FAERL CRE F(C) EREF R
“Electrodynamics (11)”” (PHYS 532000 )

Spring Semester, 2012

Department of Physics, National Tsing Hua University, Taiwan
Tel. 42978, E-mail: thschang@phys.nthu.edu.tw

Office hour: 3:30-4:30 pm @Rm. 417

B4 K
A~ 1 0933580065, $9822817@mI8.nthu.edu.tw
& 42 0988972152, cc1141596063@hotmail.com



- FHEERY - HY PHYS532000 64§ - (3HA) KiF: Eu A
T IR AR IR AN IR

T

J. D. Jackson, Classical Electrodynamics, Third Edition

4%

D. J. Griffiths, Introduction to Electrodynamics.

D. K. Cheng, Field and Wave Electromagnetics or D. M. Pozar, Microwave Engineering.
R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics II.

HET L
ED: http://www.phys.nthu.edu.tw/~thschang/ED.htm
>R & http://www.phys.nthu.edu.tw/~hf5/

g N B
(%37)F 24 = (10:10 - 11:00 am)#& % # = (10:10 - 12:00 am) &4~ 32 4 019 -

TR Ao e

Bhag @ 40% HRF 40% 0 4= F 20%
B P E R E s B Ot RE R 4Y -
BY 35 T RN TR PR EENE Bk fehE ¥ ootk o

VAL § 60-THY AEP § AT ) E eV AL (RERF ¥ g dedl) -
b 25-40%% £ LA (RALR W Pk 87 UHH) -

T

TLES AR e

TRNRLAFRERE > L REE LR RRE AT
& iRpE ‘%35534)@ AAad 5> A %Eg‘iﬁ—ip,io P2 ’t;jﬁ—lf:‘;\'jﬁ

$2 e
:

R A E0 Ao

FYFH FE 1558 %e &(11:10-12:00 am) # 2 -

Schedule (depending on students' learning condition)

G| R | F SR
~ 0221 (=) | #FEHFEA - F534E) 1 Maxwell Equations
02/23 (1) | Chap.8 Waveguides, Resonant Cavities, and Optical Fibers
= 02/28 (=) | AT slAF!
03/01 () Chap.8+ Quiz #1
= 03/06 (=) | Chap.8
03/08 (1) | Z ¢
pi |03/13(Z) | Chap8
03/15 (P4) | Chap.9 Radiating System, Multiple Fields and Radiation
il 03/20 (=) | Chap.9
03/22 ()4) | Chap.9
4 |0327(Z) | Chap.9
03/29 (P4) | Chap.9+ Quiz #2
- 04/03 (=) | MRy
04/05 (') | Chap.10 Scattering and Diffraction
" 04/10 (=) | Chap.10
04/12 (P¥) | Chap.10
Ju | 04/17(Z) | Chap.10
04/19 (74) | Chap.10
Bl 04/24 () | Chap.11 Special Theory of Relativity
04/26 () Midterm Chs. 8, 9, and 10
4~ |os/01(=)| Chap.11
05/03 (p4) | Chap.11
4 = |05/08 ()| Chap.11+ Quiz#3
05/10 (1) | Chap.11
4= |o515(Z) | Chap.11
05/17 () | Chap.14 Radiation by Moving Charges
-4 p4105/22 (=) | Chap.14
05/24 ()¥) | Chap.14
T | 05/29 (=) | Chap.14+ Quiz #4
05/31 (P¥) | Chap.14
4+ |06/05(=)| Chap.14
06/07 (7¥) | Chap.14
+ 106/12(Z) | Chap.14
06/14 () Final Chs. 10, 11 and 14
4 7 0619 (Z)
06/21 () | Makeup exam if needed.

allacct ENCTEE

IR F g




FrAEmy REd FC) EREERES
“Electrodynamics (11)” (PHYS 532000 )

Spring Semester, 2012

Department of Physics, National Tsing Hua University, Taiwan
Tel. 42978, E-mail: thschang@phys.nthu.edu.tw

Office hour: 3:30-4:30 pm @Rm. 417

B3
A B+ 1 0933580065, s9822817@m98.nthu.edu.tw
7k F4d: 0988972152, ccl1141596063@hotmail.com

1. Textbook and Contents of the Course:

J. D. Jackson, “Classical Electrodynamics”, 3rd edition, Chapters

8-11, 14.

Other books will be referenced in the lecture notes when needed.
2. Conduct of Class :

Lecture notes will be projected sequentially on the screen
during the class. Physical concepts will be emphasized, while
algebraic details in the lecture notes will often be skipped.
Questions are encouraged. It is assumed that students have at
least gone through the algebra in the lecture notes before
attending classes (important!).

3. Grading Policy: Midterm (40%); Final (40%); Quiz x 4 (20%)
and extra points (10%). The overall score will be normalized to
reflect an average consistent with other courses.

. Lecture Notes: Starting from basic equations, the lecture notes
follow Jackson closely with algebraic details filled in.

Equations numbered in the format of (8.7), (8.9)... refer to
Jackson. Supplementary equations derived in lecture notes, which
will later be referenced, are numbered (1), (2)... [restarting from
(1) in each chapter.] Equations in Appendices A, B...of each
chapter are numbered (A.1), (A.2)...and (B.1), (B.2)...

Page numbers cited in the text (e.g. p. 395) refer to Jackson.
Section numbers (e.g. Sec. 8.1) refer to Jackson (except for
sections in Ch. 11). Main topics within each section are
highlighted by boldfaced characters. Some words are typed in
italicized characters for attention. Technical terms which are
introduced for the first time are underlined.

Chapter 8: Waveguides, Resonant Cavities,
and Optical Fibers

8.1 Fields at the Surface of and Within a Good Conductor*

Notations: H, E: fields outside the conductor; H-, E: fields inside
the conductor; n : a unit vector L to conductor surface; &:a
normal coordinate into the conductor.

/05 €c> He

Assume: (i) fields ~ e ' N .

.. . ov
(i1) good but not perfect conductor, i.e. H, E %H., E,

o # o, but a%b > 1 [See Ch. 7 of lecture notes, Eq. (24)].

(iif) H; (£ = 0) is known.
Find: E_ (&), H ($), and power loss, etc. in terms of H (& =0)

*The main results in Sec. 8.1 [ (8.9), (8.10), (8.12), (8.14), and (8.15)] have
been derived with a much simpler method in Ch. 7 of lecture notes. [See
contents following Eq. (26)]. So, we will not cover this section in classes.




8.1 Fields at the Surface of and Within a Good Conductor (continued)

Calculationof E.(&), H.(&): In the conductor, we have

VxE, = _Q B, =iouH, | good conductor assumption| (1)
!
VxH, _J+5D =oE, —iwg,E, = oE, (2)
V=_no |Ina good conductor, fields vary rapidly along the 3)
o¢ | normal to the surface, see Ch. 7 of lecture notes.
EC~—in><a‘3§H 4)
1, 2),3)= :
H,. ~ aa.»; E. 0= /¢ = skin depth | (5)
Sub. (4) into (5) o (n xH,)+2 (n xH.)=0 (8.7)
_S g

b.c. at &=0: Hy(0) = H(0)

:anc<§>~anc<0>e Seo

< i & oo
= H ()= H,(0)e °e =H,(0)e %e? 0 J=oE, (6)
1:(5)= 1 H(©) = 0= Hoy(©) = He(§) o,
ic
0 k

Sub. (7) into (6) = H (&) = H (0)e” Ses (8.9)

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Sub. H (&) HH(O)e_fé;elff into E (rf) ~—lnxg 2H.(&)
ig

= E (&)~ 52 (1-i) [ nxH (£ =0)]e Ses (8.10)
E(¢=07Eq(E =05 E(6=0)= HP1-i) nxH(£=0)] (8.11)
Power Loss Per Unit Area:
dg"“ = time averaged power into conductor per unit area
a

—%Re[n-E@:O)xH*(f:O)}
=—lRe[n-E”(§=0)xH[’[(g:O)]
4/10“’5\"'”(5 0) = 55 Hy (€ =0) (8.12)

_E‘HII(‘”SZO)‘

oc ,ucia)ia

8.1 Fields at the Surface of and Within a Good Conductor (continued)

Alternative method to derive (8.12):
_¢(=0)
(8.10)= J(&) =cE (&)~ L1-D[nxH(£=0)]e ¢  (8.13)

{tlme averaged power }

=1Re[J(&)-E (5)} L)

(8.13)

_20— jo d‘fp(f)‘ _7‘ 16 = 0)‘ Io

loss in conductor per
unit volume

dPlOS S
da

same as (8.12)

= a5
Effective surface current K ;-
Koy = Jo 3(&)dé = s(1-i)[nxH (£ =0)][e
=nxH (£ =0) (8.14)

d])ZOSS J— 1

2
200 Koy

(8.12) & (8.14) =

(8.15)

8.2-8.4 Modes in a Waveguide

Consider a hollow conductor of infinite length and uniform cross
section of arbitrary shape (see figure). We assume that the filling
medium is uniform, linear, and isotropic (B = uH; D = ¢E, where ¢
and u are in general complex numbers). This is a structure commonly
used to guide EM waves as well as a rare case where exact solutions
are possible (for some simple cross sections.) Maxwell equations can

be written
VxE———B - (8)
VxB=usE (" ARG R ()
H )complex £ and ’
V-E=0 H (10)
V-B=0 (11)
VX(8):>VxVsz—%VxB:V(V-E)—VZE:_g(ﬂg%E)
:>V2E—,ug§E:O (12)

Similarly, Vx (9) = V2B — ygg B=0 (13)

8




8.2-8.4 Modes in Waveguides (continued)

X,: coordinates transverse to z,
e.g. (x,y) or (r,60)

+ik,z—iot
Let E(X,7) =E(X,)e
k., here <> k in Jackson

B(X t) B(X ) ilk z—iwt ’
where, in general, @ and k_ are complex constants. To be specific,
we assume that the real parts of @ and &, are both positive. Then,

=271 and e %771 have forward and backward phase velocities,
k2710l and e~ =71 3150 have

respectively. As will be seen in (31), e
forward and backward group velocities, respectively. Hence, we call
=271 4 forward wave and e =7 g backward wave.

With the assumed z and ¢ dependences, we have
52 2

— — 2 2
or’ e Cartesian
62 N k2 vz __Jox® oy

=
oz? 10(,0)4+ 10
e (r 6r) 3 Py , cylindrical

2
VI=Vit o =V -k
4

8.2-8.4 Modes in Waveguides (continued)

Thus,
VE- pe % “E=0 -
2 2 (X,)
VzB—ﬂea—szo = (V7 + pee” =k ){B(X )} 0 (8.19)
= (V7 + peo’ ‘kz){i 8(( i} 0 (14)

It is in general not possible to obtain from (8.19). So our strategy
here is to solve (14) for £_(X,) and B, (X, ), and then express the other
components of the fields [E,(X,) and B,(X,)] in terms of £_(X,) and
B_(X,) through Eqgs. (17) and (18).

Exercise: Writing E(X,) = E.e, + Egey + E,e, and using the
cylindrical coordinate system, derive the equations
for £, and £, from (8.19).

iafe O - 0 —
(hlnt. Eer—ee, @Ee——er)

9.5 Guided Waves
9.5.1 Wave Guides

Griffiths

Can the electromagnetic waves propagate in a hollow metal pipe?
Yes, wave guide.
Waveguides generally made of good

conductor, so that E=0 and B=0 inside the
material.

The boundary conditions at the inner wall
are: E’"=0 and B' =0 ...

The generic form of the monochromatic waves:
E(X,y,Z,t) = Eo(xay)ei(kZ7Wt) = (E )A(‘I‘E y-}-E 2)e
B(x,y,z,t) = Bo(x, y)ei(l\?z_wt) (B X+ B )7 B’Szz)ei(kz—wz)

11

Griffiths

General Properties of Wave Guides

In the interior of the wave guide, the waves satisfy Maxwell’s
equations: OB
a V-

E=0 VxE+="=0 Whyp, =0andJ, =0?
V-B=0 VxB=i2§ wherev:L
V- Ot /glu
We obtain
OE OB
~-Zx—jwB, L)
oy c
OB
=B, — y:—gEx
c
oE. . ..OB_ OB, io
:la)By — :__ZE)/

12




Griffiths

TE, TM, and TEM Waves

Determining the longitudinal components E, and B,, we could

quickly calculate all the others.
' OFE OB

General Approach

E=E,+Ec¢e :
o Exfafj +ey—5, Cartesian
Let {B=B, +Be, A
0 10 g
V=V.+e. 9=V, +ike €. 5 7€, 25> cylindrical
t Z 0z t z%z

E = /’2 Sk ro—%) s , .
(w/c) - x y VxE=-2B =(V,tike, )x(E +E.e,)=io(B,+B.e,) (15)
i OE OB d . .
= z_ z VxB=usE=(V,tike, )x(B,+B.e,)=—iusw(E,+E.e_ ) (16
Ey (a)/c)z—kz (k ﬁy (0 ax) Try to derive these H ot ( t z Z) ( t z Z) H ( t z z) ( )
i 0B,  OE, _ relations by yourself. Using the relations: (Vi<Eplle; , we obtain from the transverse
B = —— k- (V,xE.e,)Le,
(w/c)y —k ox ¢ Oy £(15) and (16
. ; oB. Lo 8Ez) components of (15) and (16):
We obtain y (a)/c)2 iy ay o2 ay Vt XEZEZ iikzez X E[ = lC{)Bt (17)
2 8 o V,xB.e, tik.e, xB, =—-iuswkE, (18)
—+—5+—5-k*|E.=0 IfE =0 = TE (transverse electric) waves;
o " v g i In (15)-(18), the UPPEIL oion applies to the forward ave
2 2 o If B, =0 = TM (transverse magnetic) waves; ) lower( S0 PP backward ( V&Ve:
[—2+—2+—2—k2}32 =0 IfE =0and B, =0 = TEM waves.
ox~ oy° v z z ,
13 1
8.2-8.4 Modes in Waveguides (continued) . . .
8.2-8.4 Modes in Waveguides (continued)
Rewrite (17) and (18 .
ewrite (17) and (18) Sub. (19) into (18)
V,xE_e_*tike xE, =ioB 17
S ! a7 V,xB.e, tik, L (V,E, Fik,E,)=—iucwk, (20)
V,xB.e, tik,e, xB, =-iucwE, (18) — e
V,B,xe,

Since E, and B, have already been solved from (14), (17) and (18)

are algebraic (rather than differential) equations. We now manipulate

(17) and (18) to eliminate B, and thus express E, in terms of £, and B, .

.
e, x(17)= e, x(V,xE.e,)tik, e, x(e,xE,)=iwe, xB,
%/_J
V,E,xe,+E_V,xe,
0
Vxya=Vyxa+yVxa
If v, a are both independent of z, then
V,xya=V,yxa+yV,xa

= iwe.xB, =V E, Fik.E, (19)

Multiply (20) by iw: iwV B, xe_ +ikV,E, +k’E, = usw’E,
= (,uga)z —k? ) E, =i(wV,B,xe,+k,V,E,)

= E, = 5 [*k.V,E, —we_ xV,B, ] (8.26a)
UeW” —k
Similarly,
i
B, =55 [th.V,B, + peawr, xV,E, | (8.26b)
UED™ =k

Thus, once E, and B, have been solved from (14), the solutions
for E, and B, are given by (8.26a) and (8.26b).




8.2-8.4 Modes in Waveguides (continued)

8.2-8.4 Modes in Waveguides (continued)

Discussion: TM Mode of a Waveguide (B, = 0): (see pp. 359-360)
(i) E, B, E., B. in (8.26a) and (8.26b) are functions of X, only. (V; +7%)E, =0 with boundary condition E,|, ; 0 (2D
(i1) € and y can be complex. Im(¢) or Im(x) implies dissipation. E, = i%vt E, Assume perfectly (21a)
(111) By letting B, = 0, we may obtain a set of solutions for £,, E,, 7 conducting wall.
and B, from (14), (8.26a), and (8.26b), respectively. It can be H, = ié:)ez xE, = iZIeZ xE, (21b)
shown that if the boundary condition on E, is satisfied, then 5 L ~JZ,=k_/ew, wave impedance
boundary conditions on E, and B, are also satisfied. Hence, this y© = peo” —k; of TM modes (210)
gives a set of valid solutions called the TM (transverse TE Mode of a Waveguide (E. = 0): (see pp. 359-360)
magnetic) modes. Similarly, by letting £, = 0, we may obtain a (VZ +y*)H, = 0 with boundary condition ZH, ,=0 (22)
set of valid solutions called the TE (transverse electric) modes. ik, Zy = polk,, wave 2
(iv) E, is the generating function for t(he TM mode and )BZ is the Hi== 3 Vil impsdance of TE modes J 0 o= (222)
. . . . bec. n-H =0
iez::::tl:f ;;lnyc,t;zr}azsg: TE mode. The generating function E, =7 ;]ia)ez «H, =3Z,e. xH, P .\|s_| =0 (22b)
5 o (22a) = n-V,H,|, =0
y© = pe0” —k; = 2H | =0 |(22¢)
Disenssion: 8:2:84 Modes In Waveguides (continued) Field Patterns of Circular Waveguide Modes
(1) Either (21) or (22) constitutes an eigenvalue problem (see (2?) O = TEo,
lecture notes, Ch. 3, Appendix A). The eigenvalue y 2 will be TE[@#@“I % 10> < - jj\\\:'\":““* %3;
an infinite set of discrete values fixed by the boundary \ é 200 3 i~ - T T,
condition, each representing an eigenmode of the waveguide ; % a0l Tl
(An example will be provided below.) £ ol ™oy S
(i) (21b) and (22b) show that E, is perpendicular to B, (also true e 2?8(mnijo oo
in a cavity). (g) o B ;%;11
(1i1) (21b) and (22b) show that E, and B, are in phase if y, €, o, k, % A E e — =
are all real (not true in a cavity). é zz Z— - T
(iv) (21c¢) [or (22¢)] is the dispersion relation, which relates @ and *a'*'; sl T~ -7 T T =,
k,for a given mode. = 1,00' L B B
(v) The wave impedance, Z, or Z,, gives the ratio of E,fo H,in the surface current L (mm)

waveguide.




Field Patterns of Circular Waveguide Modes

1

a
@ 0 TEo
g - TE,,
> -10 = TEj3;
2 TEy,
= 20 T TM,
=
S
5 -30
] ™,
ks
-4.0
1.5
(®) o0 ey
a] = e ——— 1Ej;
C 02— _ TEy,
@ o TEy,
3 0.4 B — - ~ - TMy,
g 06
B F— o~ - —
5 o0sf ~-- Tom™
= L
R I B R B
0 2 4 6 8

Characterization of Circularly Symmetric TEo1 Mode

(a) simulation

o 2
o
N—
5 o,
-
L — p=4E° -
L 0=45 — 6=180Q°
6 P IR BT 1
30 32 34 36 38 40

Freq (GHz)
(b) measurement
0

A -2
g
U?-4 saag=Q° «e09=90°
L ...@=45° ---0=180°
[{ ---0=60°0 — 6=180°Th
6 P ? P TR !

30 32 34 36 38 40
Freq (GHz)

T. H. Chang and B. R. Yu, “High-Power Millimeter-Wave Rotary Joint”, Rev. Sci. Instrum. 80,
034701 (2009).

8.2-8.4 Modes in Waveguides (continued)
TEM Mode of Coaxial and Parallel-Wire Transmission Lines

(E,=B,=0): (see Jackson p. 341)

i
E, = ) [ikZVtEZ — e, XVth] (8.26a)
, HED™ =k
Rewrite .
i
ﬁ[ikZVth + pEwe , x V,EZ]
UEW” =k

B, = (8.26b)

These 2 equations fail for a different class of modes, called the
TEM (transverse electromagnetic) mode, for which £, = B, =0.
However, they give the condition for the existence of this mode:

a)zzkzz/us.

Equations in rectangular boxes are (827)
basic equations for the TEM mode. '
(8.27) is also the dispersion relation in infinite space. This makes
the TEM mode very useful because it can propagate at any frequency.
To calulate E, and B,, we need to go back to Maxwell equations.

8.2-8.4 Modes in Waveguides (continued)

b

-p _ B/l _ JErem X\ +ik, z—icot
Let £, =B, =0 and {Bz} = {BTEM(XI) e

then, because B, =0, the z-component of VxE = —% B gives

ETEM =—V,Dppy (Xt)
and, because £, =0, V-E=0 gives

V,xEifpgy =0 =

=

V,xA,(X,)=0

g
A, (X,)=-V,D(X,)

Vi-Bin=0 = Vtzq)TEM(Xt) =0
where @, is the generating function for the TEM modes. Because
Ean =0 on the surface of a perfect conductor, @, is subject to the
boundary condition @, = const. on the conductor. This gives @,
= const. or E,, =0 everywhere, if there is only one conductor. So,

TEM modes exist only in 2-conductor configurations, such as coaxial
and parallel-wire transmission lines. Finally, B,g,, 1s given by the

b

k
transverse components of Vx E = —% B: [Brpm =t €, xEqpy|

24




Why single conductor cannot support TEM waves? (1)

Let’s consider the property of 2D Laplace equation.

Suppose @\, depends on two variables.

2 2
O D@y + O D@y _
o’ T oy’
Harmonic functions in two dimensions have the same properties
as we noted in one dimension:

a partial differential equation (PDE);
not a ordinary differential equation (ODE).

@\ has no local maxima or
minima. All extrema occur at the
boundaries. (The surface may not
be an equalpotential.)

If @y =const., E;py=0 & Brpy=0
(Not a flawless argument)

Why single conductor cannot support TEM waves? (11)
David Cheng’s explanation. Chap. 10, p.525.

1. The magnetic flux lines always close upon themselves. For a
TEM wave, the magnetic field line would form closed loops
in a transverse plane.

2. The generalized Ampere’s law requires that the line integral
of the magnetic field around any closed loop in a transverse
plane must equal the sum of the longitudinal conduction and
displace conduction current inside the waveguide.

3. There is no longitudinal conduction current inside the
waveguide and no longitudinal displace current (£,=0).

4. There can be no closed loops of magnetic field lines in any
transverse plane. (weak conclusion)

The TEM wave cannot exist in a single-conductor hollow
waveguide of any shape. (Again, not a perfect argument)

8.2-8.4 Modes in Waveguides (continued)

In summary, the TEM modes are governed by the following set
of equtions:

Vi (%) =0 (23)
Erem ==V Prpm (X)) (23a)
Brpm = J_r%ez =Y (23b)
(or Hypy = i%ez XErpn = i\/%ez XErgy = Y€, X Eqpy)

kZ
w? = 1iz (23¢)

where Y (=./¢/ ) is the (intrinsic) admittance of the filling medium
defined in Ch. 7 of lecture notes (the last page of Sec. II).

8.2-8.4 Modes in Waveguides (continued)
Discussion:
(1) For the TEM modes, we solve a 2-D equation Vtzq)TEM (X,)=0
for @\ (X,). But this is not a 2-D problem because @, is not the

full solution. The full solution is {Ef (.1 )} - {ETEM (Xf)}ei""z”“”
Bt(x’ t) BTEM (Xt)

with Epgy ==V, @rgy (X,) and Bogy = i%ez X Ergn-
For an actual 2-D electrostatic problem [®(X) = D (X, )], we have

VtZCD(Xt) =0, which gives the full solution E,(X,) = -V, D(X,).

(i1) Note the difference between the scalar potentials discussed here
and in Ch. 1 and Ch. 6.

Erpn ==V, @rpn(X,) regard @, as a mathematical tool.

E(X) =-VO(X) regard @ as a physical quantity.

E(X,t) =-VD(X,t)— %A(X, t) regard @ and A as mathematical tools.

