ikRd e i

dR R kR RG G R ik
        Rx x


ikR ikR

( )Routgoing wave b.c.

 
     Hence,

ikR  

4 24

ikR ikR
R R

e eik  


 
1 24

1    ( ) ( ) 1 ( )   (10.77)
ikRe i
R kR Rs s ad ik 

               Rx n x x
1

2 1We assume that on is transmitted through ThenS S       
2

 2 1.

2

We assume that  on is transmitted through  Then, 
and the contribution to the integral in (10.77) from  vanishes as the
inverse of the radius of the sphere Assume further that the radius

S rS S
S

  

goesinverse of the radius of the sphere. Assume further that the radius
2

 goes
to infinity and hence neglect the contribution from . (10.77) then
gives the Kirchhoff integral formula

S

 
1

1
4

gives the Kirchhoff integral formula

( ) ( ) 1 ( )      (10.79)
ikRe i
R kR Rs da ik                 Rx n x x 

14

     in Region II is now exp
R kR Rs  

 1ressed in terms of  and  on .n S
 31

: Rewrite (10 79)Kirchhoff Approximation
10.5 Scalar Diffraction Theory (continued)

 
1

1
4

     : Rewrite (10.79),

    ( ) ( ) 1 ( )      (10.79)    
ikRe i
R kR Rs da ik                R

Kirchhoff  Approximati

x x

on

n x

    (10.79) is an integral equation for . It becomes a solution for  
under the Kirc

 
hhoff approximation, which consists of

1    1.  and  vanish everywhere on  except in the openings. 
2. and in the openings are those of the incident

n S






    2.  and  in the openings are those of the incident 
        wave in the absence of any o

n
bstacles. 

There are however withmathematical inconsistencies     There are, however,  with
the Kirchhoff approximation: 

1 If and vanish on any finite surface then 0 everywhere  

mathematical inconsistencies

    1. If  and  vanish on any finite surface, then 0 everywher  
        (true for both L

e
aplace a

n  
nd Helmholtz equations). 

2 (10 79) i ld th d l f dd t S 1    2. (10.79)  yield on  the assumed values of  and .
     Approximations made here work best for ,  and fail badly for 

> (

does no

i f th

t

t

nS
d

d d d


 





b t l ) S 478 ~  or  >  ( :  size of the aper urtd d d  e or obstacle). See p.478. 
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in the KirchhoffRemove the mathematical inconsistencies
10.5 Scalar Diffraction Theory (continued)

1

 in the Kirchhoff 
Approximation by the choice of a proper Green function.
If  is known on the surface , a Dirichet Green function ( , ), DS G 

Remove the mathematical inconsistencie

x

s

x1s ow o e su ce , c e G ee u c o ( , ),
satisfying  ( ,

D
D

S G
G x x )=0  for  on  is required.

A generalized Kirchhoff integral:
Sx

1
    ( )

g g
                                       ([ ( ) ( , )] 10 .81)

s
da G        x x n xx

The method of images 
can be used to give t
Consider a plane screen with aperature (s)

he Dirichlet Green functions explicit
. 

form:g p

                   (10.84) 1( , )  
4

ikR ikR
D R R

e eG




  x x  
( , , )

where

4 R R

x x y y z z


        


R x x

 2

where 
( , , )

    (10.85)( ) 1 ( )
ikRk e i

i R kR R da
x x y y z z




          
    n Rx

R x x
x
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1

2 ( )( ) ( )i R kR Rs 

10.5 Scalar Diffraction Theory (continued)

A Special Case*: Diffraction of spherical waves originating

ikR

A Special Case*: Diffraction of spherical waves originating
from a point source at Ps.