28




8.2-8.4 Modes in Waveguides (continued)

Example I: TE mode of a rectangular waveguide

Rewrite the basic equations for the TE mode:

(Vt2 + }/2 )H . = 0 with boundary condition = (22)
H, =i%VtHZ —z  (22a)
. e\
E, =:Jli“’eszt —3Ze,xH, * (22b)
V4
)/2 = ,ueco2 —k2 (22¢)
Rectangular geometry = Cartesian system = V2 6622 + 8‘32
y
Hence, the wave equation in (22) becomes:
[;224—68}} T use? kZZ}szo (24)

8.2-8.4 Modes in Waveguides (continued)

Rewrite (24): [6622 + a% + uew” kj}Hz =0 (24)

Hikyy dependence for /7_, we obtain

[,uga) —kf—ki—kzz]HZ:O —z

Assummg e

In order for /, # 0, we must have
pea’ —k; —k; —kZ =0,

which is satisfied for £k, + ky, *+k_. Since (e’k X g kX ),
ik,y

ik ; _ . . :
(", e "™, and (%%, ¢7*:*) are all linearly independent pairs,

the complete solution for /7, 1s
H, =c iot [Alelkxx + Aye lkxx]|:Blel VY +Bye i yJ’:|

: [C+eikzz + c_e""‘zZ] (25)

8.2-8.4 Modes in Waveguides (continued) H =+ ikZ
Applying boundary conditions [see (22)] to (25): !

Griffiths

. . . ik —ik . P
Hz _ it [Alezkxx +A2€ zkxx:|[Blel VY +Bze lyy}[c_'_elkzz +C e

B.x< 2B

x 0xX " Zlx=0

b
B, 2B

Y oy 2

y=0

7 i e . 0 a
:>HZ :COSkxXCOSkyy[C+e ZWt+1kZZ+C_e it lkzz:|

onca z

. =0=sink,a=0=k, =mnz/a, m=0,1,2,...

)
oc &
B, o 2B,

- =0=sink,b=0=k, =nx/b, n=0,1,2,...

nry

mrx
= H, =cos
a

forward wave backward wave

Sub. k, =", k, ="[F into pew —k2 k2 k2—0 we obtain

a’>’y
® —kzz—ﬁ (mj+Z) 0, myn=0,1,2,. @

a

Ax

COST[C+€ikZZ_iwt + C_e—ikzz—ia)t:| (26)

7)

9.5.2 TE Waves in a Rectangular Wave Guide

E_ =0, and B_(x,y) = X(x)Y(») < separation of variables

2 2 2
L oX l@_Y (a)__ kz) =0
X ox*> Yo :

2 2
La/f__kf d la_é/:_kz
X Ox | Y 7

2 . s .

with = K+ k2 +k *Qriffiths’ derivation

uses different boundary
condition --- E,=0.
X(x)=Asink x+ Bcosk x

Y(y)=Csink,y+Dcosk,y




Griffiths

TE Waves in a Rectangular Wave Guide (1)

OB. . ]
ExocgocCcoskyy—Dsmkyy Et:¢#ezxvt}]2
4

E(@y=0)=0=C=0

E(@y=0b)=0=sink,b=0,k, =%(n ~0,1,2,..)

E, o« —=oc Acosk x— Bsink x
ox

E,(@x=0)=0=A4=0

. mr
E(@x=a)=0=sink,a=0,k, :T(m =0,1,2,...)

B_(x,y)= B,cos(mzx/a)cos(nzy/b) < the TE_ mode

k=\(@/v) —=7*[(m/ a)* +(n/b)*]

8.2-8.4 Modes in Waveguides (continued)

Rewrite (27) as  uew” —k? — usa?,, =0, @ (28)

where wcmnzﬁ(';%lfjj)“z, mn=0,1,2,... &i . (29)
— zZ

Each pair of (m, n) gives a normal mode (TE_, mode) of the
waveguide. m and n cannot both be 0, because that will creat a %
situation on (8.26) or (22a), making H, and E, indeterminable.

@,,., 18 the cutoff frequency (the frequency at which &k, = 0) of

the waveduide for the TE,, mode. Waves with < @,,,, cannot
propagate as a TE , mode because k, becomes purely imaginary.

(28) is the TE,, mode dispersion relation of a waveguide filled
with a dielectric medium with constant (in general complex) ¢ and .
For the usual case of an unfilled waveguide, we have ¢ = ¢, and

U=y (= ue = ly&y = c%), and (28) (29) can be written

for unfilled
waveguide } (30)4

2 422 2 oo _ m? o n\1/2
o —kic" -aw,, =0with o,,, —ﬂc(a—erb—z)

8.2-8.4 Modes in Waveguides (continued)

1
2 2\2
w* - kzzc2 - a)czmn =0, o, = 7zc(’"2 + 22)2 /\/U\f\/’\/
a Yy
: As [P E—
A, = guide wavelength = 27/k, ey A T
A. = cutoff wavelength = 27¢/ @, depend | mode & 1 wave
- try 1 freq.
Ay = free space wavelength = 27c/w on geometty i e
Ag yes 1 yes
® > @,,,, = k, =real = propagating waves| ;| | yes | no |
AU ISR A, [
O= Wy >k, =0= Ay =0 As no i yes
o< ®,,,, = k, =1maginary = evanescent fields
NG o TEy (A, ~09a)
al l \/TEovTEzo (4, =a)
b 2 - K
L— S
\ usable bandwidth (a < A, <2a)

Question 1: A typical waveguide has N
a=2b. Why? 7z
Question 2: Can we use a waveguide to transport waves at 60 Hz?

8.2-8.4 Modes in Waveguides (continued)
Other quantities of interest:

: SO S 5 R R @
(1) Differentiating 0" —k;c¢” - @, =0
with respect to & 2>c
d 2 — r\owVl Z
Za)d—]fz)—Zch =0 sk,
_do _ k c2 Lo .
= Vg = Tlg =-Z- [group velocity in unfilled waveguide]
_ Jve<e
Ve > 02as @ > &gy

(2) The remaining field components (£, E v Hy, and H y) can
be obtained from /, through

ik, ;
Ht :inV[HZ

y? = uew’ — k7 =gn (22a)
L@ see (22¢) and (30).
E,=¢k—eszt (22b)

z

where the {uppe;} sign applies to the {

forward }
ve
lowe

backward




8.2-8.4 Modes in Waveguides (continued)
TE mode field patterns of rectangular waveguide
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from E. L. Ginzton, "Microwave measurements". A, : cutoff frequency
solid curve: E-field lines; dashed curves: B-field lines

8.2-8.4 Modes in Waveguides (continued)
TM mode field patterns of rectangular waveguide
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from E. L. Ginzton, "Microwave measurements". 4, : cutoff frequency
solid curve: E-field lines; dashed curves: B-field lines

8.2-8.4 Modes in Waveguides (continued)

Discussion: Waveguide and microwaves

A typical waveguide has a = 2b to maximize the usable bandwidth
(a <4y <2a) over which only the TE,;, mode can propagate and hence
mode purity is maintained. Waves are normally transported by the TE;
mode over this frequency range. Waveguides come in different sizes.
Usable bandwidths of waveguides of practical dimensions (0.1 cm < a
<100 cm) cover the entire microwave band (300 MHz to 300 GHz).

Compared with coaxial transmission lines, the waveguide is capable
of handling much higher power. Hence, it is commonly used in high-
power microwave systems. In a radar system, for example, it is used to

transport microwaves from AD o TEy, (4, ~0.90)
the generator to the antenna. le— TEy,, TEy (A, = a)
X TEyy (4 =2a)
a —>Z \ usable bandwidth (a <1, <2a)
Ek\l >k
a 7z

8.2-8.4 Modes in Waveguides (continued)

Example 2: TEM modes of a coaxial transmission line
TEM modes are governed by the following set of equtions:

2
Vi@ppy (X)) =0
Erem =V @ (X))
Hipy =78, X Eqpy
2_k2

= ,ug

oD

(23) gives r 5 (r TEM)

w

Neglect the gq(; # 0 modes = 1 ¥ or 0 (r acI)TEM) 0= Dy =Ciin(r)+C,.

D, (r=a)=V, C,=V,/In(alb) -
- b.c.{CDTEM( -h=0 {Cl _Cnts v =" Intais):
mem (r=b) = L =—C,In(b)
Vi Vil 7—i
. Erpm (X,0) = In(bo/a)%eﬂ Lz za)ter
(230 0y fhen give YV, +ik_z—it (31)

_ 1
TEM (X t) _[n(b/a)?e e(” 40




Exciting a Specific Mode

TER .
(@) TE21 2 °F
8.
~ Ffe
=2
Ll
33 e<———18.3 GHz—>"
é-"_'—Th. 1Peu == Th.20pcu
£ -5\~ — Th. 10pcu » ® ® Exp.
Ll S T T R B

85 90 95 100 105
l cutoff Frequency (GHz)

Difficulties of Exciting a Higher-Order Mode:
Take TE, as an Example

| s (b) TEo1 . ©
| | section o T
|| TE@norT™MRn |/ e
_ ) _ R - e 240GH——>
M = ]a),uoPm %-4_- — Th.1pecu == Th.20pcu
E 5§ — Th.10pcu **¢ Exp.
5+ 4 — n ) i,z T AT T I P
Ef =3 A7 (G, +2ey) P i =
n () TE41 A 02
o L Coupling structure octa-feed
total 1 4 r 2 2 4 ' =L Waveguide radius 1.86 mm
1)01 — ﬂ41p01 804 (p()l -0 ) JO (p()l) é 'Z. Parasitic modes ~ TE;; ,, TE; 5 TEy » TEy 5
total ' 4 r 2 2 4, 4 = TE,,
Py Borpar €00 (Par” —47) J4(p4y) %: T T TR
=-18 dB &L ™,,
® 9Igrequgcfncy tOGOHz)105 e el U AL &
TEAI.A’ TE41.B TEIZ,A’ TEIZ,B
T. H. Chang, C. S. Lee, C. N. Wu, and C. F. Yu, “Exciting circular TEmn modes at low ™,
terahertz region”, Appl. Phys. Lett. 93, 111503 (2008). Frequency DUT Detestor TM; 0 Ty 5 TEsia TEsip
41 dgubler TE, . TEyp ™My TM 42
Applications of Waveguide Modes (1) Applications of Waveguide Modes (11)
§< lasma chambers Material processing Mode converters Rotary joints
@ R .
,4\\‘ i @ “ i SiC cylinder
Appl. Phys. Lett. 94, 102104 (2009) THz waveguide, circulator, isolator, power divider, antenna...
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8.7 Modes in Cavities

We consider the example of a rectangular cavity (i.e. a rectangular
waveguide with two ends closed by conductors), for which we have
two additional boundary conditions at the ends.

Rewrite (27): H, = cos "X os m};y |:C+eikzz—i60t n C_e—ikzz—ia)t
b.c (1) H (Z = 0) =0 = C =—C Y cross -sectional

z - b/ view
= H, = H_ ge " cos™ *~cos™; > sink,z 0 X

mr Iy
a

b.c. (ii): H,(z=d) = 0 Y side view

b
=sink,d=0 = k, =17 1=12,... [ 1, (32)

0 d
= H_=H_ge " cos m;;x cos mgy sin Mdz , {71;1:2’0’1’2’} (33)
1
Sub. (32) into @ —k202 czmn =0, where @, = ﬂc(’;’—j+’;—§)2

2 2 , : resonant frequenc
= 0= @y =7+ + L) [ ol 1 y} (34)

of the TE,,; mode

45

8.7 Modes in Cavities (continued)
mirx ni A o
From (26) : HZ = COS Cosb'y|:C+elkzZ 10t + C_e lkZZ 1ot :| ,
a

we see that a cavity mode is formed of a forward wave and a backward
wave of equal amplitude. The forward wave is reflected at the right end
to become a backward wave, and turns into a forward wave again at the
the left end. The forward and backward waves superpose into a standing
wave [see (33)]. Thus, we may obtain 4
the other components of the cavity field 4

by superposing the other components of g‘;gs;grzvgfve i
the two traveling waves, as in (26). 0 p > Z

Comparison with vibrational modes of a string:

side view

dependent variable(s) | independent variables | mode index
string | x (oscillation amp.) zZ, t [
E.,E, 6 B, B,
cavity oy ey X, y, 2z, t m, n, |
E, (orB,)

8.5 Energy Flow and Attenuation in Waveguides

Power in a Lossless Waveguide : Consider a TM mode (E =E,

+E.e,,H=H),) in a medium with real ¢, x (hence real o, k,).

S =3sExH"=1[E, xH, +E.e, xH;] [complex Poynting vector |
_ O
/2
21b)

“ZIE, x(e, xE,)+ E, e, x(e, xE,)] [for TM modes]

ez‘Et‘ _Et ~
k &, yl O =0

_ 0 Z—ZZEZVtE:] ) real & and p
2k,

(21a) ok &

== [e.V,E \

2
e, IV B + >:

’7EVE]

Z

P\, = time averaged power in the z-direction

= J 48 -[ReSqy]da  [4: crossectional area]

_ Ok;E (V. E. -V, E.)da (35)

27 7

8.5 Energy Flow and Attenuation in Waveguides (continued)
' : L. 2 3 0
Green's first identity: [ (#Vy +V@-Vy)d’x=¢ p% da (1.34)

Let ¢ and w be independent of z and apply (1.34) to a slab of end
surface area A (on the x-y plane) and infinistesimal thickness Az in z,

surface integrals on}

AZ,[A (¢V w+V,p-V,w)da= AZ@)C a‘// dl + {;\17;(1; e\r;/?lsic(flf\tgflish

2 d
:IA(¢vtV’+Vt¢'VzW)da:(ﬁc¢5in/dl Az
Let ¢ = E, and y = E,, then B
. : o2 da
jA(VtEZ.Vth)daz[Sﬁcgé%Ezdl—jAE V/E, da] /ﬂ .

=0 2 E,
5 5 by boundary condition by (14) (' dl
=y jA\EZ\ da. (36)
a)k g

Sub. (36) into (35): Py = (V E -V ,E_)da, we obtain

wk_ &

52 [where 7/2 = ,uga)2 —kzz] (37)
4

Py =

IA‘EZ‘Z da’

48




8.5 Energy Flow and Attenuation in Waveguides (continued)

2 ) _ y | o.(Ge oatk, =0)is the
VoS pewt —kr = o= Jue [cutoff freq. of the mode. (38)
1
= k, = (uea’ - ) = x/ugw(l—* ) (39)

Sub. (38) and (39) into (37)
2.1

2 W5\ 2
Poy =552V (1= %) JIE.[* da
Similarly, for the TE mode and real 4, ¢, @, and k_, we obtain

from (22), (22a), and (22b),
k, 2 iy gk

Spp ="y le: \VHL = HoV H] (41)

[cf. (8.51)] (40)

=LHera-

Note: P, and Py are expressed in terms of the generating function.

49

Z’é)%J‘AHZZ da [cf. (8.51)] (42)

8.5 Energy Flow and Attenuation in Waveguides (continued)

Energy in a Lossless Waveguide :

$,S-nda +1[ I -Ed’x+2iwf (w,—w,)d’x=0 (6.134)
w =1E-D*:lg\E\ if ¢, y are real, w, and w,, are

e 41 , 4 o also real and represent time (6.133)
Wi =4 B-H = 4u ‘B ‘ averaged field energy densities.

Apply (6.134) to a section of a lossless ySN=0("Ep, =0)
waveguide [i.e. y, ¢ are real and the wall | Effi |e_| 12
conductivity o = ]. ) S=J(E, xH;)
o =0 (inside volume) = J =0= [ J*-Ed’x=0 ~ [ onbothends

E, =0 on the side wall = S-n =0 on the side wall

k) are real = E, and H, are in phase [by (21b)&(22b)]
= E, xH, isreal = is real on both ends = ¢ S-nda is real

{Re[(6. 134)] = 95 : S-nda =0 (no net power into or out of volume)

U, & (hence w,

Im[(6.134)] = [, w,d Sx= [, Wnd 3x (B-field energy = E-field energy)
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8.5 Energy Flow and Attenuation in Waveguides (continued)

For the TM mode (H, = 0):
U, = field energy per unit length (21b)

=] (W, +w,)da =2[ w,da="4[ [H, da —”H’ [ J|E.[ da

VP da = . daTg(a)c)z.[AEz da (43)
(22 72JA‘EZ‘2da 7/2 = luga)cz
by (36)

Similarly, for the TE mode (£, = 0):

Urg =2 Weda =5 [ [E/[* da=< 5 (L) [ 4|H. [ da (44)
From (40), (42), (43), and (44) Use (22a,b) and

PTM _ PTE 1 _& _ Grsen’s Ist identity 8.53)

Urg \/_ “150) tE .

vp = a)/kz [39)] dkz (21.0)

= v,v, =1/ e (8.54);‘

8.5 Energy Flow and Attenuation in Waveguides (continued)

Attenuation in Waveguides Due to Ohmic Loss on the Wall:
We express k, for a lossless (o = ) and lossy (o # «©) waveguide

. e

= (8.55)
kéo) +a+iff, o#©

as

where k§°> is the solution of the dispersion relation for o = oo, i.e.
uew* —kZ — psw? =0 [derived in (28)] (45)
The expression for o # oo in (8.55) assumes that the wall loss

modifies kéo) by a small real part & and a small imaginary part £,
where o and £ are to be dertermined.
Physical reason for a: Effective waveguide radius increases by
by an amount ~ skin depth 6. A larger waveguide has
a smaller o,. Hence, a > 0.

Physical reason for [ : Power dissipation on the wall.




8.5 Energy Flow and Attenuation in Waveguides (continued)

Ink, = kgo) +a+if, «a isnot of primary interest because it modifies
the guide wavelength slightly. However, £ results in attentuation, which
can be very significant over a long distance. We outline below how S
can be evaluated.

P = power flow (oc Re[E, x HI ] oc ¢*e7 . g7k = 72kaiz e_zﬂz)

= Poe_zﬂz /|power dissipation/unit length | (8.56)
= p= _#% = field attenuation constant (8.57)
P _ _ 1 2
(8.15):5_—H¢C\K@7 dl : (46)
(8.14)= K, =nxH d " (47)
(46)(47):>d7P=—L35 \an\z dl (8.58)
dz 200 Jc )
Since the wall loss can be regarded as a small perturbation, we may
use the zero-order H derived for o = o0 in Sec.8.1 to calculate ‘é—f

8.5 Energy Flow and Attenuation in Waveguides (continued)

Specifically, we calculate the zero-order E and H, and use the
zero-order E and H to calculate P from (8.51) and dP/dz from (8.58).
[ 1is then found from (8.57).

Formulae for g for rectangular and cylindrical waveguides are
tabulated in many microwave textbooks, e.g. R. E. Collin,
“Foundation of Microwave Engineering” (2" Ed.) p. 189 & p.197
(where the attenuation constant is denoted by « instead of f).

Note:

(1) f has been calculated by a perturbation method.

The method is invalid near the cutoff frequency,

at which there is a large “perturbation”. Sec 8.6 b

gives a method which calculates both « and £

(due to wall loss) valid for all frequencies. Sw
(i1) Other types of losses (e.g. lossy filling medium @

or complex &) can also contribute to « and f.

8.5 Energy Flow and Attenuation in Waveguides (continued)

(ii1) Note there are two definitions of the attenuation constant.
In Ch. 8 of Jackson, the attentuation constant for the waveguide
1s denoted by £ and it is defined as

B=—559, (8.57)
This is the field attentuation constant, i.e.

E,Boce .
In Ch. 7 of Jackson, the attentuation constant for a uniform medium

1s denoted by « [see (7.53)] and it is defined as

__1dP
o= P dz

This is the power attentuation constant, i.e.

P o e—az

Obviously, the power attentuation constant is twice the value of the
field attentuation constant.

Terahertz Waveguide (l)

Scanning optical

delay lin
g e . Femtosecond laser
Fibre \r...........-
coupler
O 1
THz transmitter
4
Input coupler ?I—» 2 Fibre
’/ coupler
o
1 % /
Wa\lreguide THz receiver
Movable stage Movable stage

K. Wang and D. M. Mittleman, “Metal wires for terahertz
wave guiding”, Nature, vol.432, No. 18, p.376, 2004.




Terahertz Waveguide (ll):
Using The Lowest Lossy TEo1 Mode

_ 0.1
& 0.01
% ' References
~, 0.001 1. Pozar, p.161.
3 2. Collin, p.197.
0.0001
1E_OO5IIII|IIII|IIII|IIII|IIII

0 100 200 300 400 500
Freq(GHz)

Q: How to excite the TEoi mode and fabricate it at the terahertz
region?
A possible solution: X-ray micro-fabrication (LIGA).

8.8 Cavity Power Loss and Q

Definition of Q : We have so far assumed a real o for EM waves
in infinite space or a waveguide. Since fields are stored in a cavity, it
damps in time if there are losses, represented by a complex @. Thus,
fields at any point in the cavity have the time dependence given by

Eoe—la)ot , O =0

—i(a)0+Aa)+i§]—0)t —i(a)O+Aa))t—;)—0t
Eqe =FEye , O#®

E@t) = (8.88)
where @, is the resonant frequency [e.g. (34)] without the wall loss.

(8.88) assumes that the wall loss modifies @, by a small real
Dy

part Aw and a small imaginary part 5 0’

where A and Q are to be
dertermined.
Physical reason for Aw : Effective cavity size increases by an
amount ~ skin depth 6. A larger cavity has a lower
frequency. Hence, Aw < 0.

Physical reason for Q: power dissipation on the wall

8.8 Cavity Power Loss and Q (continued)

U = stored energy in the cavity [ oc|[E \2 oc g 1V GO T = G2t

_ay /

=U,e 0 —i(ay +Aa))t—@t
dU0 E(r) = Ege 0 =
= &= —QU (power loss) = o = _% (8.87)
= 0=, stored energy (time-space definition of Q) (8.86)

power loss

(8.88) represents a damped oscillation which does not have a
single frequency. To exame the frequency of E(z). we write

E(f)= ﬁ [° E(@)e ™ da,

where U;e (8.88), assume E(r) =0 fort<0
, |
1 ot 1, ¥ 0 —Hatti(@-oy-Aw)t
E(a))—ﬁj._ooE(t)elw dl—ﬁEo‘[o e 20 dt
_ 1 Ey
2

T—i(w— o, —Aa))+%

_ant
—e ©

]

8.8 Cavity Power Loss and Q (continued)

The frequency spectrum is best seen form the field energy
distribution in w-space

5 1 max, @ =, +Aw

E(w)" o« -=1, o, (8.90)
(a)—coo—Aa))2+(%) 2 =0+ AOE 50
St = full width at oy
| half-maximum points | @ l

= Q0= ?70) (frequency-space definition of Q) : (8.91)
Note: @, 1s the resonant frequency Il Fig. 8.8

of the cavity in the absence of Il St = %

any loss. @, + A 1s the resonant
frequency in the presence of
losses. In most cases, the
difference is insignificant.

> Lo
AN
g/’"

€

l

wo +
60




8.8 Cavity Power Loss and Q (continued)

Physical Interpretation of QO :

(i) Use the time-space definition: O = &, stored energy

2
wave period

Wy =21fy ="
decay time of
stored energy

power loss

stored energy

R T~

power loss

stored energy _ o fd

=0=a, (48)

power loss 7,

(48) shows that O, which results from the power loss, is
approximately 27 times the number of oscillations during the
decay time. A larger Q value implies that the field energy can be
stored in the cavity for a longer time. Hence, Q is often referred

to as the quality factor.

8.8 Cavity Power Loss and Q (continued)

(1) Use the frequency-space definition: Q = % (see Fig. 8.8)

For a lossy cavity, a resonant mode can be excited not just at
one frequency (as is the case with a lossless cavity) but at a range
of frequencies (dw). The resonant frequency (w,TAw, see Fig. 8.8)
of a lossy cavity is the frequency at which the cavity can be excited
with the largest inside-field amplitude, given the same source
power. The resonant width dw of a mode
is equal to the resonant frequency divided
by the QO value of that mode (see Fig. 8.8).
Note that each mode has a different QO value.

Figure 8.8 can be easily generated

!

I

T

|

I

I

l

I

1n experiment to measure the {
|

O value.

8.8 Cavity Power Loss and Q (continued)

stored energy

O=aw,

Using the results of Sec. 8.1, we can calculate Q (but not Aw)

power loss

due to the ohmic loss. We first calculate the zero order E and H of
a specific cavity assuming o = o, then use the zero order E and H

to calculate U and power loss,

2f wed x=£[ |E dx

e

stored energy = [ (w, +w,,)d"x =
e 2.[vwmd3x:%jv\H\2d3x

(3.15)
71
power loss = %gﬁs‘Keﬁp

1

/ 206
(8.14)

2 da (6.133)

cﬁs\nx H\z da

8.8 Cavity Power Loss and Q (continued)

Formulae for O (due to ohmic loss) for rectangular and
cylindrical cavities can be found in, for example, R. E. Collin,
"Foundation of Microwave Engineering", p. 503 and p. 506.

Q due to other types of losses : If there are several types of
power losses in a cavity (e.g. due to Imeg and coupling losses), O
can be expressed as follows:

stored ener
0=aw, =Y (49)
> (power loss),,
n

n-th type of power loss|

= L =2 S (50)
Q n Qn
where O, (Q due to the n-th type of power loss) is given by
stored ener
0, =a gy

0 (power loss),,




8.8 Cavity Power Loss and Q (continued)

A Comparison between Waveguides and Cavities

Waveguide Cavity
Function transport EM energy store EM energy
Characteri- dispersion relation and resonant frequency
zation attenuation constant and Q

Examples of transport of high (1) particle acceleration

applications power microwaves  (2) frequency measurement
(mostly for (such as multi-kW

microwaves, waves for long-range

0.3-300 GHz)  radars and communi-

cations)

High-Q Microwave/Material Applicator

stored energy

@
> (power loss),
n

Conductor loss, dielectric loss, radiation loss, diffraction loss...

Homework of Chap. 8

Problems: 2, 3,4, 5, 6,
18, 19, 20
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Chapter 9: Radiating Systems, Multipole
Fields and Radiation

An Overview of Chapters on EM Waves : (covered in this course)
source term in wave equation boundary

Ch.7 none plane wave in oo space or in
two semi-oo spaces separated
by the x - y plane

Ch. 8 none conducting walls

Ch. 9 J, p~etet outgoing wave to oo

prescribed, as
in an antenna

Ch. 10 J, p~ei

induced by incident EM waves,
as in the case of scattering of a
plane wave by a dielectric object.

Ch. 14 moving charges,
such as electrons in a synchrotron

outgoing wave to o

outgoing wave to o

9.6 Spherical Wave Solutions of the Scalar
Wave Equation

Spherical Bessel Functions and Hankel functions : Although
this chapter deals with radiating systems, here we first solve the scalar
source-free wave equation in the spherical coordinate syatem. The
purpose is to obtain a complete set of spherical Bessel funtions and
Hankel functions, with which we will expand the fields produced by
the sources.

The scalar source-free wave equation is [see (6.32)]

vV (x,1) —C%;izy/(x,t) =0 (9.77)
Let y(x,) =" y(x,0)e""do (9.78)
= Each Fourier component satisfies the Helmholtz wave eq.
(V2 +k?)y(x,0) =0, (9.79)
where k=%

9.6 Spherical Wave Solutions... (continued)
In spherical coordinates, (V2 +k?)y =0 is Written

1.0 (g20v 1 1 2
Zﬂ(r 5r)+rsm959(9n659) r2 mn66¢ +k v =0
Let w =U(r)P(8)Q(p), we obtain

PQ 2dr( 2%$)+UQ d(sino%)+up L 0 | k2upQ =0

r?sin 9d¢
Multiply by r’sin®0  [The only term with g-dependence, so this
UP term must be a constant Let it be -m?.

sin? O & (r? 42) +k*r? + 514 (sin o ¢ )]+1d 2_0

r2sing 40

Psing do Qdg?
“I(1+1)~ T_mz
Dividing all terms by sin%, we see that
this is the only term with r-dependence. 21 +1(1—=m)!_ img
So it must be a constant. Let it be I(I +1) 4z (1+ I+ )|P (cosd)e
Thus, as in Sec. 3.1 of lecture notes, N

P =P/"(cosd), Q' (cosd); Q=e"?,e"™ = PQ=Y,,(6,¢)
rejected because of divergence at 6 =+x |

9.6 Spherical Wave Solutions... (continued)
U(r) is governed by & (r® 9)+k?r?U =1(1 +1)U. Rewrite U
as f, (r). Then, [d 124 g2 '“*1)] f,(r)=0 (9.81)

rdr

Let f,(r) = 1,2u|(r):>[ o +1d k2 “*1’22) }u,(r):o (9.83)
= uy(r)=J, l(kr), N,, l(kr) [Bessel functions of fractional order]

= fi( =4 Az I, 1(kr) uz |+ 1 (kr)

h® (kr) = j (kr) +in, (kr)

Ji(kr) =(5% 2 1 (kr)
Define <2kr) 3 and

0= (g} Ny )

hf’ (kr) = jy (kr) —iny (kr)
| spherical Bessel functions| | Hankel functions]

=y(x,0)=3 [A,%)h,(l) (kr) + ADH®) (kr)]v,m(e, #) [k=2] (9.92)




3.7 Laplace Equation in Cylindrical Coordinates;

Review .
Bessel Functions
24V _0 00 100 10 PP_o ,
\% ¢5(x)—0:>apz+pap+p2 8¢2+622 =0 i
Let #(X) = R(0)Q(¢)Z(2) T sp
z
7 27 0=z -ek /|
0z |
0’%Q . 2~ _ Fivep - y
= ﬁﬂ/ Q=0=0Q=e xﬁp\\\J
2 2 2
g;;+;g§+(k —;’)Z)R=O:>R=Jv(kp), N, (kp)

Review | 37 Laplace Equation in Cylindrical Coordinates; Bessel Functions (continued)

Bessel Functions : If we let x =k p, the equation for R takes
the standard form of the Bessel equation,

d?R, 1dR, (1_v?\Rr_
SRS (S LR
with solutions J,, (x) and N,,(x), from which we define the Hankel

functions:
HO (x) =3, () +iN,, (x)
H® (x) =3, (x) =N, (x)

and the modified Bessel functions (Bessel functions of imaginary
argument)

(3.77)

(3.86)

where J,, and N, are Bessel functions of the first and second kind, I, (x)=i"J,(ix) (3.100)
respectively (see following pages). K., (X) = %iv+1H @) (ix) (3.101)
14 14 '
i k . .
= 4 {Jv(kp) He";ﬂﬂ He iz} @3) See Jackson pp. 112-116, Gradshteyn & Ryzhik, and Abramowitz
N, (kp)| [e7"] (e~ 5 & Stegun for properties of these special functions. 6
9.6 Spherical Wave Solutions... (continued) 9.6 Spherical Wave Solutions... (continued)
:‘ 0 (%) [ jo(x=0)=1] . N (X) Expansion of the Green function : Solution of the Green(zq;g;ion

04} Jl(x) 02 I

"l J2(x)

From G. Afken,
"Mathematical Methods
for Physicists"

-02 -04 +

102221 3sin(x-12)

0 2 4 o 8 %[d X )
-0l F 03 |
-

=03
2

. SN I
(%) > (2|)i1)u[1_ 2021+3) +}

<1, 1 21-n)n 2
0y (x) = ,( x'+1) [1_2(1X_2|)+...

x>> |
n () ————1cos(x-17)

} h® (x) =L (i) " [= spatial
dependence of spherical waves.]
See Jackson pp. 426-427 for further properties of j;, n, h®, and h®.

(V2 +k?)G(x,x) = —475(x—X')
Is given by (derived in Sec. 6.4.)

n _ k=1 'in infinite space and for outgoing-
Gx.x) =5 [wave boundary condition. (6.40)

We may solve (6.36) in the same way as in Sec. 3.9, i.e. write
G(x,x) = X 01 (1,7Win (', ¥im (6.9
m

solve for g, (r,r’) forr >r" and r <r’ [where 5(x—x") = 0], and then
apply boundary conditions atr =0, r =00, and r =r’. The result is

o X I *
G(xx) =47k 2. j (ke )h® (k) > Yim (0,6 (0,4)
=l m=—
Equating the two expressions above for G(x, x’), we obtain

ik|x—x A I * ot
o) =4k G (KORD () 2 Yin (0,¢)Yin (0,9, (998)
= m=—

=]

where r_ and r, are, respectively, the smaller and larger of r and r’.

8




Part |

9.6 Spherical Wave Solutions... (continued)

Summary of Differential Equations and Solutions :

Part 11

Source-free D.E. Laplace eq. V2¢ =0

Helmholtz eq. (V2 + kz)y/ =

point source b.c.: G(w0) =0 b.c.: outgoing wave

Solutions _ " .
Cartesian giax iy gVa®+pz g | {eleX ey elka? erc,
(Sec. 2.9) (Sec. 8.4)
img _kz 0° 12 im@ ik, z
eylindrical Jo(kr), e, e™, etc. Jm(JCZ k; rj,e ,82° etc.
(Sec. 3.7) (Sec. 8.7)
_ Yin(0.9), ', etc. Yy (6, 9), jj (kr), ny(kr), etc.
spherical (Secs. 3.1, 3.2) (Sec. 9.6)
D.E. with a V2G(x,x) = —475(x—x) | (V?+k?)G(x,x) = —475(x —X')

Solutions
(Green functions)

ik|x—x/
G=_1 G=¢
' x—x/

Series expansin
of Green function | E9S- (3.70), (3.148), (3.168)

Eq. (9.98)

9.6 Spherical Wave Solutions... (continued)

Summary of Differential Equations and Solutions :

Source-free D.E. Wave Eq. (VZ —ia—z)y/ =0

Helmholtz eq. (V* +k*)y =0

c2 o2
ikyx ikyy gikz?
" e 2% etc. A(xD) -
Solutions (Sec. 84) o d®x'dt
Cartesian Jm( [ k2 r),e‘m9 e’ etc. ’ [t S (S - }
{cylindrical (;Zec 87) {%J(x )
h . I . . 4 S ! r
peneal | v, (@4, §i k), k), et T )z
(Sec. 9.6)
) (Vz—ii)G (x,t,x',t")
D.E. witha (V2 +k*)G(x,x") = -475 (x — X')

point source =—-4ro(x—x")o(t-t")

b.c.: outgoing wave b.c.: outgoing wave

i ikjx—x
Solutions e x|
(Green functions) | C ~ ‘x x| [Eq. (6.40)]

t ‘
G (x,t,xt) = [ i }[Eq (6.44)]

[x- X\

Series expansin

of Green function Eq. (9.98)

10

9.1 Radiation of a Localized Oscillating Source
Review of Inhomogeneous Wave Equations and Solutions :

ViP- c2 at CD ==p/% in free space, ® and A (6.15)
V2A A J satisfy Lorenz gauge. (6.16)
at ~Ho '
Basic structure of the inhomogenous wave equation:
Vay —7?;{/ —4rf (x,t) (6.32)

Solution of (6.32) with outgoing-wave b.c.:
l//(x,t)/:7 Win(x,0)+ [d3X [dUG" (x,t,x,t') f (x',1) (6.45)
[homogeneous solution| _| f(x',t") in (6.45)

[x—x }

—(t-") |4,

+ reny [ c is evaluated at
where G™ (x,1,x',t') = x—x the retarded time,| (6-44)

is the solution of

(V2 - Zatz)G (x,t,x,t') = 475 (x - x)S(t -t') (6.41)
with outgoing wave b.c.

11

9.1 Radiation of a Localized Oscillating Source (continued)

Using (6.45) (assume y;, =0) on (6.15) & (6.16), we obtain the
gereral solutions for A and @, which are valid for arbitrary J and p.

Alx,t ot | (eI (x'
(x.1) ERER jdt” Hod (X'.1) (6.48),(9.2)
o(x.t)|  4x x=x] p(x',t) ] &

In general, the sources, J(x',t") and p(x',t"), contain a static part

and a time dependent part. For static J(x) and p(x), (9.2) gives the
static A and @ in Ch. 5 and Ch. 1, respecticely.

A(x)=A(x) = ﬂOjd er(x) @/ (5.32)
X— X ' X
D(x) = D(x) = [d3x p(X) <S°“r°e (1.17)
Are, x—x/|

Question: It is stated on p. 408 that (9.2) is valid provided no

boundary surfaces are present. Why? [See discussion below (6.47)

in Ch. 6 of lectures notes.] 12




9.1 Radiation of a Localized Oscillating Source (continued)

Fields by Harmonic Sources : Only time-dependent sources can
radiate. Radiation from moving charges are treated in Ch. 13 and
Ch. 14. Here, specialize to sources of the form (as in an antenna):

plx.t) = p(x)e”*
J(x,t) = J(x)e 't
Sub. (9.1) into (9.2) and carry out the t'-integration, we obtain

ik|x—x/|

(9.1)

e

x=x'

J(x), (9.3)

A(x,t) = A(x)e 7 with A(x) = Z‘O [d®x
T

where k = %

We shall assume that J(x) is independent of A(x), i.e. the
source will not be affected by the fields they radiate. Otherwise,
(9.3) is an integral equation for A(x).

13

9.1 Radiation of a Localized Oscillating Source (continued)

A simpler derivation of (9.3): We specialize to harmonic sources
from the outset. Then, only (6.16) is required.

VZA(x,1) —C%gt%A(x,t) =~ d (x,1) (6.16)
Let J(x,t) = J(x)e " and A(x,t) = A(x)e '
=N (V2 + kZ)A(x) = —uJ(x) [inhomogeneous Helmholtz wave eq.]

The Green equation for the above equation is

(v2 + kZ)Gk (x,X) = -475(x - X)) (6.36)
Solution of (6.36) with outgoing wave b.c.
, ik|x—x/|
Gy (x,x) = e‘x_x,‘ (6.40)

ik|x—x/|

= A(x) = [d°X'G (x,x) {2 J(x) = 42 [d°x'®
which is (9.3).

J(x'),

x—x

14

9.1 Radiation of a Localized Oscillating Source (continued)

ik x—x/|
Rewrite (9.3), A(x)=“0[d3% " J(x), (9.3)
A x—x/|
H-= LOV x A (everywhere) (9.4)

Maxwell egs. give :
E= 'ZTOV xH (outside the source) (9.5)
where Z = /19 /€9 =377 Q (impedance of free space, p. 297).

Thus, given the source function J(x), we may in principle evaluate
A(x) from (9.3) and then obtain the fields H and E from (9.4) and
(9.5).

Note that e 7 dependence has been assumed for J, hence for all
other quantities which are expressed in terms of J.

Note: The charge distribution o and scalar potential @ are not

required for the determination of H and E? (why?)
15

9.1 Radiation of a Localized Oscillating Source (continued)

ik x—x/|

e
x=x'
Before going into algebraic details, we may readily observe some
general properties of A(x) near the source (r < A).
For x outside the source and r < A (or kr «1), we let e

Near-Field Expansion of A(x) = Zlo I d=x’ J(x') (9.3)
T

ikjx—x'] _ 1

o | I *
and use =4zry ¥ iT—<Y|m(¢9’, ?" )i (0, 0). (3.70)
x—x/| —0m—1 2l +1 r>Jrl :
Sincer >r',wehaver, =randr_=r". @/
1 1

S A® 4L Y Yin(0,0)[ 43I (0, 0) (9.6)

* 1=om—1 2l +1 ¢!+
kr <1

The integral in (9.6) yields multipole coefficients as in (4.2). Thus,
(9.6) shows that, for kr «<1, A(x) can be decomposed into multipole

fields, which fall off as r~(*V just as the static multipole fields, but with

the 71t dependence. However, we will show later that, far from the

source (kr > 1), A(x) behaves as an outgoing spherical wave. .




9.1 Radiation of a Localized Oscillating Source (continued)

Full Expansion of A(x): We may in fact expand A(x), without
approximations, by using (9.98). For x outside the source, we have
r, =|x/=r, r_=x|=r". Hence, (9.98) can be written

Ik‘x x‘

o =4k R ) 2 Y (0.6 i (0.6)

Ik‘x x‘

x=x

A() = ik 2 0 (k)Y (6, 8) [ d3XT(X) y (Kr Wi (0, 4), (9.10)

Sub. this equation into A(x) = Zlojd x'E J(x'), we obtain
T

where hf“(krpL{}f 5 a, (ikr)" , X
TR x

n"l | source
(2|(1)|)|(§| 2?1))“n' (ao =1, al=—l,---)

(See Abramowitz & Stegun, "Handbook of Mathematical Functions,"
p. 439.)

with a, =

17

9.1 Radiation of a Localized Oscillating Source (continued)

(9.11) is an exact expression for A(x). We now assume kd <1 (i.e.

source dimension < wavelength). Then, kr’ <1 and j; (kr’) reduces to
_ (k)
K = @reyn

elkr21-pn |

Sub. h® (kr) = © T E z a, (ikr)"

and (9.88) into (9.11), we obtaln ! 0 o)

A) = 2I+lY,m(0 ?) em [1+ al(lkr)+a2(|kr) +- 4 (|kr) ]
X
| m IdSX'J( )rrlYlm(ey ¢)
(2) is the combination of (9.6) and (9.12) in Jackson. It is valid for
kd <« 1 and any x outside the source. The region outside the source is

commonly divided into 3 zones (by their different physical characters):

The near (static) zone: d<r<i (=kr«l)
The intermediate (induction) zone:d <r~A4 (= kr ~1)
The far (radiation) zone: d<ikr (=kr>1)

18

Griffiths o o
11.1.2 Electric Dipole Radiation
Consider two point charges of +q and —q 8z r
separating by a distance d(t). Assume d(t) can I 9 2
be expressed in sinusoidal form.

T

The result is an oscillating electric dipole:
p(t) =qd(t)z = qd cos(wt)z = p, cos(wt)z, where p, =qd.

The retarded potential is:

1 r't) .,
V=, j/’( : )i
1 Jgycos[ao(t—-,/c)] g,cos[a(t—- /c)]
47[80 2, o

19

Griffiths

Electric Dipole Radiation: Approximations

Approximation #1: Make this physical dipole into a perfect dipole.
d<<r

Estimate the spearation distances by the law of cosines.

:\/rz Frdcosd+(d/2)* = r(ljt%cose)

1 = 1(liricos@)

R ¢ 2r

cos[@(t — -, /¢)] = cos[e(t - E) + “2)—3 c0s 6]

_ cos[a(t — ) cos(2 cos 0) 7 sinfe(t - )sin(2% cos )
c 2C c 2C

Approximation #2: The wavelength is much longer than the dipole
size. c A
d<<—=—
o 2r

20




Griffiths _ Griffiths _
The Retarded Scalar Potential The Retarded Scalar Potential
o . C
cos[a(t —~, /c)] = cos[w(t —E)] cos(az)—gcos 0) Fsin[a(t —E)]sin(az)—gcos 0) Approximation #3: at the radiation zone. —<<r
@
=1 idCOS
2 The retarded scalar potential is:
= cos[a(t — L)] Fsin[o(t —L)]a)—dcos %
¢ ¢ 2 V(r,t) ;M{—Qsin[w(t—i)}
Are,r | C c
The retarded scalar potential is:
r . r.,od 1 d
cosfoft~ )]st~ D) 50 c0s0 |+ 2 cos0) Three approximations
V(rt)= c ¢ 2 r-2r
" A r ) r.,od 1 d
0 {cos[a)(t—E)]+sm[a)(t—E)]Z—Ccose}?(l—zcose) d<<r d <<£(: zi) Ly
@ @
;M{—Qsin[a)(t—£)+lcos[a)(t—£)]}
Areyr C cr c =d<< A<
21 22
Griffiths _ Griffiths L .
The Retarded Vector Potential 'he Electromagnetic Fields and Poynting Vector
The retarded vector potential is OA 1P w? sin@
determined by the current density. E=-VV-—==-=—(——)cos[o(t __)]9
ot 4 mELC T
sin@
I(t)——z——qoa)sm otz B=VxA-= 'u°4poc (—— ) cos[w (t——)](P
My (It 42 —qosinfo(t—-/c)]z | 1 w® sin@
N e - dz S=(ExB) =t B S0, oo (t——)]
0
~ _ FoPo® sm[a)(t——)]z @d << A<<r o
Arxr The total power radiated is
Retarded potentials: <Po f{s}-da Ho Po@ J‘(S'” ‘9) 2 5in 0d0d
V(r,t) = —o? {Cosesm[ (t——)} E-_vv_-2A , ., s
A a _ tpie’
y [OND) B=VxA 127c
A(r,t) = -2 sm[a)(t——)]z

23
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9.2 Electric Dipole Fields and Radiation
Rewrite (1):
2I+1Y|m(49 ®) e|+l [1+ al(lkr)+a2(|kr) +---+ay (ikr) ]} "
bm | [d3xI(x )r"Y,m(e' #)
Take the | =0 term [Yyg = IIf 3 dxdydz

=)
and denote it by AP (x) JE —ﬂdydz[/iﬁ/ [ X de}
p _ =0 ,Uo elkr 13 N
AP =AW =B[N | e ey

AX)=1p X

= _ o ek 9.16
4z Por (9.16) give no contrlbutlon because J
where p = J.xp(x )d=x (4.8) is localized: J%’dy = Jyfd =0

(9.16) gives the electric dipole
contribution to the solution. It is
valid for kd <1 and any x outside

the source.
Question: Why is there no monopole
term (see p. 410)?

= —[xV -Jd>x

— [Jd3x =[xV -Jd3x

= —ia)jxp(x)dsx =—iop
\_W__J

op _
V-J+Z£=0P »

9.2 Electric Dipole Fields and Radiation (continued)

Rewrite (9.16): AP (x)=—“02pel” (9.16)

From (9.4), HP =LV x AP and from (9.5), E” =%yxHP

- ) 1 i)

o i - (9.18)
E :Mgo{k (nxp)xn€- +[3n n-p)- p]( )e }
In the far zone (kr > 1), (9.18) reduces to a spherlcal wave
HP = Ck nxp)er component
{ ( ) p Y _n (9.19)

£P = 27 f@/
In (9.19), we see that EP and HP o k<1

are in phase, and E?, HP ;and n are

mutually perpendicular. This is a general property of EM waves in

unbounded, uniform space. Given any two of these quantities, we

can find the third.

26

9.2 Electric Dipole Fields and Radiation (continued)

HP =5 (nxp) & (1- k)
EP _4;‘9 {kz(nxp)xn +[3n(n-p)- p](é—i';)eikr}

r

(9.18)

In the near zone (kr < 1), (9.18) reduces to
HP = Iw (nxp) p component

of source n
o o)
kd <1
«d-

(i) EP and HP are 90° out of phase = average power =0.

(ii) EP has the same spatial pattern as that of the static electric
dipole in (4.13), but with e‘i“’tdependence.

(iii) 11o|H | ~ (kr)? &, |EF = E-field energy > B-field energy.

Questions: (i) Why does EP have the static field pattern?

(ii) To obtain (9.20), we have neglected a few terms in (9.18).

But some of the neglected terms are still important in the near zone?
What are they and in what sense are they important? 27

EP =% [3n(n-p)-p]}

9.2 Electric Dipole Fields and Radiation (continued)

<g—'°> = time-averaged power in the far zone/unit solid angle
t
_1 Re[rzn.(Ep XHP*)} (9.21)

220 4 2
—=9k™ [(nxp)xn]| (9.22)
" 321 - 7
This vector gives the direction of EP, i.e. the
polarization of the radiation (see figure below.)

9.19)—~

= (P), = total power radiated = ° Zok pf (9.24)

In general, p = p,e'%e, + pye'/’)ey +p,e7e,. I p
a = =y, then p has a fixed direction, p = pye'
with po = pye, + pyey + p,e,, and

27 2
(80, = 5ok I sin6. (9.23)

Otherwise, the direction of p (hence <dQ> )
is still given by (9.24). dipole radiation pattern ”

vary with time, but (P),




9.3 Magnetic Dipole and Electric Quadrupole Field
Rewrite (1):

2|+1Ylm(9 ¢)e,+1[1+a1(|kr)+a2(|kr) +- +a,(|kr)] n

O Jd3XI)Y (@, ¢)
Take the | =1 terms [a; = 1]
AR ”0 ekr > (1- |kr) z Yim (6, ¢)jd3x’J(x)r’Y1m @',9¢"

l ¥

A(x) =

e

p. 109
Z Ylm(é? )Yy (6, ¢) o sin@singe'? ?)

" I I

2.n

+4icosecos 0'+ 2 sin@sing'e”' ¥ 7)
a T

= %[sin @sin 9'cos(¢—¢’) +¢0s0cos '] .