 
( ) ( )                        (5)

( ) 1

by Kirchhoff approximati

(6)

on
ikRs

s
ikRs s

e
R

e iik

 

      R

x

x 4( , )
ikR

R
eG  x x ( ) 1                                                 (6)

     Sub. (5), (6) into (10.79), assume & 1 and
s s sR kR R

s

ik
kR kR

    x


   
 hence neglect 

4( , ) RG x x

   
   

1 1O  and O  terms, we obtain 

( ) (7)
s

R Rsik
kR kR

eikP d


  
R R

observation
point(point source)sP P  observation

point

   
14( )                                      (7)s

s s

s
RR R R

eik
sP da     

R Rn

point (point source)sP
R

sR
 n



                             
     

 point

(origin of coordinates)            
x

O* More cases can be found in Marion & 
Heald “Classical ElectromagneticHeald, Classical Electromagnetic 
Radiation,” following Eq. (12.14). 34

As we will see from the following example the scalar diffraction
10.5 Scalar Diffraction Theory (continued)

As we will see from the following example, the scalar diffraction 
theory agrees with observations, although it is highly artificial. 
E l : Diffraction b a circ lar disk For simplicit e ass meExample: Diffraction by a circular disk. For simplicity, we assume
(i) Ps and P are on the axis of the disk. 

n  
(ii) Ps and P are at equal distance from the disk.

sR Rr
d

sP P

d

d bb d bb

2 2 2sR R
R b d RdR

 
   2 2 2  2        (8)Hence, 2

R r b r dr RdRda r dr da RdR 
              

cos ,     coss
s

b b
R R R R 


         

R Rn n
35

   R Rikk  R R

10.5 Scalar Diffraction Theory (continued)

   
14

2

    Sub. (8) into ( )                     (7)s
s s

R Rsik

RR R R

ikR

eik
sP da


    

R Rn

2 2

2

2    ( )                                                    (9)
d b

ikReP ikb dR
R


    

2

1
     Integrating by parts [ a

aa udv uv 22
21 1

21, ,  ]aa ikR
a R

vdu u dv e dR


  

 



2 2
2 2

2 2
1

2 32( )
2 d b

ikR ikR

d b
ik

e eP ikb dR
ikR R





 
    
  


2 2

                     (integrating by parts again)
d b  

 
2 2ikR ikRe eikb

 
 
 
 

2 22
(10)

ik d bbe 


2 2 2 2
2 2 3        

2 4d b d b

ikb
ikR k R 

   


 


  2 22

   (10)
d b







 negligible, 
since 1kR 36



10.5 Scalar Diffraction Theory (continued)

Questions:
 22 2 2 2     (i) Intensity at :  ( ) ( ) /[4 ]            (11)

Since ( ) 0 for all there Fresnelis always a bright spot (
P I P P b d b

I P b
   



Questions:

      Since ( ) 0 for all , there Fresnel  
 bright s

is always a bright spot (
) at any point on the axis. What is the physical reaspot

I P b

2

on?
ikR2

20
     (ii) lim ( ) (12)

In the limit of no obsticle ( 0) ( ) reduces to the exact

ikRe
bd

P

d P


 

       In the limit of no obsticle ( 0), ( ) reduces to the exact
 solution for a point source at , i.e. the approximate solution in (10) 
becomes the exact solutio

s

d P
P
 

n in (12). What is the mathematical reason? becomes the exact solution in (12). What is the mathematical reason? 

← The diffraction pattern of a disk (from
Halliday, Resnick, and Walker). Note the
Fresnel bright spot at the center of the
pattern. The concentric diffraction rings are
not predictable by (11), which applies onlyp y ( ), pp y
to fields on the axis.

37

A historical anecdote about the Fresnel bright spot: (The following paragraphs
k llid i k d lk )

10.5 Scalar Diffraction Theory (continued)

are taken from Halliday, Resnick, and Walker.)
“Diffraction finds a ready explanation in the wave theory of light. However, this

theory originally advanced by Huygens and used 123 years later by Young to explaintheory, originally advanced by Huygens and used 123 years later by Young to explain
double-slit interference, was very slow in being adopted, largely because it ran counter
to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early
nineteenth century, when Augustin Fresnel was a young military engineer. Fresnel, who
b li d i th th f li ht b itt d t th F h A d fbelieved in the wave theory of light, submitted a paper to the French Academy of
Sciences describing his experiments and his wave-theory explanations of them.