Scosy=,3nx

set | :1 in (3.68)

29

Thus,
A(X)I_l

9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)

ILlO elkr
ar r

(L-ik) [d*xJ(x)(n-x)

=0 1k {[d°x' I[(n-x)T + (n-I)x] +

=A%+ A™,

where A™(x) =" (nxm) ) (1~ £ ) |

electric quadrupole radiation

(9.30)

jdsx’%(x’xJ)xn}

magnetic dipole radiation

for kd <1 and any
x outside the source} (9.33)

with m = %j(xxJ)d x [magnetic dipole moment]. A™ gives the
magnetic dipole contribution through (9.4) and (9.5) (see p.15):

H" =

EM =

Zo 1.2 ikr
—22k?(nxm) € (1-

A&[{kz(nxm)xnei:r+[3n(n-m)—m](13—

i)

r

:';)e”“} (9.35)

(9.36)

30

9.3 Magnetic Dipole and Electric Quadrupole Fields (continued)
In the far zone (kr > 1), we have the spherical wave sloution:

P\ _ 4
H" = K (n><m)><nerk <E> 327 2k |m><n|
=
~ m Zo 142 irection of E™
E"=ZH" xn (P), =22 k* |m| => direction o

In the near zone (kr <1), | (i) E™ and H™ are 90° out of phase

H" :%[Sn(n-m)—m]% ) :>maverage power =0._
i r - (i) H™ has the same spatial pattern
EM = %(“xm)% as that of the static magnetic dipole
T

in (5.56), but with e '“'dependence.
(iii) B-field energy > E-field energy.

The electric quadrupole radiation,

discussed in (9.37)-(9.52), is more quadrupole
complicated. Here, we only illustrate its Iﬁt’gﬂ?n -

radiation pattern by the figure to the right.
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Comparison between Static and Time-dependent Cases

relations . S . r-dependence of E
multipole definition of multipole o -
between p, expansion moments and B (d : dimension
J,E,and B P of the source)
1+2
spherical q= jp(x’)dgx’ EorBocl/r™
harmonics 3 _Forr ~d, all multipole
; SE expansion p=|xp(x)d>x fields can be significant.
static PX) ) [(3.70)] or I For r > d, multipole
case J(x) & B(x) Taylor series Qjj = J(3x§ Xj— "'25ij )p(x')d3x’ fields are dominated by
[(4.10)] of 3 the lowest-order
| 1 ‘ m =%Ix'><J(x')d X' nonvanishing term.
x—X/

There is no time-dependent | (8) near zone }:i»tr >>| 32
monopole for an isolated EorBuce '@y
source (see p. 410). Approx. the same field

p, Qjj, and m have the pattern and r-dependence
_ p(x) E(x)| | spherical same expressions as those as for thel c_orrlespondmgh
time- 1 lol 1 harmonics | O their static counterparts, static multipole, but wit
dependent expansion but with the e ! time € lled dependter;_cef(_hlegce
case J(x) B(x) [(9.98)] of dependence. cg ? quast-sta '; 1€ dS‘)
— EM waves eik‘x—x’ In time-dependent cases, (b) far zone irkr>>—i a)t>>
W electric multipoles can EBoxe Ir
generate B-fields and (spherical EM waves)
magnetic multipoles can All multipole fields «c 1/,
generate E-fields. relative power levels
unchanged with distance. o/




Induced Electric and Magnetic Dipoles

(a) (b)
Figure 9.4 Distortion of (a) the tangential magnetic field and (b) the normal electric
field by a small aperture in a perfectly conducting surface. The effective dipole
moments, as viewed from above and below the surface, are indicated beneath.
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9.4 Center-Fed Linear Antenna

A Qualitative Look at the Center - Fed Linear Antenna :
Traveling wave

C
Energy | —= L g i; L' —_—
source Transmission |
line T~
R Center-fed linear antenna
LC oscillator
...... b
du=Ex Y
ISR | RS, ]
near zone far zone

In the near zone, E and B are principally generated by p and J,
respectively (= largely static field patterns). In the far zone, E and

B are regenerative through 4 Band  E (= EM waves). “

9.4 Center-fed Linear Antenna (continued)

Detailed Analysis: The center-fed linear antenna is a case of
special interest, because it allows the solution of (9.3) in closed form
for any value of kd, whereas in Secs. 9.2 and 9.3, we assume kd<<1.

ik x—x'|
e
x—x]
where J(x) = I sin (*¢ —k|z) 5(x)5(y)e,
dr2 , ,sin (% —k \z’\)e"‘"‘"‘"

_ Ml
=N A(x)_ezﬂj_dlzdz R~

d d
z2=0.J(0)=J(-2) > -——z-l J EZ—DJ
(ii) I is the peak current ’—E_l ;D J

only when kd > 7.

A(x) :2‘70[ [d3x J(x), (9.3)

(9.53)

Note: (i) J is symmetric about

Question: The antenna appears to be an open circuit. How can
there be current flowing on it?
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9.4 Center-fed Linear Antenna (continued)

2 2 1 2 r 12 1
X—x=(r*=2rr'cos 6 +r'?)? = rfl— (40X )2 n
r
. 1 2 ' 2 1 2 ' 2 2
R G R N
:r—n-x'+%[r'2—(n-x')2]+--- r=|x (2)

=x-x|=r-n-x ifr>r r'=x
Hence, if r > d, we can write |x—x'|=r—z'cosé.

,uoleikr 4/2 'Sin(%_k‘zr‘)e—ikz'cose

=A(X)~xe, —— 9.54
M3 g L r-z'cosé (5:54)
r>d ~r

ikr | cos(*d cos@)—cos(kd
—e, ﬂo'e ( 2 2) ( 2 ) (955)
27kr sin“ @4
Note: z'cos @ in - can be neglected if r > d. But z'cos &

in e/k(r=2¢%s6) makes an important contribution to the phase
angle even at r > d. 36




9.4 Center-fed Linear Antenna (continued)

(9.16 &9.19)
In the far zone, [E-Z,Hxn | [H= 1VXA nxA:\H\ ksm:’\A\
(), = bRe[FnExH' ]2 Y Z\H\Zi 2 oA’ @
7,12|€0s(*§ cos 9) — cos (¥} ) for r > d
87:2 sin @ ' | and any kd

7,2 |cos?(Zcos@)/sin® 0, kd =z
- 4cos*(ZcosO)/sin 0, kd =2x

half-wave antenna full(-i\ga\_/eza;;\)tenna
(kd = 7x) -

P Z dp (superposition of 2 half-wave

a0 Ny dQ | antennas excited in phase
g ,

q % most coherent
d
APl
4% “ less coherent
narrower beam width 37

9.4 Center-fed Linear Antenna (continued)

Rewrite (9.56)
<di> 2 cos(%cosé’)—cos("d)‘2 [
dQ/t g2 sing '

2
Limiting case (dipole approximation): kd <1 (i.e. 1>d)
cosx:l—x—z2 (x<x1)
{cos(kdcos §)=1-%0"cos?

cos( ) 1— k2d2

forr>d
and any kd :| (9.56)

N <di> 20,21 SN l+"OI2
dQ/t — gx? sin@
_Z,12 4 -2 .
=02 (kd)”sin“ @ [valid for kd <« 1] 4)
This has the same k and & depedence as in (9.23, electric dipole),
which was derived by assuming kd <« 1. 38

9.4 Center-fed Linear Antenna (continued)
Radiation Resistance and Equivalent Circuit:
. 2
J(x) = Isin(*¢ —k| 2])5(x)5(y)e, ~ kZdl (1— %) S(X)3(Y)e,
lo (peak current, -+ |z|<d)

dp\ X Z,l? 4: 2 Zgld 22
Thus, from (4), <dQ>t~512;;2 (kd)*sin? g = 720, (kd)sin® ¢ (9.28)

2 1 Zol?
= (P), ~[(5),dQ=["dg[" dcosO(d5) =2t (kd)*  (9.29)
R,,q: radiation resistance.

= Rrads | Rrag 15 part of the field definition of
impedance, see 2nd term in (6.137).

where Ry,q =22 (kd)? = 5(kd)? ohms [See pp. 412-3]

—iwt

i d Equivalent
i circuit for
- . — m Rrad a center-fed
1> circult 2 oSt antenna
dimensions 39

9.4 Center-fed Linear Antenna (continued)
Problems:

1. The full-wave antenna radiation in (9.57) can be thought of as the
superposition of two half-wave antennas, one above the other,
excited in phase. Demonstrate this by rederiving dP/dQ for the
full-wave antenna [(9.57), kd = 2] by surperposing the fields of
two half-wave antennas (each of length d/2, see figure below).

2. If the two half-wave antennas in problem 1 are excited 180" out of
phase, derive dP/dQ again by the method of superposition.

3. Plot the approximate angular distribution of dP/dQ in problems 1
and 2. Explain the difference qualitatively.

antenna 1 of
length 4 — 5 i
’2 These 3 line are nearly
parallel when point P is
far from the antenna, as

coso is assumed here. 20

antenna 2 of

single antenna  length § —
of length d




9.4 Center-fed Linear Antenna (continued)

Solutionto problem 1 Principle of superposition requires that we
add the fields (not the powers) of the 2 antennas, each of total Iength

Rewrite (9.55)

kd kd
A =, 401" cos('§ cos6) - cos('§)
z 2
27kr sin“ g

(9.55) applies to a single antenna of total length d (see fig. above.)

So the field of each of the 2 antennas in this problem can be obtained
from (9.55) by replacing d in (9.55) with % and expressing r with
respect to the center of each antenna (i.e. by r, and r,).

ikr; 5 kd kd antenna 1
sgle™ ™ {cos( C cos@) cos(4d )} -

272K 5 antenna 2 51}
where , =r—9cosg and r, =r + 9 cosé.

We may approximate r; , in the denominator of (5) by r, but must
use the correct r, , for the phase angles in the exponential terms.

N

A1,2 =€,

sin @

N

9.4 Center-fed Linear Antenna (continued)
It is assumed that each antenna in this problem is excited in the
half-wave pattern, hence we set k % =z in (5) and the superposed
field of the 2 antennas (excited in phase) is given by

ikr [e—i%cose N ei%cose] cos(% cosd)

Ho |
A=A +A,=e, 20 "¢ 6
1t A= sin2g (6)
e Lo | ikr cosz(gcose) , . q ),
=€, — &~ —— 5 —— antennal 5
L xokr sin® @ 2

. antenna 2 4

From (3), (35, :Z—(’ZkzrzsmzmA\2 2 }
zol2
272

Solution to problem 2

If the two half-wave antennas in problem 1 are excited 180° out
of phase, we simply replace the "+" sign in (6) with a"—" sign.

cos? 2.cos 0)/sin2 0 {Same as the full Wave}

solution in (9.57)
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9.4 Center-fed Linear Antenna (continued)

Thus
’ ikrr —i%Z iZ cos 0 COS(Z COS &
A:Al_AZZeZ&LeIkr[e |2cose_e|2cose](22)
7 kr sin® @
~ ie, Ho | ikr sm(’zfcose-)(zzos(gcose) d
7 kr sin @ antenna 1 §
From (3), (&), =;—°2k2r23in29\A\2 antenna 2 444

Z,12 sin (”cosé’)cos (7 c0s0) _ 297 sin (7[0089)

2”2 sin 6 o sin? o
Solutionto problem 3:

o= o

in phase = dipole radiation phase = quadrupole radiation

Question: How does a phased array antenna work?
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Homework of Chap. 9

Problems: 3, 6,65, 14,
16, 17, 22, 23
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Chapter 10: Scattering and Diffraction
10.1 Scattering at Long Wavelength

Differential Scattering Cross Section : Consider a plane wave
{Einc =g E e'm0™ {Assume free space}
Hioc =ng xEjyc /2 Zy =1y ! &
incident onto an object of dimension d <« A, where
€, can be real (linearly polarized) or complex [e.g.
for circularly polarized wave, €y, = % (ex tigy)].

<« d <A
Ei,. and H;,. will induce multipoles on the object, which in turn

generate scattered radiation (Eg., Hy. ). For 4> d, only the induced
p and m are important. From (9.19) and (9.36), we have

2 ikr
E.. =X € [(nxp)xn—nxm/c
S¢ = 4z, - [(nxp) ) / k] [in, far zonc] w (10.2)
H,. =nxEg/Z, HP = o (np) T =g {m)n s
EP = Zoﬂpxn E™ =Z,H" xn

Hence, to find E¢. and Hy, we need to find the induced p and m.

1

10.1 Scattering at Long Wavelength (continued)

For scattering problems, a useful figure of merit is the scattered
power ralative to incident power. Furthermore, it is often important
to know the polarization state of the scattered radiation. Thus we
define a differential scattering cross section (with dimension m2) as

radiated power in n-direction with g-polarization
76(“ £ Mg ) — unit solid angle
QY 0>%0/= incident power in n-direction with &-polarization
0

n unit area
0

o

r

2 1 |exp 12 . .

oz, CRRONY {The meaning of o will
1 e w2

do 27, ‘80 Emc‘

become clear in (10.11).

Note: (1) For a circularly polarized state, € an be written
g, = %(sl tig,), where g L g,.
(i) ggand gy* L ny; eand e* L n; g)-g5*=1; g-e*=1
(111) £ 1s not necessarily the direction of E.. € *-E, gives
the e-component of E.

} (10.3)

10.1 Scattering at Long Wavelength (continued)

r2 ﬁ‘g*'Esc‘z

Rewrite (10.3): g—a(n,g; no’go): (10.3)
E‘SO >l<'Einc‘
Einc ZSOEOeiknO.X
Sub. K2 ek into (10.3)
Esc :472'80 eT[(nXp)xn—nxm/C]
2
d70.(“98; n0980)2k748*-[(nxp)xn]_a*.m
d (4”80E0)2 | C
—8*'[p—n(n'p)]
n, =g*p—(g*n)(n-p)
n — ok
2] =&ETP 0
2
r = kb lexp  (WEHM 10.4
dQ (4750Ep)’ &P c (10.4)

10.1 Scattering at Long Wavelength (continued)
Example 1: Scattering by a small (a << 1), uniform
dielectric sphere with p=p,, and arbitrary ¢

lu::u0:>m:0 E\. —
& =&/ gy (relative permitivity)

T
total electric field
From (4.56), we obtain the electric dipole moment p induced on

the scatterer by E;,. ikng-x

_80E0e
p= 47[30(8 +2)a Emc

| = 0 by assumption| (4.56) & (10.5)

Sub. (10.5) into 0'0—(4"‘2a*-p+(n><a>*<)-m/c2 (10.4)
72'80
3U(n,s; ng, &)= k*a® ‘frr \a 80‘ (10.6)

Question: (4.56) is derived for a dielectric sphere in a static field.
Why is it also valid for the time-dependent field here?

4




Reminder 4.4 Boundary-Value Problems with Dielectrics (continued)

Example: A dielectric sphere is placed in a uniform electric field.
Find ¢ everywhere. Eo

We choose the spherical coordinates and divide the space into two
regions: I < a and r > a. In both regions, we have V>¢ = 0 with the

I
solution: ¢ = {r }{g ECOSZ; }{ } [Sec. 3.1 of lecture notes]
| (cos

¢ is independent of ¢. b = § A r! P (cos )
b.c.q @ is finite at cos@ =+1.; =

¢, 1s finite at r = 0. Pout = 2 [Blr +Cr I]P(COSQ)

Question: If | > 0, @y > © asr — oo, Why then keep the | > 0
terms in @y ?

ar. 10T, 1 9T,
VIi=—r+-—8 ——g.

Reminder -Value Problems with Dielectrics (continued)

—6+

or r a6 rsinf d¢

Rewrite: ¢, = Z Air R (cos@), dout = LBJ +Cir - 1JF’|(cos9)
I=

b.c. (1): @yt (oo) =—Eyz+const. = —E,r cos @ + const.

= By =const; B, =-Ey; B(1>1)=0 Pl(coseé’)
= COS
b.c. (i0): ¢n () = ot (@) [ = E{"(a) = E?" (a)]
c Ay =By+Cy/a ®)
:>A1a':B|a'+|—lI:> A =-E;+C /a’ 9)
a

A =C/a¥, 151 (10)

EEN in out
b.c. (iii): 6Er" (@) = 5B () = —& S dhn| _ =50 & ot _,

= elAa'™ = 5| 1B —(1+1)C; /a*? |

0=—¢,C,/a°, =0 (11)
=N =—¢g)[E,+2C,/a%], 1=1 (12)
elA =—g,(1+1)Cy /a2, 151 (13)

Reminder

4.4 Boundary-Value Problems with Dielectrics (continued)

(7), (11) = A, = B, = const. (let it be 0.)
3E0 . _ 6‘/6‘0—1 3

©), (12)= A = C2+elgy’ > G _(5/50+2ja B

(10), (13)= A =C, =0 forl>1

; ~—_|This is the only way 3) &
do=— E,r cos (6) can both be satisfied.
2+¢&/ g
= lgyg—1_ a’ 4.54
Bout =—E0rcose+%Eo—zcose (4.54)
S /80 +2 r
applied field el ey—

dipole field with p = 47, a3E0

J [ef. (410)]

polarization
- ¢4 charge [see (4.58)]

+
+
+
§ —
+
+

+
E due to polarization charge

/7‘\_
total electric field 7

10.1 Scattering at Long Wavelength (continued)
We define the n-n, plane as the scattering plane. Let n, be along
the z-axis and n lie on the X-z plane. The orientations (&, ¢) of unit

vectors g, ¢ and £ are specified accordingly as follows

. 4) [polarization of J .

incident wave
polarization state
X

e = (5+86, 0) | of scattered wave
|| to scattering plane

polarization state
e@ _(z =z

direction
of incident

55 o of scattered wave
| L to scattering plane

where g, 1s on the X - y plane making an angle ¢, with the x-axis, gD
is on the X - Z (scattering) plane, g? (=ey)is L to the scattering plane,
and n, £V, and £? are mutually orthogonal. Polarization vector (g)

of the incident wave and polarization states [s(l), 8(2)] of the scattered
wave are all assumed to be real, representing linear polarization. 8




10.1 Scattering at Long Wavelength (continued)
Applying Eq. (1) in Ch. 3 of lecture notes:
cosy =sin@sin &' cos(g—¢')+cosdcos &’
[y : angle between (6, ¢) and (&', ¢')]
togy=(5, ), g = (5+86, 0), and

| direction

Z+6 T of incident

wave n,
,8(2)

g? = Z, %), we obtain ¢ £ y
eV g, —sm( +6’)sm%cos(0—¢0)+cos(%+6’)cos%
= cos ¢y cosd
8(2)-50:sin%sin%cos(%—(/ﬁo)+cos%cos%
=sin ¢,
Rewrite (10.6): gd(na n,,g,)=k*a’ H;Z\g*.ao\z
_ ig k*a® gr ‘ OF ‘ =k*a® grézzcos ¢Ocos 0
o =K' 6§:+2 ey = ka5 ) sin 9

10.1 Scattering at Long Wavelength (continued)
Assume that the incident radiation has a fixed direction n,, but
is unpolarized (i.e. ¢ is random). We take the average over ¢, :

8r12

<dQ>¢o 2zdo do ddy = 2 |g+2| 08 0 n Mo
5 9 (10.7)
<M> L iy g, kial o]
@/, ~2zlo 0~ 2 er+2 r
% 40

'_

<d > <do1l> l+cos? 6

where I1 (0) gives the degree of polarlzatlon of the scattered radiation.

< > <d°1|>
.2 o/ 1:
sin” @ {: IOOA)llnearlyﬂ} (10.9)
2

polarized at 8 =%

‘FD

1
< > <““> —k‘a 6§rr+2 Li1+cos?0)  (10.10)
a1 o gl ka<1]  (10.11)

er+2

—[/d 87z 1446
= <0>¢0—I<d—g>¢od9 $z%a
Question 1: In (10.10), why add powers instead of adding fields? ,

10.1 Scattering at Long Wavelength (continued)

(10.11) gives (o) o < 7a®, impling that only a small fraction
of the radiation incident on the dielectric sphere is scattered. This
is true even if the scatterer is a perfectly conducting sphere (with
radius < A). See next example.

Example 2: Scattering by a small perfectly conducting sphere

The incident radiation will induce both electric and magnetic
dipole moments (p and m) on the conductor. p and m are given by

p= 47zgoa3Einc [See Sec. 3.3 of lecture notes. ] (10.12)
m=—2za’H;,, [See next problem.] (10.13)
E, . =& E,elm0™
From < Hinc =Mo ><Einc/zo [Z, = m]} (oD
B8~ g e pH(nxes)-m/cf (10.4)
we obtain §2 = k*a® ‘8* € — L (mxe*)-(m ><80)‘2 (10.14) ,,

10.1 Scattering at Long Wavelength (continued)

As in Example 1, for unploarized incident radiation, (10.14) yields

<:|Z”>¢O =L2a6(cose—%)2 " Hno o1s
- (42 . :<‘;§;>¢0 +<‘§g>¢0 — k*aS[3 (1+ cos? ) —cos 6]  (10.16)
T(6) = 3sin” 0 [peak at @ = 60°] (10.17)

51+ cos’ 0)—8cos b
<a>¢0:j<dg> dQ=97k%a® < 7a’ [ka<1]

Again, we find (o), < ra’. By geometric optics, the scatterer (a
conductor) would be opaque to the incident radiation, and the incident
radiation would have been totally blocked [ (o) "= 7a?]. This example
demonstrates that geometric optics completely breaks down for A > a,
where we need physical optics, as in scattering/diffraction theory. 12




10.1 Scattering at Long Wavelength (continued)
Problem: Derive the dipole moment in (10.13): m =— 27za3HinC.

Solution: Since 4 > a, we
may assume H;,. to be uniform.

For a perfect conductor, we
have E = B =0 inside the sphere. o

In Sec. 9.3, we have shown that in the near zone (r <« 1), the
magnetic dipole radiation has negligible E-field. Hence, we assume

VxB=-2E ~0 outside the sphere and write B =V ¢. Then,
V-B=0 = V2¢ = (0 with the solution: [Sec. 3.1 of lecture notes]
ol emo o]

Q" (cos 0)
subject to boundary conditions:

B(r — o) = sioHijpce,
B (r=a)=0=44 =

This model is valid for r < A,
which is sufficient for us to
find the dipole moment of a
sphere with radius < A.

= #(r —> 0) = pgyHinez = pyHjncr cos @

10.1 Scattering at Long Wavelength (continued)

I m i
Rewrite ¢ = H (cos0)
Q" (cos ) — cosd
@ is independent of ¢. 3 | _1-1
b.c.{¢ is finite at cos@=+1.| ¢_|§0[A1r rar }PI(COSQ)

b.c. §(r > 0) = pyHjpcrcosd = A = pyHjpe & A =0if (=1

P (cos0)

= ¢=ppHyrecos@+ 3 Cr 'R (cos )
1=0

Cl)cosﬁ § -

be S4 =0 = (upHinc - LC,R (cosf) =0
= C, =1 ma’Hy, & Cy =01fz¢1

3
== mCI’COS@+2,an Hinc €

I+2

cosd
r2
ﬂoa3
=> B(due to the sphere) = V@(2nd term) = Hinc

2cos e, +sinbey

r3

Comparing with (5.41), we find that this is a magnetic dipole field

produced by a (induced) dipole moment of m =— 27ra3HinC.

Optional | 70,2 Perturbation Theory of Scattering

General Theory: Conside a slightly non-uniform medium with

£(x) = gy + de(x) In Sec. 10.1, ¢ of the scatterer can be
{ of any value, but the solution is more
H(X) = py +Ou(x)

restricted by the scatterer geometry.
where g, and 4, are independent of x and t (¢, and z, are not

necessarily the free space values.)

VxE=-8 = VxVxgE+g2VxB=0 1)
2
VxH=2 = 80§V><,u0H=,uOgO%D (2)
2
OH-2)= VxngOE+SO§V><(B—,u0H):—,uog()%D (3)
VxVxD=V(V-D)-V’D=-V’D (4)
H_/

The purpose of the above manipulation

= Pfree =7 s to obtain this small quantity, which
B)-4)=> can be treated as a perturbation.
V2D - 15, ;%D =~V XV x (D= £E) + £ 5V (B~ soH) (10.22)

10.2 Perturbation Theory of Scattering (continued)

Optional

Assume D, E, B, H~e ', (10.22) =
(V2 + 1tyg0@>)D =~V xV x (D — gyE) —iggoV x (B 1oH)  (10.23)
2
k

ik|x—x’

(V? +k»)G(x,X') = —475(x - X)= G(x.x) = %" Hence,
— (0) 1 3 re'k"‘_x‘ \Y% XV' (D—gOE)
D=D + 471J.d X ‘X—X" {"'igOG)V’X(B—/JOH) (1024)

Note: (i) D(0) is an incident plane wave which satisfies the homo-
geneous Helmholtz eq. [i.e. the RHS of (10.23) = 0]
(11) (10.24) is an integral relation, not a solution.

Let the integrand in (10.24) be of '/
J

dimension d and r > d, then x —x/|
=r—n-x and we can write D as KR x| k(o)

D=DO + A $ with ‘X_xf‘ = forr >d
3 x'e —ikn-x’ V'xV'x (]) gOE) neglect
Id (10.26)
+iggV'x (B - 1y H) §




Optional 10.2 Perturbation Theory of Scattering (continued)
jd 3x'e KXy g [a is any vector function of x.]
d3x’e iknx’ day 6aX 6az oay aax
integration j Lex ( oy ot 2k y( te; (G ox' )]
by parts —ik
YRS = [d x'e n"[lex(k a, —kzay)+ey(---)+ez(-~)]
= [d*xe™*™¥i(kxa)=[d*xe ik (nxa)

= The end result is to replace "V" with "ikn"

/ nx(D-gyE)[xn
(10.26) = Ay =X [d3xe | y QS oF) (10.27)
0 nx (B ﬂoH)
\s*- A ‘ €: polarization
From (10.3), we obtain —— = *5— | vector of the (10.28)
dQ ‘D(O)‘ scattered wave
Note: (i) A, gives the scattered field D, = A, e™"/r [hence H,
through (10.2)]. A, 1s NOT a vector potential.
(1) (10.27) 1s an integral equation for A, NOT a solution. .

Optional

10.2 Perturbation Theory of Scattering (continued)

Born Approximation: Rewrite (10.27)
A = %Jd3x'e_ik“'xl {[nx(D —&E)]xn —%nx(B —,uOH)} (10.27)
For a linear medium,

D(x) =[¢&, + de(x) | E(x) D-¢,E = 5¢(x)E
{B(x) — [t + S(x) | H(x) {B ~ ptgH = Su(x)H
We see from (10.29) that the integrand of (10.27) is composed of

small quantities 0cE and ouH. To first order in o€ and Ju, we only

(10.29)

need to use the zero order (or unperturbed) E® and H? for E and
H in 0¢E and ouH. Thus, we write

D-&,E =5s(x)E ~ %&(X) p© | This approx., called the

& Born approx., turns the
integral eq. (10.27) into
a solution for Ag..

(10.30)
OH(X) B (0)

Ho

B — uyH = ou(x)H =

Optional

10.2 Perturbation Theory of Scattering (continued)

Let the unperturbed fields be those of a plane wave,
D@ (x) = £,Dye™™*, B (x) = \/‘TOn x D (x)

Sub. D(O) (X) and B( )(X) into (10 30) /\/\,> O ——'9110

then sub. (10.30) into (10.27), and finally "“g
multiply the result by £*/D, n
Se(x')
8* A(l) 2 |q X, *-80 TO
I ) (10.31)

+(nxg*)-(nyxgy) ", —
where g = k(ny —n). The absolute square of (10.3 1) gives the

differential scattering cross section through (10.28).

do _ ‘8*'A5c‘2
dQ D(O)2

(10.28)

Optional

10.2 Perturbation Theory of Scattering (continued)

Example: Scattering by a uniform dielectric sphere with
e=gtdgand u =y,

J‘d IqX
_ra.n2 (27
_jor dr'f;

y=1
_ a r2 1 Liqry
=27, r'=dr’ [Iqr e }y:_l

_Ax (e ’ r_ acosqga Sil’lqa
—?’Tjorsm(qr)dr _47{— 2 + 7 }

y y
1 ’_J% . / ’
d¢"[ dcoserelqrcose

Thus, from (10.31) (let ou =0)
g Ag _ K2 @(8*.8 ){sinqa—qacosqa}
20 0

Dy q3
ga—0 k2 3 55 (8 £ )

) g
SinX ~ X—¢ X, X > 0
1

2
cosX=l-5x, x>0

20




Optlonal 10.2 Perturbation Theory of Scattering (continued)

2
Sub. % =k?a’ g * (£%£) into do _le L (10.28)
ga—0 dQ ‘D(O)‘
2
~ k43l o lgx.g [?
:ql;go(dg)mm_k a® 2| Jg* g (10.32)
in agreement with d 2 =k*a® ggr > \s 30‘ (10.6) in the limit

& =¢lgg > 1.

Question: (10.6) and (10.32) both give the differential scattering
cross section (do/dQY) of a dielectric sphere with radius much
smaller than the wavelength. (10.6) is valid for arbitrary values of
& (= € /gy). It reduces to (10.32) in the limit & — 1. A physical
effect in included in (10.6) [but not in (10.32)] that keeps do/dQ at

a finite value in the limit g, — 00 ? What is it? Explain why it keeps
do/dQ finite.

21

10.2 Perturbation Theory of Scattering (continued)
Blue Sky and Red Sunset: Scattering by gases
D=gE+P (434)= D=gy)E+Np=¢)E+ Ny &E =¢E
Macroscopically, we have p: dipole moment per molecule
g:go(“‘N?/mol) P = Vmo1é0E

Microscopically, we may write | ¥moi: molecular polarizability
[see (4.72) & (4.73)]

N: no of molecules/unit volume

< &, when spreaded over
the size of the molecule

E(X) =)+ ZVmol€00(X—X ) = 06(X) =&)X Ymo0(x—x;j) (10.33)
J J

Since £(x) fluctuates microscopically with a weak variation dg(x),
we may apply the perturbation theory just developed.
Sub. 58(X) into (10.31), then sub. (10.31) into (10.28), we obtain

g% = 16 L \ymm\ e* so\ F(q), [assume ou = 0]
5 |for randomly (11str1buted molecules |
_ s olaxj iq(xj—xj) v [ total no of molecules
where F(q) ZJ: © % % © [(incoherent radiation) 10. 19)2

10.2 Perturbation Theory of Scattering (continued)

We now relate y,,, to the macroscopic quantities &, n, and N.

€|

& 21 _2(n-]) =
8_50(1+N7mol) = Vmol = ON Tanz (N ) index of
do refraction

=13 = e*gy F
aQ 16 2‘7m0|‘ ‘ 0‘ (q) :\/%z

4”2N2‘n 1‘ e* 50‘ F(q)

= Total scattering cross section per molecule is given by

~FQq )Ida dQ [F(q):total number of scatterers]
€
2 1 2 0
:W\ R et N N D
2% In—1?  |e*eg =cos(5-0)=sing (10.34)
3zN e
j_lsm fdcos@ =7 g
g is on the g)-n
plane for dipole
scatterer (p.458).
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10.2 Perturbation Theory of Scattering (continued)
Let | be the intensity (power/unit area) of the incident wave, then

dl B (10.34) and (10.35) describe what
—=—-INo =-la, ) ; .
dx 4 is known as Rayleigh scattering.
2k
where o = No = 3—\n 1\ [attenuation coefficient] (10.35)
7N
Discussion :

) 4 Violet light (1 =410 nm) is scattered more than
(i) aock” = {red light (2 = 650 nm) by a factor of (630)* = 6.3.
(i1) In (10.35),n—-1= % Nymo (see last page). Hence, o oc N 1f
atoms (or molecules) of the same type are added or taken out.
(ii1) The atoms in a gas radiate incoherently, but the charges within
an atom radiate coherently. Suppose there are 10 electron-ion
pairs in each atom and we were able to split all the atoms into
a gas of single electron-ion pairs, each with the same p. Then, the
macroscopic N remains the same, but the split pairs no longer
radiate coherently, resulting in a scattered intensity 10 times

weaker. This explains the factor in (10.35) (See p. 468). 24




10.2 Perturbation Theory of Scattering (continued)

In the earth atmosphere, « is a

function of X. Then,
VAT
dl (X) _ ‘ Winter solstice

N _| (X)Q(X) ) 7 21 December
dx =

= 1(x)=1,

e—joxa(x)dx

the Solar System", \\‘.‘« Vermnal equinox

—="s 21March

Royal Astro. Soc.
1 Questions:

| (i) Why is the sky blue
i instead of violet?
o6 (i1) Why is it more likely

0.8F 0.8

0.6

/1

to get a sunburn in
the summer?

sunrise, 0.2 (1i1) Hot summer/cold
sunset \{ winter results mostly

from a different cause
than in (i1). What is it;?5

0.4

0.2F

I
I
K
I
[} .
0.4 [1\violet red
I
|
[}
I
1

NN R N Lo o1 1111 11111111110

0 10 20 30 40
[3r(x)dx in Atmosphere

10.5 Scalar Diffraction Theory

plane wave
g lowest-order approximation
1 ray tracing (geometrical optics)
—
next-order approximation
plane wave diffraction theory (physical optics)
—
—d _;,W» d such that these
— b T 2 lines are almost parallel
- First minimum (complete cancellation)

occurs atdsinfd =1 = Hz% ifd> A.
Nature of the diffraction problem: Physically, the diffraction
problem here is not separable from the scattering problem. However,
the treatments are different. The scattering problem treated in this
chapter assumes A >> d. The scalar diffraction theory is most valid
when d >>/, for which it gives the next-order correction to the
geometrical optics (see p. 478). 26

10.5 Scalar Diffraction Theory (continued)

Justification of the Scalar Diffraction Theory: Physically,
electronic responses (J, p) of the aperture material to the incident
wave generate electromagnetic fields in addition to dissipating some
of the incident wave. Far from the edges of the aperture, J and p
principally result in reflection of the incident wave, while J and p
near the edges produce fields that pass to the right of the aperture
together with the incident wave. The superposed fields form the
diffraction pattern. In the far zone of the diffraction region ( >a few
A from the aperture), the fields take the form of an EM wave, which
obeys diffraction

E=7Z,Hxn [see(9.19)] region

— incident —>
—

radiation
field in the
far zone

— wave

where Z, = (y4,/&)"* is the impedance

of vacuum, and n is the direction of %\
wave propagation. _—

complicated fields
in the near zone 27

10.5 Scalar Diffraction Theory (continued)

Thus, E, H, and n are mutually orthogonal, and the amplitudes of
E and H have a known ratio Z,. Therefore, one component of the
fields gives most of the information (phase and intensity, but not the
polarization) about the far fields. This justifies a scalar theory for the
diffraction phenomenon and explains why it has been the basis of
most of the work on diffraction.

The Kirchhoff Integral Formula: In the scattering problem, we
calculate the scattered fields due to J and p associated with the dipole
moments induced by the incident fields. In the diffraction problem,
the fields are produced in part by the induced J and p on the aperture
material, but J and o do not appear explicitly in field equations. They
are implicit in the boundary conditions. The Kirchhoff integral
formula expresses the diffracted fields in terms of the boundary fields.
Determination of the near fields requires accurate handling of the
b.c.’s (very few cases can be solved completely). However, the far
fields can be fairly accurately determined with crude b.c.’s. 28




10.5 Scalar Diffraction Theory (continued)

Refer to the figures to the right. S; is an

opaque surface with aperture(s) on it. The

diffraction region (Region II) is the volume !

enclosed by S; and S,. Sources
Let W(x,t) = ¥(x)e ' be a scalar field

(a component of E or B), then
(v2 + kz)‘P(x) =0, k=a/c (10.73)

Note: ¥ gives the phase and intensity, but not S
the polarization, of the fields. .

Below, we will express W in Region II in terms
of ¥ and %—\5 on the boundary surfaces by making
use of Green's thm.
0
@V -V x = (07 -y O (139)

29

10.5 Scalar Diffraction Theory (continued)
Rewrite jv(¢V21//—t//V2¢)d3X:§>S (¢?ﬁ—l//2ﬁ)da (1.35)
Introduce a Green's function G(x, x") satisfying
(V2 +k?)G(x,x) =-5(x—x') (10.74)
Apply (1.35) to the volume enclosed by S; and S,

(Region IT) and let w =¥ and ¢ =G. Sources
k¥ (x) —k2G(x,x)-5(x—x')

[, XIG(x,x) VAP (x') - P(x') VG (x,X)]

= —q531+52 daTG(x,x)n"- V¥ (x)-¥x)n'-V'G(x,x')] ]
For an observation point x inside region II,

Y(x)= <j551+82 daf?(x)n’'-V'G(x,x)-G(x,x)n'-V'P(x)]  (10.75)

Note: n" is inwardly directed into the volume instead of outwardly
directed as in (1.35). 30

Is this a gOOd choice? 10.5 Scalar Diffraction Theory (continued)

ikR

Solution of (10.74): G(x,x') = ar WithR=x- X' (10.76)

Green function with
outgoing wave b.c.

- (note V'R =-VR)

= V6= (§6) VR= k(1) S L
i ﬁ_ elkR

Hence, 4R 4n R2

W) =~ s, da S [ VW) +ik (14 ) B w(x) ] (10.77)

We assume that ¥ on 82 is transmitted through S; Then, ‘IJ\S
and the contribution to the integral in (10.77) from S, vanishes as the
inverse of the radius of the sphere. Assume further that the radius goes
to infinity and hence neglect the contribution from S,. (10.77) then
gives the Kirchhoff integral formula

- \P(x)=—ﬁjslda'%n'-[vw(x%ik(1+¢)R\P(x')] (10.79)

da‘lf

Y in Region II 1s now expressed in terms of ¥ an on S;. .

10.5 Scalar Diffraction Theory (continued)
Kirchhoff Approximation: Rewrite (10.79),

Y= [ da'e [V'\P(x')+ ik(l+$)%‘1’(x’)} (10.79)

(10.79) is an integral equation for Y. It becomes a solution for ¥
under the Kirchhoff approximation, which consists of

1.¥ and %—lﬁ vanish everywhere on S; except in the openings.

2. ¥ and %—\ﬁ in the openings are those of the incident

wave in the absence of any obstacles. cources
There are, however, mathematical inconsistencies with
the Kirchhoff approximation'

I

1.If¥Y and Vamsh on any finite surface, then ¥ = 0 everywhere
(true for both Laplace and Helmholtz equations).
2.(10.79) does not yield on S; the assumed values of ¥ and %—‘If

Approximations made here work best for 4 < d, and fail badly for
A ~dorAd>d (d: size of the aperture or obstacle). See p.478.
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10.5 Scalar Diffraction Theory (continued)

Remove the mathematical inconsistencies in the Kirchhoff
Approximation by the choice of a proper Green function.

If ¥ is known on the surface S, a Dirichet Green function Gp (x,X),
satisfying Gp (x,x')=0 for x' on S is required.

A generalized Kirchhoff integral:

Y(x)= js daT¥(x)n’-V'G(x,x")] (10.81)

Consider a plane screen with aperature (s). The method of images
can be used to give the Dirichlet Green functions explicit form:

(10.84)

w1 [gikR kR
GD(X,X)—M(R— R’ )

':(X_X,ay_y'az'i'zr)

P . - R —(X— X; /' 7 — ZI
e where { x-X'=(x=x,y-y,2-2)
=X—
kR i ' ’ ’
T (14 L) "R p(x)da’ (10.85)
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10.5 Scalar Diffraction Theory (continued)

A Special Case*: Diffraction of spherical waves originating

from a point source at P..
ikR

P(x)=2" (by Kirchhoff approximation) (5)

RS
= V¥Y(X)= (1+kR )RS G(x,x) = 42;2 (6)

Sub. (5), (6) into (10.79), assume kR & kR > 1 and hence neglect
O(kR ) and O( ) terms, we obtain
ik(R+
P(P)= I | dare L (- %) 7)

RR, R, R .
(observatlon)
p 9%
point

Py (point source) I

* More cases can be found in Marion & ¢ (origin of coordinates)
Heald, “Classical Electromagnetic
Radiation,” following Eq. (12.14). l
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10.5 Scalar Diffraction Theory (continued)

As we will see from the following example, the scalar diffraction
theory agrees with observations, although it is highly artificial.
Example: Diffraction by a circular disk. For simplicity, we assume
(1) P, and P are on the axis of the disk.

(i1) P4 and P are at equal distance from the disk.

R, =R
da’ = 27rdr RZ=r?+b>= r'dr'=RdR

B Hence, da’ = 27RdR ®)
n'-%z—cos@-—ﬁ, n'-R-cosg=12 N

10.5 Scalar Diffraction Theory (continued)

k(R+
Sub. (8) into W(P) = K [ da are Rs>nr.(1;s_l;) o
2|kR
:>‘P(P)_—|kbj.\/—2 o OR ©)
Integrating by parts [J‘alz udv = uv‘zlz _I;‘z vdu, u = é’ dv = e?MRyR]
p2ikR [* ez'kR
Y(P)=-ikb
2ikR?| 722 3 N R3
(integrating by parts again)
Q2ikR |* Q2ikR |7 he2ikvd?+b?
=—ikb| —— -5 tor |2 (10)
2ikR?| 27 4K°RY| 2(d +b )
—_
negligible,
since kR > 1 36




10.5 Scalar Diffraction Theory (continued)
Questions: 5
: : ) 2 2 2 12
(i) Intensity at P: 1(P)oc|¥(P) =b /[4(d +b ) 1 (11)
Since I (P) > 0 for all b, there is always a bright spot (Fresnel

bright spot) at any point on the axis. What is the physical reason?
20kR

(i) lim ' (P) = (12)

2b
In the limit of no obsticle (d — 0), W(P) reduces to the exact
solution for a point source at P, i.e. the approximate solution in (10)
becomes the exact solution in (12). What is the mathematical reason?

— The diffraction pattern of a disk (from
Halliday, Resnick, and Walker). Note the
Fresnel bright spot at the center of the
pattern. The concentric diffraction rings are
not predictable by (11), which applies only
to fields on the axis.

37

10.5 Scalar Diffraction Theory (continued)

A historical anecdote about the Fresnel bright spot: (The following paragraphs
are taken from Halliday, Resnick, and Walker.)

“Diffraction finds a ready explanation in the wave theory of light. However, this
theory, originally advanced by Huygens and used 123 years later by Young to explain
double-slit interference, was very slow in being adopted, largely because it ran counter
to Newton’s theory that light was a stream of particles.

Newton’s view was the prevailing view in French scientific circles of the early
nineteenth century, when Augustin Fresnel was a young military engineer. Fresnel, who
believed in the wave theory of light, submitted a paper to the French Academy of
Sciences describing his experiments and his wave-theory explanations of them.

In 1819, the Academy, dominated by supporters of Newton and thinking to
challenge the wave point of view, organized a prize competition for an essay on the
subject of diffraction. Fresnel won. The Newtonians, however, were neither converted
nor silenced. One of them, S. D. Poisson, pointed out the “strange result” that if
Fresnel’s theories were correct, then light waves should flare into the shadow region of
a sphere as they pass the edge of the sphere, producing a bright spot at the center of the
shadow. The prize committee arranged a test of the famous mathematician’s prediction
and discovered that the predicted Fresnel bright spot, as we call it today, was indeed
there! Nothing builds confidence in a theory so much as having one of its unexpected
and counterintuitive predictions verified by experiment.” 38

Benson

Newton’s Ring

When a lens with a large radius of curvature is place on a flat plate,
as in Fig. 37.19, a thin film of air is formed. When Newton is
illuminated with mono-chronomatic light, circular fringes, called
Newton’s Rings, can be seen.

_

Why the center spot is dark unlike Fresnel bright spot?

This 1s the wave nature. 39

10.8 Babinet’s Principle
Rewrite W(x) =l [¢ da’ e ' [ VW (x) +ik (1+5) B W(x) ] (10.79)
/no diffraction screen, imagimary surface

t
|
!
1
I
|

s » W(P) == Jdashed surface C )
‘ /diffraction screen
s | *Wa(P) == Lqashed surface )
| - complementary diffraction screen
s ' “Wb(P) = =37 qashed surface )

on the obatacle : ¥ and %—\r}; =0

By Kirchoff' .
y ITCROLLS approx {elsewhere ¥ and %—\E = those of the source ’

we have W(P) =Y, (P)+¥,(P) [Babinet's principle] 40




10.8 Babinet’s Principle (continued)
Example: a light beam of finite width

no screen

. PY(P)=0
: } finite width
-\, (P) «¥p(P)
—_— —_— N .
complementary

—y SN

™ screen
— 5 screen —

Babinet's principle = Y (P)=%,(P)+¥,(P)=0
= Ya(P)=-¥,(P)

41

Fresnel and Fraunhofer Diffraction: (see p.491)
There is a clear diffraction pattern only

when r > d. So, In integrals such as (10.77), q { T/
R(=| x —x'|) can be approximated by r(= x |) r

ikR

P

, where the phase r=[x

everywhere except in e ]
=y

angle KR must be evaluated more accurately.
Consider three length scales: r, d, and A.

n
T X
RZ‘X—X"Z(FZ—2rr,0089+r,2)1/2 X’E//?

N b2 ron2
IR G R R e

;
2
= {l—n‘r"#é(rr'zz—(n';;) )+--}:r—n-x’+21r[r’2—(n-x’)2+--}

= kR=0(kr)+O(kd)+0(*d) +...

If the 34 and higher terms are neglected, we have the Fraunhofer
diffraction (far field). If the 3™ term is kept, but higher order terms
are neglected, we have the Fresnel diffraction (near field). 2

Homework of Chap. 10

Problems: 2, 3, 7,424

43




Chapter 11: Special Theory of Relativity

(Ref.: Marion & Heald, “Classical Electromagnetic Radiation,”
3rd ed., Ch. 14)

Einstein’s special theory of relativity is based on two postulates:

1. Laws of physics are invariant in form in all Lorentz frames (In
relativity, we often call the inertial frame a Lorentz frame.)

2. The speed of light in vacuum has the same value ¢ in all Lorentz
frames, independent of the motion of the source.

The basics of the theory are covered in Appendix A on an
elementary level with an emphasis on the Lorentz transformation and
relativistic momentum/energy. Here, we examine relativity in the
four-dimensional space of X and ¢, which provides the framework for
us to examine the laws of mechanics and electromagnetism. The
contents of the lecture notes depart considerably from Ch.11 of
Jackson. Instead, we follow Ch. 14 of Marion.

In the lecture notes, section numbers do not follow Jackson.

Section 1: Definitions and Operation Rules of Tensors of
Different Ranks in the 4-Dimensional Space
The Lorentz Transformation :
Consider two Lorentz frames, K and K'. Frame K’ moves along
the common z-axis with constant speed v, relative to frame K.
Assume that at t =¢' = 0, coordinate axes of frames K and K’
overlap. Postulate 2 leads to the following Lorentz transformation
for space and time coordinates. [derived in Appendix A, Eq. (A.15),
where the relative motion is assumed to be along the x-axis. ]

!

X'=x A B CR A
=y , (Y20
, K K :
z :7/0 (Z—Vot) Vo Z, z (1)
t'=y,(t— Z—g z) y oy Frames K and K’

coincide at ¢t =¢" = 0.

2 1
where y, =(1- V—g) 2 is the Lorentz factor for the transformation.
c

11.1 Definitions and Operation Rules of ... (continued)

A note about notation: In many books, the relative speed between
two frames is denoted by v and the particle velocity in a given frame
is denoted by u. This eventually leads to two definitions for the same
notation y:

y=(1- 2 )—% {Lorentz factor for the transformation,}
2 Jackson (11.17)

_ 2,-J [ Lorentz factor of a particle in a given frame,
y=(1-%) 2
? Jackson (11.46) and (11.51) '

To avoid confusion with the notation y (e.g. when we perform a
Lorentz transformation of the Lorentz factor of a particle), we will
denote the relative speed between two frames by v, and the particle
velocity by v throughout this chapter, and thus define

2 1
7o =(1-"0)"2 [Lorentz factor for the transformation]
C

_1
y=(- %) 2 [Lorentz factor of a particle in a given frame].
C

3

11.1 Definitions and Operation Rules of ... (continued)
Four - Dimension Space Quantities and Operation Rules :
Define a position vector in the 4-dimensional space of X and ¢ as
X =(x,y, z, ict) = (X, ict)

0 0

_ 1 0 0
and a 4-D matrix as a,,,, =
z 0 0
[z =1—4, row number]

[4-vector] |spatial vector| !