In 1819, the Academy, dominated by supporters of Newton and thinking toIn 1819, the Academy, dominated by supporters of Newton and thinking to
challenge the wave point of view, organized a prize competition for an essay on the
subject of diffraction. Fresnel won. The Newtonians, however, were neither converted
nor silenced. One of them, S. D. Poisson, pointed out the “strange result” that if
Fresnel’s theories were correct, then light waves should flare into the shadow region of
a sphere as they pass the edge of the sphere producing a bright spot at the center of thea sphere as they pass the edge of the sphere, producing a bright spot at the center of the
shadow. The prize committee arranged a test of the famous mathematician’s prediction
and discovered that the predicted Fresnel bright spot, as we call it today, was indeedp g p y
there! Nothing builds confidence in a theory so much as having one of its unexpected
and counterintuitive predictions verified by experiment.” 38

Newton’s Ring
Benson

g
When a lens with a large radius of curvature is place on a flat plate, 
as in Fig. 37.19, a thin film of air is formed. When Newton is g ,
illuminated with mono-chronomatic light, circular fringes, called 
Newton’s Rings, can be seen. g

Why the center spot is dark unlike Fresnel bright spot?   

39This is the wave nature.

10.8 Babinet’s Principle
 1 ikR i  R 

1
1

4Rewrite ( ) ( ) 1 ( )  (10.79)
ikRe i
R kR Rs da ik                Rx n x x

no diffraction screen imagimary surface

sP
no diffraction screen, imagimary surface

1
4 dashed surface( ) ( )P     

diffraction screen 

  4 dashed surface

  s
P 1

4 dashed surface( ) ( )a P     

complementary diffraction screen

  s
P 1

4 dashed surface( ) ( )b P     

on the obatacle :  and 0 
     By Kirchoff's approx.: ,

elsewhere : and those of the source
n





  
  elsewhere :  and those of the source 

we have ( ) ( ) ( )  [Babinet's principle]
n

a bP P P
 

    40



10.8 Babinet’s Principle (continued)

Example: a light beam of finite width

no screen



( ) 0P 
no screen  

 finite width




( )b P( )P ( )b P

complementary

( )a P

p y
screen   screen     

Babinet's principle  ( ) ( ) ( ) 0
( ) ( )

a bP P P
P P

     
                                ( ) ( )

  
a bP P   
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Fresnel and Fraunhofer Diffraction: (see p.491)
Th i l diff ti tt l

d r
r  P

     There is a clear diffraction pattern only 
when . So, In integrals such as (10.77),

( | |) b i t d b ( | |)
r d

R 


r( | |) can be approximated by ( | |)
everywhere except in , where the phase

l t b l t d

ikR
R r

e
kR

  x x x

t l
r
r

 

x
x

x  n
x 

angle  must be evaluated kR more accurately.
    Consider three length scales: ,  ,  and . r d 

2 2 1/ 2  

r  x

x

2 2 2

2 2 1/ 2

1/ 2 21 12 2 2

( 2 cos )

1 1( ) ( ) ( )r r r

R r rr r

r r



       

      

           
   

n x n x n x

x x



   

2 2 2
22

2 8

221 1

1 1

1

( ) ( ) ( )

( )

r r rr r r

r

r r

r r r   

     
   
                   

n xn x n x n x



  2 2

2

2 21

( ) ( ) ( )

( )r rr r

kd

r r r

kR O kr O kd O

            
    

n x n x 

( ) ( ) ( )rkR O kr O kd O    
If the 3rd and higher terms are neglected, we have the Fraunhofer 

diffraction (far field) If the 3rd term is kept but higher order termsdiffraction (far field). If the 3rd term is kept, but higher order terms 
are neglected, we have the Fresnel diffraction (near field). 42

Homework of Chap. 10Homework of Chap. 10

Problems: 2, 3, 7, 12, 14, , , ,

43