‘ , Po=Vvy/cC
708 00

0 0 —i
[v =1-4, column number]| 70ho 7o
then, the Lorentz transformation in (1) can be written

x' 1 0 0 0 X
V' 0 1 0 0 g @)
= or X,,= X a,,x
Z 1100y iro| 2 Lo
ict' 0 0 —i]/oﬂo 70 ict
4
and the inverse Lorentz transformation is: x, = ¥ a,, x,,. (3)

=l




11.1 Definitions and Operation Rules of ... (continued)

The a,,, matrix in (2) shows that the Lorentz transformation is
an orthogonal transformation because it satisfies

_ definition of orthogonal
%a/‘ Va1 =0y {transformation* } (#)
*See H. Goldstein, "Classical Mechanics," 2nd edition, p.134.

u by (2) x), by (2) 8, by (4)
r—’% r—’% —

Thus, Zx' =XX¥a,,x, ZaMxi X Xa,,d,; X,x,; = le
u uv ,/1/1
=x?+y? 422 -? =3t P+ 22
which is a statement of postulate 2 [see Egs. (B.1) and (B.2) in
Appendix B.]

Just as the 3-dimensional vectors (and tensors in general) are
defined by their transformation properties in the X-space, we may
define 4-vectors (and 4-tensors in general) by their transformation
properties in the (X, ¢) space and find rules for their operation.

11.1 Definitions and Operation Rules of ... (continued)

1. Any set of 4 quantities 4, (u=1-4) or A = (4, 4y, 43, 4;), which
transform in the same way as x, , 1.e.

A, - Z aluy Vo (5)
is called a 4-vector (or 4- tensor of the first rank).
The position vector X [=(x, y, z, ict)] of a point in the 4-D

space is obviously a 4-vector. As another example, the momentum
vector of a particle in the 4-D space, defined as

P=(py. Pys P2 E)=(p, B),
is a 4-vector because it transforms as [see Eq. (A.28), Appendix A.]

il 10 o0 0 [ 2]

Pyl |01 0 0 |l py o4

24 “lo 0 o 7P || P2 > pﬂ:lzlawpv
_%E,_ 100 —ivefy 7o __%_

11.1 Definitions and Operation Rules of ... (continued)

2. If a quantity @ is unchanged under the Lorentz transformation,
it is called a Lorentz scalar (or 4-vector of the zeroth rank). The
Lorentz scalar is also called a Lorentz invariant.

The Lorentz scalar is in general a function of the components
of a 4-vector. For example, we have just shown that

zx/2:zxﬁ
y7,
7] A

Hence, Zx/zl 1s a Lorentz scalar.
A

11.1 Definitions and Operation Rules of ... (continued)

3. Define the 4-D operator, O=[-2 = 0. 0 ] as the counterpart

5y’ 0z> O(ict)
of the operator V in the X-space. Then, the 4-gradient of a Lorentz

—ro® ob 8<D
scalar, OD = ox0 oy oo 8(zct)] 1s a 4-vector.

Proof : (0'®),, = 20 = za;ES;“ =Sau &P =2a,, (00), ©
\w-l

%/—/
, by (3) Transforms as a 4-vector.

4. The 4-divergence of a 4-vector, O-A = Z a , 1s a Lorentz scalar.

Proof -

A: 4-vector
=L2a A, by (5) A ;- component of A
o4, aA' B o4,
zaxv Zzaxv va Z Z Dopva Ox,, z@x =0-A (7)
%f_/
Ay by 3 =0, by (4)

= O-A is unchanged under the Lorentz transformation




11.1 Definitions and Operation Rules of ... (continued)

. 2 2
5. The 4-Laplacian operator, 0% =0-0= 2 e N ()|
e ol at o lot

1s a Lorentz scalar operator, i.e. 0@ =0°® [®@ :a Lorentz scalar].

Proof : We have shown in item 4 that the divergence of a 4-vector

is a Lorentz scalar, i.e. O'-A’ =0-A. Let @ be a Lorentz scalar, then

A’ =0'® and A =0 are both 4-vectors (see item 3). Hence,
O0A'=0-A =000 =000 = O0°0=0°d.

6. The dot product of two 4-vectors, A-B =X 4, B, , is a Lorentz scalar.

7
Proof : 4 B 6,7 by ()
! ! 14
A’-B'= ZAO'BO' _Zzam/ Vzamlel - %Zacﬂ/aoﬂ’q Bxi
VAo
:zAﬂB/I:A-B 9)

PUAT — 2 2 | a useful property of the
= ACASAAS I, ZA [orthogonal transformation

H 9

11.1 Definitions and Operation Rules of ... (continued)
Example : In frame K, a particle's position changes by dX in a
time interval d¢. Then, dX = (dx, dy, dz, icdt) is a 4-vector. Hence,
dX-dXx (= de ,dx,,) 1s a Lorentz invariant, i.e. in frame K', dx'-dx’

(=Xdx,d ﬂ) is given by dX - dX.
7

Special case: The particle is at rest in frame K’ (the rest frame of
the particle). Hence, dx' = 0and dx'= (0, 0, 0, icdr), where we have
denoted the differential time in frame K’ by d7 instead of dt’, because
frame K' is a unique frame. d is called the proper time of the particle.

P 2,2 452 2 2 2.2
%dxﬂdxﬂ = %dxﬂdxﬂ = —c'drt” =dx" +dy" +dz" —c dt

= dr=dt,|1- % = % [a Lorentz invariant] (10)
C

—dx dy dz g
where v =97e, + e, +97e_ is the velocity of the particle in frame K.

Discussion : (i) For the special case that K’ is the rest frame of the
particle, v is also the relative velocity of the 2 frames. Hence, y = y,. 10

11.1 Definitions and Operation Rules of ... (continued)

(i1) The Lorentz transformation applies only to inertial frames. If the
particle has an acceleration, d7(=49) in (10) is the differential time in
the instantaneous rest frame of the particle, in which the particle has
zero velocity but a finite acceleration. In general the speed of the rest

frame (hence y) is a function of time, 1. €. d7 = ﬁ [Jackson, (11.26)].

(i11) Consider a special case of constant particle velocity. The muon
has a lifetime of 2.2 usec in its rest frame between birth and decay. If
the lifetime is measured in a Lorentz frame in which the muon has a
constant y, then by (10), the rest-frame lifetime (7,;) and the measured
lifetime ¢, are related by

Tdecay _ tdecay dt 1 decay td
J. Thirth dr = '[ Wirth Y '[ Y tbirth di= 14 v

This expresses the phenomenon of time dilation; namely, when the
time interval of a clock's rest time (e.g.7; above) is observed in a
moving frame, it is greater by a factor of y. The invariance of 7, (=% la )

means that ;’ will have the same value in all Lorentz frames. "

11.1 Definitions and Operation Rules of ... (continued)

7. A 4-tensor of the second rank (T) is a set of 16 quantities,
T,,(u,v =1-4), which transform according to
T,L'lV =X ay/laVO'Tﬂa (11

,O

8. The dot product of a 4-tensor of the second rank and a 4-vector,

(T'A)ﬂ = ZT A . is a 4-vector.

uvvo

/%T auﬂ,aVO'T/IO' Z avaA

0,
H, 7 —
Proof = (T 'A') _ZT;'WA;/_ 2 a,uxlzavc va TioAq
A,0,a
=ZaMZTMAG=ZaM(T-A)ﬂ (12)
A o A

Transform as a 4-vector.




11.1 Definitions and Operation Rules of ... (continued)

Ty

V

9. The 4-divergence of a 4-tensor of the second rank, (O T) =X
is a 4-vector. v

Proof :
— aT’ Ox
'

(D T ),u Z ’ Z a,u/”taVO'TAO' )Y axi axa > a,u/?,avaT/”tO'

4 4.0 Va——

O Ayg

oT oT. =

= X aun Zava vo 6)?0 = zayiz ax/la :ZayA(D'T)/I (13)

A,0,a A c % A

%/—/
Transform as a 4-vector.

11.1 Definitions and Operation Rules of ... (continued)

10. A 4-tensor of the third rank is a set of 64 quantities,
G, v (4, u,v =1-4), which transform according to

Y

Problem I' If F,,,, is a 4-tensor of the second rank, show that

v =1-4) is a 4-tensor of the third rank.
Solution : F;'w = ‘zkaﬂja‘/ijk

J
aﬂz

oFyy T OF
] i
= o, Za "vkZ o, o lz 30k Gy,

5)

Transform as a 4-tensor
of the third rank.

11.1 Definitions and Operation Rules of ... (continued)

Problem 2 : Show that the set of equations,

OF, oF oF,;
uv Au
>, + o, + ox, =04, u,v=1-4) (16)

is invariant in form under the Lorentz transformation.
O}, OF

Solution : Rewrite (15): W Za/hamavk B

Change indecies in (15) as follows: 4_)]/ # _)/.1’ VoHu
. i—>k, k—>j, j—oi
1, ij
= 5= 2“&;‘%;‘“%%2 17)
ijk
Vo uA-ov,u—>A

Change indecies in (17) as follows: { ki ik, j->i

OF,, oF,
= 8x Z A2i% %k 8xk~ (18)
ijk J
Combine (15), (17), and (18), =0 by (16)

oF,, OF;, OF OFy, OF; 0OF,
MYV /1/1 vA _ Jk i ki | _
o, e, T, Uzlcaﬂiaﬂjavk( & Toy Tax )70

11.1 Definitions and Operation Rules of ... (continued)

11. If a physical law can be expressed as a relation between 4-tensors
of the same rank, then it's form is invariant in all Lorentz frames.
Example I 1f the physical law in frame K is of the form A =B,
then, 4, =Xa,, 4, = Za B,=B,,ie. A=B=A"=B". (19)

7 hv—d sy H

By,

Example 2: 1f the physical law in frame K is of the form T=F,
then, 7, = %aﬂﬂam QE = /%aﬂia F, =F]

vl uv HV?
v
T-F=T =F [i.e. invariant in form] (20)

In the following section, we examine relativistic mechanics in
4-vector formalism. In Sec. 3, we will demonstrate that laws of
electromagnetism are in variant under the Lorentz transformation
by expressing them as relations between tensors of the same rank.
From the Lorentz transformation of these tensors, we also obtain
the transformation equations for various electromagnetic quantities.




Section 2: Relativistic Mechanics

We begin with a note on the terms "conservation", "invariance",
and "covariance".

The conservation of a quantity means that it remains unchanged
in time in a given Lorentz frame. For example, the relativistic
momentum and energy of an isolated system of particles are both
conserved after a collision. This is a fundamental law to be discussed
in this Section.

The invariance of a quantity means that it is invariant in value
under a Lorentz transformation. Such a quantity is called a Lorentz
invariant or Lorentz scalar. For example, the dot product of two
4-vectors is a Lorentz invariant. However, it may or may not be a
conserved quantity. An example will be provided in this section.

The term covariance refers to physical laws. A physical law is
"covariant" if it is "invariant in form under the Lorentz transformation."
As will be shown, the new laws of relativistic mechanics and existing
laws of electromagnetism are all covariant.

11.2 Relativistic Mechanics (continued)
The 4 - Momentum (p) of a Single Particle :
As shown in (A.28), if we define the momentum of a particle as
p = ymv and energy as E = ymc* (m is called the rest mass*), then the
4-momentum, p =(p,, py, P, %), is a 4-vector, which transforms as

Px = Px ’[ ‘PP, P.E (21.1)
Py =Dy K z (21.2)
Pt =70(p: =3 E) TP P PE (21.3)
E'=y(E-vp.) K Z (21.4)

-V,
*Throughout this chapter, m and M denote the rest mass.

Discussion: In Appendix A, we first define p = ymv and E = ;/mcz,
then show that the law of conservation of momentum and energy is
covariant. Conversely, from the requirement of the covariance of this
conservation law, we can deduce the definitions of p = ymv and
E= ymc2 (see Jackson Sec. 11.5).

11.2 Relativistic Mechanics (continued)

The dot product of two 4-vectors is a Lorentz scalar, hence

1A 2 ' 2
p-p=p-p' = p’-E=p?-£ (22)

c

ie E*— pzc2 is a Lorentz scalar (invariant).

If frame K is the rest frame of the particle (i.e. p' =0, E' = mc?)
22

then p’=(0, 0, 0, imc) andp-pzp'-p'givesp E—; —m~c”, or
C
E?- pzc2 =m?*c* (23)
Since EZ - p202 is a Lorentz invariant, (23) shows that the rest
mass m is a Lorentz invariant. This has in fact been assumed in
Sec. 2 of Appendix A, where we derive the Lorentz transformation
equations for p (= ymv) and E (= }/mc2 ). (23) is a useful formula
for it relates the particle's total energy (£) to its momentum (p).
(Momentum in particle physics is often expressed in unit of GeV/c.)
For a relativistic particle, we can still speak of its (macroscopic)

kinetic energy K, defined as: K = E — me? = (y— l)mcz. 24)

11.2 Relativistic Mechanics (continued)
The 4- Momentum (P) of a System of Particles
Consider a system of particles, each with the 4-momentum
;=(Dyjs Pyjs Pz IE; /) =(P;, iE; /), j=1, 2, 3,
Since the Lorentz transformation is a linear transformation, the

sum of any number of 4-vectors also obeys the Lorentz tansformation.

Thus, P=%p; is a 4-vector and its components transform as
J

pr] _pr] (25.1)
Zpyj = Zpyj (25.2)
szj 70(szj —8%E)) (25.3)
J J J
SE;=yy(ZE; —vX pj) (25.4)
J J J
and P-P=(xp,)-(Zp,) = (Ep,)-(=p,)~(ZE; /c)? (26)
J J J J J
is a Lorentz invariant. 20




11.2 Relativistic Mechanics (continued)
1Py =1Py

J , J
L Py =2Dy
Rewrite (25): <2 , 7 v
25) zpi=r0(Zps _C%ZE]')
J J J
LE;=y(EE; -wZpy)
J J J

We see from (25) that only when all the components of P (i.e. the
three components of total momentum plus the total energy) are each
conserved in frame K will all the components of P’ be conserved.

If one component of P is not conserved, a rotation of the spatial
coordinate system can make any component of P’ (momentum or
energy) unconserved in the new spatial coordinate system. Thus, the
relativistic law of conservation must take the form as described below
in order for it to be a covariant law.

21

11.2 Relativistic Mechanics (continued)

Law of Conservation of Momentum and Energy :

For reasons just discussed, in relativity, the conservation of
momentum and energy comes in one law rather than separate laws
for the momentum and energy as in nonrelativistic mechanics. The
law states that, for an isolated system of particles,

P (before collision ) = P (after collision), (27)

which implies that ¥ p,;, X p,;, X p.;, and £ E; are each conserved,
J J J J

ie.
TP (before collision) = £ p ; (after collision) (28)
J J
Y E; (before collision) =3 E; (after collision ) (29)
J J

Since the law in (27) is expressed as a 4-vector relation, it has
the same form in all Lorentz frames [see (19)]. Thus, in frame K,

we have P’(before collision ) = P’ (after collision).
22

11.2 Relativistic Mechanics (continued)

If P is conserved, the dot product P -P must also be conserved. Thus,

EP)-EP) - =Ep)-Ep)-EH  (30)
J J J J J J

before collision after collision

Discussion :

(1) P -P for an isolated system is both a Lorentz invariant [see (26)]
and a conserved quantity [see (30)]. If the system is not isolated, it is
still a Lorentz invariant, but no longer a conserved quantity.

(ii) P (before collision ) = P (after collision) in (27) is a fundamental
law (rather than a derived relation), in which the nonrelativistic law
of conservation of momentum has been extended to include the energy,
E= ym02 . A very important aspect of this law is that it applies to all
processes in an isolated system, such as elastic and inelastic collisions,
nuclear reactions, and particle decays. As a result, the total rest mass
of the system may not be conserved, as is illustrated in the following
two problems. 23

11.2 Relativistic Mechanics (continued)

Problem 1:Two identical particles of rest mass m and equal and
opposite velocities *+ V collide head-on inelastically to form a single
particle. Find the mass and velocity of the new particle.

Solution :

m, y «—>V V< em, y (before)
M, ® (after)

cm

The total momentum before
the collision is ymVv —ymv = 0.
So the collision occurs in the center-of-momentum (CM) frame, i.e. the

frame in which the sum of the momentum of all particles vanishes. For

later comparison with the result in problem 2, we denote the mass of

the new particle by M, to indicate that it is created in the CM frame.
{Conservation of momentum = The new particle is stationary.

Conservation of energy =>ym+ym=M_,, = M., =2ym




11.2 Relativistic Mechanics (continued)

Discussion: In this problem, we | 7 ®—=>V V< em, y (before)

find M, = 2ym > 2m, i.e. rest mass M., ® (after)
has been created from the kinetic energy [(y-1)mc?] of the colliding
particles. There is no need to know what’s inside the new particle. We
only need to know its rest mass and hence the energy associated with
it. A hot object has a rest mass greater than when it’s cold. The
difference in rest mass due to an increase in temperature can in
principle be measured by its acceleration under a known force, and we
know that at least some of the added mass is in the form of thermal
energy. In many other cases, it’s not possible to know what’s inside.

Nuclear fusion and fission reactions are examples of non-
conservation of rest mass. The total rest mass is reduced after the
reaction and the mass deficit appears as kinetic energies and radiation.
In fact, all reactions (chemical or nuclear) in which energy is absorbed
(e.g. photosynthesis) or released (e.g. digestion of food) involve a
corresponding change of the reactants’ total rest mass.

25

11.2 Relativistic Mechanics (continued)
Problem 2: A particle of rest mass m and velocity v collides with
a stationary particle of the same rest mass and is absorbed by it. Find
the rest mass and velocity of the new particle.
Solution : The collision occurs in the stationary-target (ST) frame. So,
we denote the new particle mass by M ,, velocity by V,, and Lorentz
factor by y,, [=(1- ng / 02)_1/ 1. (m,y,V are also ST frame quantities.)

Conservation of momentum = ymv =y MV, (31
Conservation of energy = (y+Dm=y,M, (32)
31

E37; = Vg }/+1 v m, ye—>V e m (before)

Mst’ 7st e _) Vst (after)

(32) =M, =""m

st

2.2
M= D =2 211 =1 ]
Ve 02(;/+1)

=m2 (2 + 2y +1-52 Z—;):mz[yz(l—z—j)z +2y+1]=2m>(y +1)

=M, =2(y+1)m 26

11.2 Relativistic Mechanics (continued)

Discussion :
In problem 1 (CM frame), the new |m, y ® >V V<« em, y (before)
particle's mass is M, = 2ym. (33) M, ® (after)

In problem 2 (ST frame), the new m, y «—>V e m (before)
particle's mass is M, =2(1+y)m. (34) My, 7y ® >V (after)
Note that y is the Lorentz factor of the particle(s) before collision.

In particle physics experiments, M c or M S,c is the energy
available for the creation of new particles (why not y M ,c 29).

The rest energy of the electron or positron is mc* =0.511 MeV. If
2 TeV of energy is needed for particle creation (i.e. M Cmcz =2TeV
or M Stcz =2 TeV), then the required y of the colliding particle(s) is

by (33), M, c* =2ymc* =2 TeV = y ~1.957x10° [CM frame]

by (34), M ,c* = [2(1+ 7)me® =2 TeV = y ~ 7.66x10'2 [ST frame]

The energy associated with y is to be obtained in an accelerator. "

11.2 Relativistic Mechanics (continued)

Thus,

kinetic energy needed in CM frame _ 2x(1. 957x10°

D xs5x107
kinetic energy needed in ST frame

7.66x10'2-1
This shows that far less kinetic energy is needed in the CM
frame than in the ST frame. In fact, all the kinetic energy of the

two colliding particles [2x (1.957 x 10° - 1)x0.511 MeV =2 TeV]
is put in use in the CM frame, while in the ST frame, 99.99995%
of the kinetic energy of the incident particle is wasted! This is why

the International Linear Collider (ILC) project plans to accelerate
both electrons and positirons to energies up to 1 TeV so that the
the collision occurs in the CM frame.
Question: Why use a long linear accelerator instead of a more
compact circular accelerator?

28




Section 3: Covariance of Electrodynamics

In the special theory of relativity, Newton's law has been radically
modified. The electromagnetic laws do not need any modification
because they are already covariant. However, the covariance of these
laws (such as Maxwell equations) is not immediately clear from the
equations by which they are usually represented.

Our purpose in this section is to prove that the EM laws are indeed
covariant by casting them into relations between 4-tensors of the same
rank [see (19) and (20)]. We will do this by first defining 4-tensors in
terms of known EM quantities and forming equations with 4-tensors
of the same rank, then show that one or more existing EM laws are
implicit in each equation. This will prove that the laws are convariant

11.3 Covariance of Electrodynamics (continued)

1. Define a 4-current as (cp, Jy» J s I, ) < Griffiths

‘]E(‘]x9 Jy’ Jz’ icp):(‘J: icp) (35)
and use it to form a relation
0J=0 (36)

Then, (36) gives the law of conservation of charge

) 0 ) oicp) _ .1.9P _
aJer@Jy“LngJr 2Get) =0 =V J+§—O (5.2)

Thus, the definition of J in (35) as a 4-vector leads to the
covariant representation [(36)] of the EM law in (5.2). This
in turn justifies the definition of J as a 4-vector. The Lorentz
transformation of J then gives

and justify the defined quantities to be legitimate 4-tensors. J.=J, Jo Iy Jo p
Furthermore, Lorentz transformations of these tensors will yield J 'y =J, K z
the tranformation equations for various EM quantities. JL=y(J, —vpp) T T T (37)
Note: Jackson switches to the Gausian unit system starting from o' =r(p- L(z) J.) K' g S
Ch. 11. From here on, we also adopt the Gaussian unit system. 29 c -V 30
11.3 Covariance of Electrodynamics (continued) (K, Ay, 4y, 4., ) « Griffiths 11.3 Covariance of Electrodynamics (continued)
2. Define a 4-potential as A =(4,, 4,,, Azf iD) (38) Note: The source-free wave equation can be directly put into the
_ _ . {DZA —_47] (39) covariant form: Vzt// — %8—22(// =0 = I:lzl// =0. (42)
and write the covariant relations: ¢ ¢t ot
OA=0 (40) 3. Define a 4-wavenumber as
VIA- L&A _dn] 6.15) k=(ky ky, ke, 1) = (K, 72) (43)
(39)= ) Cl th Then, k'-x'=k-x = K'-X'—a&'t' =k -X—wt
Ve c—zycb =TI v+ Hogo G =0 « Griffie-16) = Invariance of the phase
(40)= V-A+ %%d) =0 [Lorenz condition] (6.14) By the same argument, we find that kK defined in (43) is a

This again shows the consistency of A being a 4-vector and
(6.14)-(6.16) being covariant laws. The Lorentz transformation

A% =A, ’{ A, A, A, D

fA th 1 Hh * )

0 engives | o _ . (4 _Vog P4y
L =70(4: K ) ]:-Ax,Ay,AZ,CD
Q' =yy(@-24,) XK' z

-V 31

(41)

legitimate 4-vector. Thus, its Lorentz transformation gives

k. =k
e ckyoky, ko
s K z (44)
kz:70(kz_67w) ik o
xX° ya zo
K'T———HZ'

@' =y (@—vyk,)
-V

relativistic Doppler shift

32




11.3 Covariance of Electrodynamics (continued)

4. Define a field strength tensor of the second rank F [Marion, (14.62)]:

[0 B, -B, -iE,

Tt
IIl
~~~
N
D
p—a

: , [V-D=p
| iE, iE, IE, 0 | :SI VxH—%_J:
- V-E =4z Sho go
Then,I:l-F:‘%”J = { 155 4y ! vV-B=0
VxB— c ot cJ : VXE+%=O'
In the covariant set of equations [see (16)] '~~~ "~ ~""77 777"
oF oF F,,'s are elements
Ay a*ﬂ+%F =0 (Auv=1-4)|
2o G G of F in (45).

set (4, 1,v)=(1,2,3)=V-B=0
set (4, 1,v)=(1,2,4), (1,3,4), and(234):>V><E+% =0.

33

11.3 Covariance of Electrodynamics (continued)

OF
The covariant equations, O+ F = 4” J and ‘; e 8’1’”’ + %I; =0,

give the set of Maxwell equations in free space. This shows that
Maxwell equatins are covariant as well as justifies the definition of

F as a tensor of the second rank. Thus, F,, Z 4,0, gives

the transformation equations for E and B (see Marlon Sec. 14.6.)

Ei=E ) \ -E,, E., By, B,
E’Lzyo(El+co><BL o
B =B, ‘ - Ej, E|. By, B}

, v

J_:7O(BJ__69XEJ_ — V
In (46), v, is the velocity of frame K’ relative to frame K, and
"||" and " L" refer to the direction of v,.

See Appendix C for a summary of transformation equations. »

11.3 Covariance of Electrodynamics (continued)

dp_ e

5. The covariant equation™, dr

e F-P (dr is a Lorentz scalar),
gives (Marion, p.439)

dP _dt e

= dt _ dt mc F P, Wherep—(px,py,pz,lE)andp ymV

0 B, -B, -iE,
= -B. 0 B, -iE,
B, -B, —iE,
i lEx iEy ik, 0
d ., _ £ — 1
dt Px = yme —£(E, +]/m(v -v,B,)) e(E+cv><B)x
d A _ 1 relativistic equation
ar® —e(E+cv><B) [of motion } (47)
2d ., _ .. This equation is
me” g7 =evE [implicit in (47). }

*In order for this equation to be covariant, the charge e must be
a Lorentz invariant. This has been experimentally established
(see Jackson, p.554).

35

11.3 Covariance of Electrodynamics (continued)

6. In a similar manner, we can demonstrate the covariance of the
conservation laws for field/mechanical energy and field/
mechanical momentum, as given by Jackson (6.111) and (6.122):

i(Emech + Efelg) = —$,Nn-Sda (6.111)

dl«(pmech_'_pﬁeld) @Z ﬁnﬁda (6.122)

36




11.3 Covariance of Electrodynamics (continued)
Consider the general form of the relativistic equation of motion in
47), %p =F, where F is any force, such as the gravitational force.

Special case I: F || v (one-dimensional problem)

F =4 (ymv)= mvd +7md"—7mdt (yzv +1) =y mdr (48)

\ﬁ/——/
ve\-1/2 2.2
212 ve/e
=—71(1——2> ”(i;)@ -P 32| fpute
c 2’ dt Adt |2y 2+1-v% /e _ :7/2
1-v2/c? 1-v2 /2

= F = 7/3 ma = Constant force does not cause constant acceleration.
Special case 2:F L v (= 7 = const., as in uniform circular motion)

—F=d p dt(]/mV) ym V (Undulator & Wiggler) (49)

Questzons. (1) Itis sometlmes said that a particle has two masses,
y3m and y m. Why? (ii) The acceleration is not necessarily
parallel to the force. Give an example. (iii) Relate (48) to (A.23). 37

11.3 Covariance of Electrodynamics (continued)

Problem I: A police radar operates on a frequency of @. What is
the frequency received by the police after the signal is reflected from
a car moving at the velocity v? Vo

NS o, K 9 sk

Solution: We do it in 2 steps. _
police car

Step 1. In the police frame, the
radar sends a wave (@, K) toward
the car, which is moving at velocity v, (direction shown in the figure).
Transformming o to the car frame by (44), we obtain

o' =y (0—vyk,),
where £, is the component of K along v, i.e. k, =k cos & (see figure.)

Thus, —-k —olc Yo = (1 . %/02)—1/2

Vo cos<9)

shown in police frame

@' =yo(@—kvy) =y, (@—kvycos0) = 7060(1—

This is the Dopper-shifted frequency detected by the car. It is also
the frequency of the wave reflected by the car as seen in the car frame. ;5

11.3 Covariance of Electrodynamics (continued)

Step 2. In the car frame (see figure), the car sends the reflected
wave (@', K") back to the car at the frequency

o = 7/060(1 % 0059)

In the car frame, the police is

car

60,, K'énre

,  police
K 4

. . . . \

moving at velocity v, (direction 0 n ' "
shown in the fugure) relative to ShOWIL I cat trame
the car. Tranformming @' to the police frame by (44), we obtain the

frequency observed by the police (Doppler shifted again)
Vv €OS 6?)

" =y (0 —kLvy) =y (@ —k'vy cos 0) = yyo'(1-
vocosé’) (1 2vocost9

=yoa(l- ) since v, < c.

If the radar frequency is f(=w/27) = 10° Hz and the car moves
away from the police (8 = 0) at vy =150 km/hr, the police would

detect a frequency /(= "/ 27) shifted by Af ~ - f=* 2V ~—278 Hz.

39

11.3 Covariance of Electrodynamics (continued)

Problem 2: An observer in the laboratory sees an infinite electron
beam of radius a and uniform charge density p, moving axially at
velocity v,. What force does he see on an electron at a distance r (< a)
from the axis? Assume the electron moves axially at the velocity v,,.

Solution: The problem can be readily solved in the lab frame. Here,
we will take a long route for an exercise on some of the transformation
equations just derived. ay

The current density J, in the lab frame is l ’ O P> Iz v (5vp) >

J, =pvy. [p has anegative value.] K z
By (37), we have, in the beam frame
JL=70(Jz =wp) =0,
K’ 2
p'=ro(p="57.)=rop(1-" )=7’;- =V
We see that the lab frame p is greater than the beam frame p' by

the factor y. This is because every unit length of the beam in its rest
frame is contracted by this factor when viewed in the lab frame.

a
‘ Top’(=p/7o)3 Jr=v;=0

40




11.3 Covariance of Electrodynamics (continued)

In the beam frame, J. =0, p' = p/y, ; hence, there is only a radial

electric field. Gauss law, 95 E'- da':4ﬂfv, p'd’x', TE..B, (=B, =0)
K

then gives 277r'E]. =4n(mp'r '2) forr'<a

TE (E| =B/ =B/ =0)
2mpr F=r p= / ] © ==
70 =r, P =P/ >V,

e,) into lab-frame E | and B | by using

= E =2z0'r" =

We now transform E'| (= E

the reverse transformation equations in (46), in which we set v, = ve,.

' 2
E, = (B —0x x BY)=70E"L =7 7['0 e, =27pre,

2
B, = 70(§/+ IxE| )= 70(v0e) ;,Tpre = 0277/0’”90

Thus, the force f on an electron (in the lab frame) is

f= —e(E+%V>< B) = —e[Zﬂprer +[1:(v0ez)><(vco27zpreg)}

2
i 2repr e=
:—27zepr(1—c—g)er =— yz'o e, {

le| is positive. For an }
0

electron beam, p is negative. |

Homework of Chap. 11

Problems: 3,4, 5,6,9
16, 19, 23, 30
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Appendix A: Relativity in College Physics
(Ref. Halliday, Resnick, and Walker, “Fundamentals of Physics”)
Section 1: The Lorentz Transformation

The Galilean Transformation: Consider 2 inertial frames S and
S'. Frame S’ moves along the common x-axis* with constant speed v,
relative to frame S. At ¢ = 0, the coordinates coincide and, at time ¢,
the position of point P is (x, y, z) in S and (x', ', z') in S". Then the
Galilean transformation gives

t is unchanged in
t {the transformation} (A1)
* In the main text, the z-axis is the ,

direction of relative motion. To g ' g
be consistent with the references J-—— X X J—
cited in this appendix, here we
assume that the relative motion A
is along the x-axis. y y

Question: How do you determine 0 | x & l
a reference frame is inertial? Vol =Y

X'=x-vyt,y' =y, 2=z, 1=




11.A.1 The Lorentz Transformation (continued)

Einstein's Postulates: The laws of classical mehanics do not vary
in form under the Galilean transformation. For example, (A.1) shows
F = ma in frame S transforms to F = ma’ in frame S'. However, when
the same transformation is applied to the wave equation in vacuum,

sz// — %%l/f =0, its form changes completely (see Jackson, p. 516.)
C

So, when Einstein began his work on relativity, there were two
approaches to make a/l the laws of physics invariant in form in all
inertial frames: (1) Modify the theory of electromagnetism so that it is
invariant in form under the Galilean transformation; or (2) Modify the
Galilean transformation and the laws of mechanics so that the laws of
both mechanics and electromagnetism are invariant in form under the
new transformation. Einstein took the second approach. His special
theory of relativity is based on 2 postulates:

1. Laws of physics are invariant in form in all inertial frames.

2. The speed of light in vacuum has the same value ¢ in all inertial

frames, independent of the motion of the source. 45

11.A.1 The Lorentz Transformation (continued)

Event and Simultaneity: An event is something (such as the
emission of a light pulse by a source) which happens at position (x, y,
z) and time 7. An event [described collectively as (x, y, z, f) in a given
frame] will have different coordinates in different frames. The
frames mentioned here and later are all inertial frames.

The time of an event can be measured by methods we normally
think of. But, in relativity, time measurement often requires high
precision (which can at least be done in a thought experiment) and
we must bear in mind the frame in which the time is measured. The
simplest way to measure time is to read the clock at the position of
the event. If the clock is away from the event, the time of the event
is the time shown on the clock (at the instant the light signal of the
event reaches the clock) minus the time delay due to the travel of the
signal (at speed c¢) from the event’s position to the clock’s position.
The position of the event and the measured time of the event all refer
to the frame in which the observer and the clock are both at rest (but
the source which generates the event is not necessarily at rest.) 46

11.A.1 The Lorentz Transformation (continued)

Two events are simultaneous in a reference frame if they have the
same time coordinate in that frame, whether or not they have the same
spatial coordinates. Simultaneity can be experimentally tested as
follows. If two events are detected at the same instant by an observer
located midway, they are simultaneous in the observer’s frame.

Within a given frame, the concept of space and time in the special
theory of relativity is not different from our usual concept of space
and time. However, radical differences arise when space and time
coordinates of an event measured in one frame are compared with
those measured in another frame. In making the comparison, we find
that space and time are entangled with each other in relativity. For
example, two simultaneous events occurring at different positions in
frame S will no longer be simultaneous in frame §’, and their time
difference in S’ depends upon their spatial separation in S. In relativity,
space and time coordinates transform according to the Lorentz
transformation, which is derived below from postulate 2. 4

11.A.1 The Lorentz Transformation (continued)

Time Dilation: Consider a pulse of light emitted by a source on a
train (event 1). It travels vertically upward for a distance D, then is
reflected back by a mirror, and later detected at the source (event 2).

In the train frame (Fig. 1), the time interval between the 2 events is
Aty =20, (A.2) mirror
In the lab frame (Fig. 2), the train, mirror,
and source are all moving at speed v, butthe D
light still travels at speed ¢ (by postulate 2).
So, the time interval of the 2 events is

_2L
At =42, (A.3)
where L =[(1voAt)* +D*1'%  (A4)
Eliminating D and L from

(A.2)-(A.4), we obtain

where y, =[1-v3 /2TV2 (A6)

Fig. 1

Event 2 (at the same
location as event 1)

source




11.A.1 The Lorentz Transformation (continued)
Question: Why is D the same in both frames?

Lengths perpendicular to the direction of motion are the same in
both frames, i.e. the y and z coordinates transform as:
yi=y, Z'=z (A.7)
The proof of this is by contradiction. .
)

Suppose that we have two identically
manufactured pieces of pipe (see figure).

)l

\
from H. C. Ohanian, "Physics"

They cannot fit inside each other because
they have identical radius. Imagine that one
pipe is at rest on the ground and the other
is at rest on the train. If the motion of the train relative to the ground
were to bring about a transverse contraction of the train pipe, then by
symmetry, the motion of the ground pipe relative to the train would
have to bring about a contraction of the ground pipe. But these two
effects are contradictory, since in one case the train pipe would fit
inside the ground pipe, and in the other case it would fit outside. 49

11.A.1 The Lorentz Transformation (continued)

Going back to (A.5): At = y,At,. In this equation, Az, is the time
interval of 2 events measured in a special frame in which the 2 events
occur at the same position. It is called the proper time. Viewed in any
other frame, these 2 events will occur at different positions and, by
(A.5), their time interval (Af¢) will be greater than the proper time by a
factor of y,. This 1s known as the effect of time dilation.

The muon has an average lifetime of 2.2 usec (between birth and
decay) in its rest frame. In a 1977 experiment at CERN, muons were
accelerated to a speed of 0.9994c¢, corresponding to a y, value of 28.87.
Within experimental error, the measured average lifetime of these
muons was indeed 28.87x2.2 = 63.5 usec. In another experiment, two
synchronized clocks with near perfect precision showed slightly
different readings after one had been flown around the world. The
difference was again in agreement with (A.5).

Time dilation runs counter to our intuition, because it is rooted in a

postulate which also runs counter to our intuition. 5

11.A.1 The Lorentz Transformation (continued)

The Twin Paradox: Suppose someone travels on a spaceship with
a Lorentz factor of y, = 20 (in the earth frame) and his twin brother
stays on earth. Then, by time dilation, every day measured by the
traveling twin in the spaceship frame (this is his proper time) will be
20 days when measured by the earth twin in the earth frame. So the
earth twin ages faster and his traveling brother will be 19 years
younger when he returns to earth after an 1-year journey (neglect the
spaceship’s acceleration/deceleration periods). The paradox is: if the
traveling twin measures the age of his earth twin, will he conclude that
he himself ages faster by the same argument of time dilation?

There is no paradox at all. Only the earth twin’s measurement is
correct because he is always in an inertial frame. The traveling twin
will have to be accelerated and decelerated in the spaceship. During
these periods, he cannot use the special theory of relativity (Einstein’s
2 postulates refer to inertial frames.) In fact, he will confirm the
measurement of his earth twin if he uses Einstein’s general theory of
relativity, which deals with accelerating reference frames. 51

11.A.1 The Lorentz Transformation (continued)
Length Contraction: Assume that planet neptune is stationary in
the earth frame and at a distance L, from earth (Fig. 1). A spaceship is
traveling at speed v, to neptune. The duration of the trip, measured on

earth, is At =Ly /vy. (A.8)
In the spaceship's frame ” .
(Fig. 2), both earth and neptune -’ 5 Fig. 1

move at speed vy. The duration | cth spaceship  neptune
of the trip, Aty, is the interval [V~ ) S e Fig.2
between the departure of the from Giancoli, "Physics for Scientists and Engineers"

earth and the arrival of the neptune. This is the "proper time" of the
spaceship because both events occur at the same position. Thus,

by (A.5) Aty = At/ y, (A9)
At can be used to calculate the earth-naptune distance as viewed
on the spaceship L =vyAt. (A.10)
Eliminating At and A¢, from (A.8)-(A.10), we obtain
_L
L= %o (A.11)




11.A.1 The Lorentz Transformation (continued)

In (A.11), L = Ly/y,, L,is the length of an object (or, in the above
example, the earth-neptune distance) measured in the rest frame of the
object (i.e. the frame in which the object is at rest). Length measured
in this special frame is called the proper length. Viewed in any other
frame, the object will be moving and, by (A.11), its length will be less
than the proper length by a factor of y,. This is known as the effect of
length contraction. Note that the contraction effect applies only to
lengths along the direction of motion.

Length contraction is a direct consequence of time dilation [see
(A.9)]. It is therefore not surprising that time dilation can be inferred
from length contraction. If, for example, the spaceship has a y, value
of 2. The earth-neptune distance, as measured in the spaceship, would
be half of that measured on earth. But the speed of earth/neptune
relative to the spaceship is still v,. So, to the spaceship, the journey’s
duration is only half of that measured on earth. Hence, one minute

elapsed in the spaceship will be 2 minutes elapsed on earth.
53

11.A.1 The Lorentz Transformation (continued)
The Lorentz Transformation: Assume frames S and S’ coincide at
t =0 and S’ moves along the common x-axis with speed v, relative to S
(see figure). A point P has coordinates (x, y, z, ) in S and (x', y', z', t')

in S’. The length x', when measured in S, is % (length contraction). So,

xX= v0t+7 or x' = yy(x—vpt). (A.12)
By symmetry or by similar argument, x =y, (x'+ vot’) (A.13)
Eliminating x from (A.12) and (A.13) [using 75 0 v / c’],
= t'=}/0(t—l}—gx) (A.14)
(A.7), (A.12), and (A.14) give the Lorentz transformation:
x" =y (x=vt) y Y
- S x' S’
r=7 A, > 5 (A.15)
z=z e e e e e o o e e ] —-...: cP
1'270(1—*?‘) ) r
y y
See Appendix B for a more ol | O I
formal derivation. Vol ) 54

11.A.1 The Lorentz Transformation (continued)

Transformation of Coordinate Difference between 2 Events :

Since the Lorentz transformation is linear, the coordinate differences
between 2 events:

inS: Ax=x,-x;, Ay=y,—y, Az=2z,—2z, At=t, -1 (A.16)

inS"AX'=x) —x;, AV =yy—y, Az’ =25 —z{, At =t; — 1] (A.17)
transform in the same manner. Thus,

Ax' = 7o (Ax —vpAr)

A =y

A =z (A.18)
r_ Vo

At —70(At—c—2Ax)

« Event 1 Ax =Xx, —x -giyentl ) Ax'=x) —x
xa ,Z,t xl’y{’Z{9 t{ ’ ! r
(s vis 215 1) Ay =y, -y AY = yh =yl
« Event 2 Az =1z, « Event 2

= —Z ’ ’ ’ ’ AZ,ZZ'2 _Z{
(XZ, Vo, Zp, tz) 1 (x27 Y2, 2o, t2) , , ,
. At=t, -1, N Al =1, —t]
. ’

S S > 55

11.A.1 The Lorentz Transformation (continued)

Discussion on simultaneity: Consider the transformation equation
for the time interval between two events

A" = yo(At —:gm) [from (A.18)] " . C o C :
It indicates that 2 simultaneous S i ->X
events in frame S (A7 = 0) which My o Comonsc vy @
occur at different positions (Ax # 0) , 4 source
will not be simultaneous in frame S’ -V X

(At" # 0). This can be explained on the basis of postulate 2 through the
following example.

In frame S, a pulse of light emitted midway between points 4 and
B (see figure) will reach 4 and B at the same time, 1.e. the two events
(arrivals of the signals at A and B) are simultaneous in frame S. In
frame S’, the signal still travels at speed ¢ in both directions, but B is
moving toward the light and 4 away from it. So, the signal will reach
B first and the two events are no longer simultaneous. 56




11.A.1 The Lorentz Transformation (continued)

The example discussed above
P >ee > A b A
can be examined quantitatively as . s .
follows. A Csouqce B
Assume that, in frame S, the S 7 X
two events are spatially separated ;

Vy < @ CenOry(C V) < ©
0 4 PN 0

the distance is shorter by a factor
of y, due to length contraction, i.e.
Ax
Ax' = N
Thus, in frame S’, the signals reach 4 and B with a time
difference of

source

by a distance Ax. Observed in S’, T
S!

-V

Ax Ax
o 20 20 _ A Vo _ Yo%
At =ty tA_ic+v0 v = 7’0c2—v§_ 2 Ax.

This is precisely the prediction of (A.18),
At' = ;/O(At—:—gAx) = —yco—;oAx. [A¢ =0 in frame S]

57

11.A.1 The Lorentz Transformation (continued)

Problem I In frame S, events 4 and B occur at different positions,
and event B occurs after event A. Is it posible for event B to precede
event A4 in another frame S’ moving at speed v, relative to frame S?
If so, does this mean that an effect can precede its cause?

Solution: In frame S, let the 2 events have a spatial interval
Ax = xz —x, and time interval At = ¢, —¢,. Then the time interval

At'=ty —t',, is given in (A.18): At' = ;/O(At— Yo Ax).
We see that if Af < vOAx/c then A¢' < 0, which means ‘that the
order of independent events in frame S may be reversed in frame S".

Suppose, however, that the events are connected, i.e. event B is

caused by event A. This would require a body, or a signal, to travel
from 4 to B. Rewrite (A.18) as A" = y,At(1 —Lg%). Since the fastest
C
Ax

speed for a signal to travel from 4 to B is ‘Af = > We must have v, > ¢

in order for At' < 0. This is not possible [see (A.6)] and thus the order
of connected events (cause and effect) cannot be reversed.

in frame S,

58

11.A.1 The Lorentz Transformation (continued)
Problem 2: Show that the effects of time dilation and length
contraction are implicit in the Lorentz transformation.
Solution : The time interval between 2 events transform as

At =y, (At - :—gAx) or At =y, (A" + :—gAx') If A¢' is the proper

time in S’, then the 2 events occur at the same position (Ax’ = 0).
So we use the latter equation and obtain
At = y,At" (time dilation).

The difference in the x coordinates of the 2 events transform as

=70 (Ax—vyAt) or Ax =y, (Ax"+vyAt'). Again, the question is
which equation to use. If Ax’ is the "proper length" in S, then the
two end points are at rest and their coordinates do not have to be
measured simultaneously (i.e. we do not know At¢’.) But since the
rod is moving in S, its end points must be measured simultaneously
in § (At =0). So we use the former equation and obtain

_AX' :
Ax = 7 (Iength contraction). “

11.A.1 The Lorentz Transformation (continued)
Transformation of Velocity : The Velocity of a particle is given by

V= hm (m frame $); v'= lim 2 A t' (in frame S'). (A.19)
At—>0 At'—0 V'
171
Let At — 0, yx S s X'
Vo= A Yo(Ax=1AL) _ vy=vy Y
A - Yo (Ax —voAr) A (A CTA’C) l_z%"x
y :y , Ay’ Ay Vy
AZ, — =<V, = = = (AZO)
A z Ar— Y Ax yoM 70(At_;%Ax) 70(1_V*0Vx)
t_70( t_? ) V _AZ:_ AZ VZ
ALy (Ar-" Ax) 7/0(1 VO )

Problem: A spaceship moves away from the earth at speed V-
A pulse of light is emitted from the earth in the direction toward the
sapceship. What is the speed of light measured on the spaceship?

) Vo=V, C—V
Solution: v,=c = V. =" "0 =""0_¢
X X 1 Vo VO
— 1=z
c

60




11.A.1 The Lorentz Transformation (continued)

Transformation of Acceleration : For simplicity, we first
consider the transformation of acceleration in the direction of

relative motion (i.e. dvy T

RN av
V=% [ from (A.20)] Vo dr
2Vx . S X
(vy=vo)(—2)dv

= dV;C = d\::)x — . OV() 622 : =— d‘\)/')(; 2 ° V,a dv%

=ave A=) -2 g - x'
F= (=) [from (A15) o
Cc

Hence. Wx _ 1 dvy 1 A (A.21)

Ll (- B0 T 730 di
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11.A.1 The Lorentz Transformation (continued)

By the same method, we may obtain the transformation equations
for acceleration in arbitrary directions (see Jackson Problem 11.5).

Lv

&

|
<

Lo
—
Ql\-) <

<
—

w

o
0]
J m

where "||" and " L " refer to the direction of v,,.
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11.A.1 The Lorentz Transformation (continued)

Problem : A rocket is launched from the earth into outer space.
It moves on a straight line with a constant acceleration (a') with
respect to its rest frame (Why is a’ specified in the rocket's frame?)
Calculate the time required for the rocket to accelerate from zero
speed to the final speed v, according to earth and rocket clocks.

Solution : Let S be the earth frame, S’ be the rocket rest frame,
and the one-dimensional motion be along the x-axis. The inverse
transformation of (A.21) gives (omitting subscript "x"):

' —>
Cdv_ 1 av S d_a
dt  y3(+vgy'/c?y® dt’ 0 dt
. N S[ Sy

Lorentz transformations apply to two inertial
frames. So, S’ is the instantaneous rest frame of V=0, =g
the rocket, but S’ does not accelerate with the 5 '
rocket. In S, we have v =0 and dv' / dt' = a'. -

This gives a (acceleration in S)=a'/ y;. Since S’ is the rest frame of
the rocket, y, for the transformation equals y of the rocket in S. Thus,

a:a'/yg =da'/y>, where y =(1=v* /¢*)™V? [Note: a' > a] 63

11.A.1 The Lorentz Transformation (continued)
From the expression of the acceleration in the earth frame (),
a=d'ly =d1-v* /)2, (A.23)
we may evaluate the total acceleration time as measured on earth
r= Io dt = jgf clzdv jvf r rdv = 1 ;f (- Vzcjz,z)yz ,(l_v;f/cz)l/z :

The rocket frame is accelerating. So, to find the total acceleration
time as measured on the rocket, we must still work in the earth frame
by using the relation dt’' = dt/y.

’ I+v,/c
_r ry 1 f
- IO dr’ = .[ dt = IO ya 0 1— vz/c (l—vf/c)'
We find that, in the limit v, / ¢ — 0,both 5t '
T and T' approach the expected value of o !
, o ) 3} !
Ve /a’. However, T/ T' increases rapidly as of Vi
vy /¢ —>1due to the effect of time dllatlon . _----"'T/T,
(see figure). In the figure, 7, = (1— vf /c? ) 2 YR TR TR
is the time dilation factor at the final speed v . vele 64




Section 2: Relativistic Momentum and Energy
(Ref.: H. C. Ohanian, “Physics,” 2nd ed., pp.1013-1014.)
The law of conservation of momentum states that, for an isolated
system of particles, > m, Vv, (before collision) = > m;u; (after collision).
Under the Galilean transformation, the statement is true in all
(inertial) frames. However, under the Lorentz transformation, ¥ m,V;,
though conserved in one frame, will in general not be conserved in
another frame. Thus, postulate 1 is violated if we continue to define

the momentum as mV. The theory of relativity takes a major step by
redefining (or postulating) the momentum and energy as

of a particle. It is to be distinguished from the

{p =ymv | Note: y =(1-v*/c*) "% is the Lorentz factor (A.24)
Lorentz factor y,, for the transformation. (A.25)

E= 7m02

For simplicity, we will consider only one-dimentional motion

along the x axis. The momentum and energy of a particle are then

and E = m?

_ o myy
Px xll—v)%/cz xll—v)%/cz 65

11.A.2 Relativistic Momentum and Energy (continued)

From (A.20), the velocity in frame S” is v/, = L"oz Hence, the
I=vyv / c
momentum of the particle is (assuming m has the same value in S”)
L) S m(Vx_Voz) 1
X
Vs /e 1= e i1y ) (—vevy /)P

m(vy—=vp)

= v, D, E
\/(I_VxVO/C2)2_(Vx_Vo)2/02 Y o X

Since (1-v,v,/¢*)? = (vy—v /2

2/ 2 2/ 2y Ve Ps B
=(1—v0/c )(l—vx/c ), D, becomes S” o 5 X'

pl = 1 mvy %W m >
* \/l—vg/cz \/l—v)%/c2 \/l—v(%/cz \/l—v)%/c2
v,
=1(pe= 2 E) (A.26)
Similarly, we derive the Lorentz transformation equation for energy:
E’ = yo(E—Vopx) (A27) 66

11.A.2 Relativistic Momentum and Energy (continued)

By the same method, we can extend the motion to 3 dimensions and
derive the Lorentz transformation equations for p and £. The result is

' V,
pxzyo(px_c%E) .paE
py=r, SL——‘”
p:=p: ‘ -p, E

E’:yO(E—vopx) S’ =~ x'
V,

0

(A.28) shows that p’ and £’ in S” is a linear combination of p and E
in §, with constant coefficients (i.e. the coefficients are independent of
p and £ of the particle). The same equations will therefore hold true for
the fotal momentum and energy (Xp;, X E;) of a system of particles,
P =10(E P~ 3 TE))
LP= Py
x p ;‘z =X p jz
YE; =y(XE; —voX pj)

(A.28)

(A.29)
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11.A.2 Relativistic Momentum and Energy (continued)
r Vo
ijx - 70(Zp]x _CTZEJ)

Rewrite (A29) | =F»= 2Py
x p jz =2 p jz
ZE} = 70(2Ej _VOZij)

Form this set of equations, we see that if (and only if) the total
momentum (X ;) and total energy (X E;) of a system of particles
are both conserved in S, the total momentum and total energy will
be both conserved in S’

Discussion: (1) This shows that the postulation of p = ymv and
E = ymc* will preserve the conservation law under the Lorentz
transformation. However, the conservation law must now be
extended to include both the momentum and energy.

(ii) Writing E = ymc® = (y —1)mc* + me?, we may divide the total
energy into the kinetic enery (y —1)mc? (due to motion) and a new
form energy mc” (an intrinsic energy) called the rest-mass energy.




11.A.2 Relativistic Momentum and Energy (continued)

Problem: A particle of rest mass m moves on the x-axis is attracted
to the origin by a force me’x (@ = const). It performs oscillations of
amplitude a. Express the relativistic oscillation period as a definite
integral, and obtain the 2 leading terms of this integral for small a.

Appendix B: A Formal Derivation of
the Lorentz Transformation

In Appendix A, we begin with the derivation of "time dilation" and
"length contraction" from postulate 2, followed by a derivation of the
Lorentz transformation. Here, we present a more formal (but physically

. . . . a
Solution: The period 7 is given by 7= 4,[0 %, (A.30) less transparent) approach, whereby the Lorentz transformation is
where the velocity v can be calculated from the energy equation derived directly from postulate 2. The following paragraphs are taken
: n M n
me (1—v2 /Cz)—l/z L ma?x? = mc? + L maa? (A31) from Alonso & Finn "Physics," p.92.
o S 5 . Referring to the figure to the right,
Substituting v from (A.31) into (A.30), we obtain e
suppose that at # = 0 a flash of light is A(x.2.1)
1+ (a*—x*)/2¢? : o AN
r= % Jg dx s emitted at the common position of the (x,y,2,t')
(a2—x2)1/2[1+w2(a2—x2)/ (462)} two observers. After a time ¢, observer
Expanding the integrand in powers of w? (a2 —x? )/c2 and using 0 Wln note tha}t the.hght has reached
point A4 and will write r = ct, where ¢ ~ X’
[Pdy—L — —zand [Pdy—2— =57 (for b>0), we obtai : i, 2, 2 2 /T x
R s rand jpdy o 2 Jer » WE obtain is the speed of light. Since x” + y* +z S
(by=y?) (by=y?) 2 .
5 5 =r”, we may also write
=27 |14 3w%a” ...
r= 0] [1+ 16C2 + i| 69 )Cz-l-yz+Z2 20212 (Bl) 70
11.B A Formal Derivation... (continued) 11.B A Formal Derivation... (continued)
mi ' it y , : : :
. Similarly, (?bsgwer O_, whose position y This result must be identical to (B.1). Therefore
is no longer coincident with that of O, will (A(-“Jyz’t) I
) . . (X,y,7,t') k“—=ba‘c” =0
note that the light arrives at the same point 5 -
A in a time ¢, but also with velocity c. k*vo—ba“c” =0
: c 2 22,2 _
Therefore he writes 7' = ct’, or ; N a”—k*vy/c” =1
X4y =M SN v * (B.2) Solving this set of equations, for k, a, and b, we have
Our next task is to obtain a transformation relating (B.1) and (B.2). k=a= % and b =v, /c?
1-vg/c

The symmetry of the problem suggests that y' = y and z' = z. Also since
OO’ = vt for observer O, it must be that x = vt for x' =0 (point O").
This suggests making x" = k(x —v,t), where & is a constant to be deter-
mined. Since ¢’ is different, we may also assume that ¢' = a(z — bx), where
a and b are constants to be determined (for the Galilean transformation,
k =a=1and b =0). Making all these substitutions in (B.2), we have

I (x% = 2vgxt +vgt2 )+ y* + 22 = 2a® (12 = 2bxt + b*x*) or

(k* —b*ac?)x? = 2(k*vy —ba*cH)xt + y* + 22 = (a® k3 1 2P
71

Inserting these values of &, a, and b in x" = k(x —vyt) and
t' = (a—bx), we obtain the Lorentz transformation

' X—Vyl
X = —F7——7r—
\ll—vg/cz
y'=y
R (B.3)
/= t—vyx/c?
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Appendix C: Summary of Lorentz
Transformation Equations

2 _1
For all equations, y, = (1— :—g) 2. By symmetry, equations for

the inverse transformation differ only by the sign of v, (or v)).

!
x'=x '
: S N RN
y =y , (X, Z, 1)
L2 =r (z—wt) e zz
Vo
t'=y(t—22) y oy Frames K and K’
¢ coincide att =¢'=0.
ro_ vx
v P,
Vi
* 70(1_0%"2) ‘ /V
i vy : K
2.4V T oy
7 70(1_0%‘}2) ,
[} — VZ_VO /V
z YV !
-9y K
2’ -V 73

11.B Summary of Lorentz Transformation Equations

r_ 1 a
) =—=4
I 39 Vv
VoV
7/8(1_ 02 j L’
3 ‘ K
' _ 1 Vo a
2= L fa - Yx(ax)] ,
VoV c
78( —O—zj ’ Lv
C K,
where "||" and " L " refer to the direction of v,. -V,
Special case: one dimensional motion *Vzs Qg
a=—>1 4 K z
: 73(1_‘)7(2)‘}2)3 :
C ! !
* VZ’ aZ
! — K! Z,
pic Px ! *P,P,P,E —> v,
4 Py =Py z

K
12 V,
P :yO(pz_c%E) .era P):s ])Zr, E'
E'=y(E-vp,) K’ z'

—>V
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11.B Summary of Lorentz Transformation Equations

J.=J, I Jy I p
J,=J, K z
5. ! ! ’ ! !
']Z :}/O(JZ _Vop) .J_xﬂ ‘]yﬂ Jz) p
’ V i
P'=rp=37.) K’
0
A, =4, ! A, A, A, D
. A)'/ZAy K z
. ' W
A =104 =) C Ay A A, D
4 Y ' ’
@ :70((1)_?0‘42) K Zz

—>V
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11.B Summary of Lorentz Transformation Equations

k)'c :kx . kx, ky, k.,
. k;,zky K z
k; :70(kz—:%w) ° k),ca k)';a ;7 a),
, K' z'
@' =yy(@—vyk,) -V
Ej=E c E B B
' Vo *Ep EL P Pl
. J_:70(EJ_+CXBJ_) K
) B, :B ! ' ’ ’
” H y K L4 E”, EJ_) BH, BJ_
" 0 !
BJ__70(BJ__CXEJ_) -V,

where "||" and " L " refer to the direction of v,.
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Chapter 14: Radiation by Moving Charges

converted to Gaussian unit system,
see p.782 for conversion formulae.

Review of Basic Equations : {

I

Vio-L 6 ;@ = 47T/3(€ ) [free-space inhomogeneous | (6.15)
0" | wave equations (SI)
viA-L 6 s A=—=2J(1yd) (6.16)
Vy-bhy=drten SRS 6@
Solution of (6.32) with outgoing-wave b.c.:
w(x,t) = pin (x,0) + [ X [dt'G T (x,t,x,t') f (x/,1), (6.45)
where the retarded Green's function
GH (X, t) = Ot — (t="2)]/[x—x (6.44)
1s the solution of (with outgoing-wave b.c.)
(V2 —%6—2)6 (x,t,X,t") = —475(x —x")S(t -t (6.41)

1

Review of Basic Equations (continued)

Apply (6.45) (assuming y;, =0) to (6.15) & (6.16)

d(x,1)) 3, M p(x',t)
e Y

Note: We need both @ and A to specify E and B, unless the source
has harmonic time dependence (as in Chs. 9 and 10).

A Qualitative Picture of Radiation by an Accelerated Charge:

N2
S

E-field lines surrounding a
stationary charge.

(9.2)

From R. M. Eisberg,
"Fundamentals of
Modern Physics"

A fraction of E-field lines showing
the effect of charge acceleration.

2

14.1 Liénard-Wiechert Potentials and Fields
for a Point Charge
Lienard-Wiechert Potentials for a Point Charge :
A(x,t)} _ ([t STt {éJ (f',,t')}
D(x,t) x| (X, 1)
p(x',1"), J(x',t") due to a point charge € (e carries a sign) moving
along the orbit r(t") at the velocity v(t") = dr(t") / dt’ can be written

Rewrite (9.2): {

p(x,t)=es[x' —r(t")] [P(x, 1), A(x, )] at
{J(x',t') _ EV(t')é'[x’ —r(t')] point of observation
o(x,t) =efdt L i
’ R(t")
= L o0 (1)
A(x,t)=e[dt’ R()

where R(t') = [x—r(t")| and B(t’) = v(t')/c.

14.1 Liénard-Wiechert Potentials ... (continued)

olt+RE—t]

D(x,t) = e[ dt’ e[t oLTO]

L R(t) R(t)
Rewrite (1): Bt )5[t’+R(t) 1] O] ,
where f (t') =t' + R(t')/c. @)
Using [ g(x)S[ f(x)—a]dx = 2 ‘d f((i) x;» We obtain
[ ] o X is the solution
O(x,t) = £f(x)=a.
R(t)dt/ e S 3)
Ax=[_ PO

where [ ], implies that quantities in the bracket are to be evaluated
at the retarded time t' [=t—R(t")/c].

Question : What information is needed in order to find t'?




14.1 Liénard-Wiechert Potentials ... (continued)

dx—r(t' 1
dR(T) | dt,( ) S —2xr(t) +r2 (@)

(x is a fixed position indep. of time)
—2x —r(t )+2r(t)-d it r(t )

[x2 2xr(t)+r(t’ )]

_v(t)[x-r(t)]
R()

[D(x, 1), A(x, T)] at
point of observation

=-v(t")-n(t)) (4)
= 4 ia)= L+ "= 1-p) nt) = x> 0) )
Sub. (5) into (3) gives the Lienard-Wiechert potentials
(D(X,t) = |:1_6le
(PR Jret (14.8)

_ ep
A(x,1) —[ (—pm)R }ret

14.1 ... Fields for a Point Charge (continued)

Fields for a Point Charge : Rewrite (1) and (14.8):

P Ay o t:[ e }
OO =efd g S ) FO LR L (14.8)
O S I PN t=[ o } |
At =efdr 0 U= pr |,

To obtain E(x,t) and B(x,t),

we need to differentiate d(x,1) [Px, ), A(x, )] at

point of observation
and A(x,t) with respect to x.

The RHS of (14.8) depends on x
through n and R, but the RHS of
(1) depends on x through R only.

Hence, it is more convenient to
use (1).

14.1 ... Fields for a Point Charge (continued)

LR
O(x,t)=ef dt'u
. R(t)
Rewrite (1): R(t") 0
Bt )5[t'+ ~t]

Let F(R) be any function of R, then
V.FR) =EV R=EV [x—rt)=nt)9
%/—J
/:n(t)

[P(x, 1), A(x, )] at
point of observation

e (att)
orbit of e

(6)

Use V, |x—x'|"=n|x—x' "2 (x—x).
See Sec. 1.3 of lecture notes.

o[RS RU

R (1)

VO(x,t) =€ n(t’){
(1) & (6)=

o (Bt )5[t'+R(” ] 4o

c }d«
cR(t)

14.1 ... Fields for a Point Charge (continued)

Thus, f(t)_t+R(t):>dt'—df(t) n=Ldf ),
E(x,t) =-V® _%%A where x=1-p(t")-n(t"). Use (5)

_offn o R B-n RAY 1] b

_ej[Rz5[t+C—t]+RC STt + RO ]}dt

= e,[ [lsll:zz 5[ f (t’) _t]+lfR;(l)15,[ f (t’) _t]J df (tr) [see note below]
n e \ : __
B A ) I e

2
xR ret

ek 8 (o el d - &

e[KR2+KCdt, ( » df (t) ~ df (t") dt’ — x dt’ (7)
Note: Because of the o[ f (t") —t] factor in the integrand, integration

over f (t') demands f (t')=t ort' =t —R(Tt,). But n, B, R, and x in the

integrand are all functions of t' [not f (t")]. Hnece, n, B, R, and « are to
be evaluated at the retarded time t’ [not t].




14.1 ... Fields for a Point Charge (Contlnued)

dn(t’)

To put E in a simpler form, we need to evaluate ==

and dt’ (xR).

OGO O RO 6O g1y -p) 6
oty —Chn CB(t) [E(x, 1), B(x, 1)] at
R(t) by (4) point of observation

LRy =S A1-p) n)IR)

=(1- Bn)dt,R R (B0
—CBn

= —c(1-B-n)(B-n)~Rp-n—Rp-8

<~1Sub. (8) for Eﬂ

=—¢(1-B-n)(B-n)~Rp-n—c[ (n-p)° - 5* |

14.1 ... Fields for a Point Charge (continued)

Hh e[ R o)
[ [n(B-m)—B1-B]- "5 [cﬂ “eBm-RE et

—e{ M+
e[l +"PasP _ePpe 1+§[;+%ﬂret
KK
:n—|23 (np)[1-(pm)
3R2[(" B)(1—p-n)—(n—B)(S° Bn)}
T[—B(l—ﬁ-n)ﬂn—ﬁ)(ﬁ-n)]

=e{ s [(m=B)(1= )1+ L [n(-n)—B—[BB-n)—B-(B-n)]]}rer

1/}/2 nx(nxp) nx(pxP)
=—c(B-n)(1-p-n+p-n)+cB>—Rp-n ~ B )xf
) . e - nx[(nﬁlxﬂ (14.14)
=cf”—c(p-n)—R(p-n) 9) yo(1-pn)'R* | (I-Bn)'R |
9 10
14.1 ... Fields for a Point Charge (continued) 14.1 ... Fields for a Point Charge (continued)
To derive B(x,t), we Write (7) .
E(xt)—e[ ™ ( )] E(x,t) = ({n_ﬁ} +e{n><[(n—|3)><|3q (14.14)
R ret xLCD) U P(1-pny'R? o S| (-pn)’R |,
= n(t)xE(x,t)= e[— ddt’ (n P )]ret = % (KR B) — g—{l X ﬂ Rewrite velocity field (océ) accelﬂ_eration field
= e[i— (n><|3) an ] nx[i) c[n(n- B [3] ' (ocz and Ln)

KC dt’ ret K‘R B(x,t) =n(t') x E(x,t) (14.13)
piopcratcsloniR(Efonl ) Tt (an) CHXB Discussion: [E(x, t), B(x, t)] at
[only R(t") depends on x] B+ R o] (1) The velocity fields are essentially pointjof,obse’rvation

B(x,t) = A =efdt'Vx[ R(T) ] static fields falling off as 1/ R>.
(1) .. .
 STE+R(t) /ot ' v v " (11) For the acceleration fields,
=efdt [V[R(t')]]XB(t) 1 W:(t') yxatyvxal (14.13) and (14.14) show that
S[t+R()/c—t] | St+RE)/ ol Eorms o E(x,1), B(x,1), and n(t’) are
- ej dt- R2 cR IVR®)=B(t) mutually orthogonal, as is typical
[ (an) nxp } ~ following the of radiation fields.
KC dt' xR KR2 ret same steps as Note: (i) Unit vector n(t") points from the retarded position to x.
= B(x,t) =n(t") xE(x,1) inderiving (7) | (14.13) (ii) t and t" are quantities in the same reference frame. 12




14.1 ... Fields for a Point Charge (continued)

E(x,t):e[n_ﬁ} +e{“x[(“_w} (14.14)
ret

72(1_5'“)3R2 ret ¢ (1—B-n)3R

Rewrite velocity field (ociz) accel;:raﬁon field
R (ocg and 1n)
B(x,t) =n(t")x E(x,t) (14.13)

(ii1) E and B in general have a [E(x, t), B(x, t)] at

broad frequency spectrum. Since we point of observation
have derived (14.13) and (14.14)
from (9.2), which applies to a non-
dispersive medium (in this case, the
vacuum), singals at all frequencies
travel at speed c. Hence, E and B

at t depend only on the instantaneous

motion of the point charge at a single retarded position r(t").

orbit of e

14.1 ... Fields for a Point Charge (continued)

E(x,t)=e[“‘B } +§{nx[(n_ﬁ)xﬂ} (14.14)
ret

7/2(1—[3~n)3 R? ret (I—B‘n)3 R

Rewrite acceleration field

(ocg and 1n)

B(x,t) =n(t")x E(x,t) (14.13)
[E(x, 1), B(x, )] at
point of observation

velocity field (océ)

(iv) Quantities in the brackets are
to be evaluated at the retarded time t',
which is the solution of

t'+x—r(t')/c=t,

where the orbit r(t') is a specified
function of t'. Thus, t" depends on x
and t. This makes the final expression
for E a function of x and t, as shown on the LHS of (14.14). For the
same reason, the unit vector n(t") in (14.13), hence the final expression
for B, also depends on x and t [see (14.17a) below]. »

14.1 ... Fields for a Point Charge (continued)

(v) The relation between observer's time and the retarded time,
t'=t—|[x—r(t")/c, indicates that a signal from the charge travels
at speed C toward the observer, independent of the motion of the
charge (Einstein's postulate 2).

An Illustration of Time Retardation and Length Contraction:
Computer generated graphics show the visual appearance of a three-
dimensional lattice of rods and balls moving toward you at various
speeds. (from Benson, “University Physics”)

At 0.99c, the
At 0.5¢c, therods At 0.95c, the rods lattice appears
severely distorted.

The normal
view at rest

appear straight.  appear bent.

14.1 ... Fields for a Point Charge (continued)

Charge in Uniform Motion : v =const. 3 ool
' i int P’ : . | observati
P'P = distance between point P" and point P | } servation
_yR_ & se,
=V c= ﬂR 3

P'Q=/fRcosd=p-nR
0Q=R-P'Q=R(1-§-n)
(0Q)* =[R(1-p-m)]

-1’ —(PQ)’ t 1/ ; =0
242 b2

b2+v
—~= —
= r? —p*R%sin’@
2 22 P22 2, .2,2:2
=b* +vt* - g%b :ﬁ(b +rovit?)
In the above expressions, R and n are retarded quantities (P is a

constant). Hence, [R(1-8- n)]Iret = %(b2 +y2vt)l2




14.1 ... Fields for a Point Charge (continued)

v=const. > E = e[ ]ret [velocity field]

1 B : point of

2{& ,_9_ \ ;bsr::r\-'ation
ne,—f-e g
=E,=E-e, = e[(zp)z]ret / e

~eL g e oo (AT
eyb AT !
=" — 3 | i3 (14.17a)
(b2+7/2vzt2) eatt & eatt e t=0
\.
[same as (11. 1592) , [R(I_B'n)]ret :%(bz +32v22)2 last page
COoS
R e - Bel _ o[ _CosO-p _ eyvy
By =E-e =¢[; (1-pn)'R 3 Iret e[yz(l_p'n)st]ret (0247222

E; =0 by symmetry.
3 y sy ry Cosg_ﬁzﬂRgv\t\_ﬂZQ.
t < 0 on the left side of the origin (t = 0).

14.1 ... Fields for a Point Charge (continued)
B =n(t") xE(x,t) = (cos fe, +sinbe, ) x(E,e, + Ee, )
=(E, cos@—E;sin0)e;
So, the only nonvanishing component of B is By

B, =E, cosd —E,sinf = 5[ (BR+VIt) -Vt 2] = BE,

LR+V b (b2+)/2v2 2)
R R .
Discussion: (i) Rewrite the E- and B-fields  pomtol
eyvit - A (}/—m
(bz +y2v2t2)
eyb b
B, = 2 27/2 22
(b +y°v4t ) !
M
B; = SE,

As expected, the final expressions for E and B are functions of
the observer's position (x = be,) and time (t), although the fields are

generated by the charge at the retarded position (P) and time (t"). s

14.1 ... Fields for a Point Charge (continued)

B ) ) point of
(i1) Rewrite the E-field at point O . ;bservation
_ e / e,
= 32
(b2+}/2V2t2)
eyb b
5= 2,222\
(b +y°vit ) ,
i \ ul
E _ vt BRI
E, b eatt' eatt t=0

= If e > 0, E is directed from the charge's present position P (i.e.
position at the time of observation) to the observation point O,
although E is generated by the charge at the retarded position P'.

= Since b and t can be given arbitrary (positive or negative) values,
this direction relation applies to all observation points around the
charge. Thus, E-field lines around the charge are straight lines
emanating from (or, if € <0, converging to) the present position P. |

14.1 ... Fields for a Point Charge (continued)

. . \  point of
(ii1) Rewrite the E-field at point O observation
E = e]/V"[‘ O——e,
LT 5 52
(b +y-v4t )
2 ) AV
o %

E-field
lines — y=1 € v e v
7=3 y =2600

20




14.1 ... Fields for a Point Charge (continued) e

. . . z point of
(iv) Rewrite the E-field at point O \ T observation
E}/V‘t‘ / \O—?el
By = 2., ,222)2
(b +y-v4t ) g
E — eyb )
2= 3/2
2, .,2,2:2
(b +yovat ) L

E, has a maximum
value at t =0, when e
passes through point M.
€
E;™ =Ey(t=0)=1;
: 1 pmax _b
E, is down to 53 E, ™ att= W
EZ (t:%) 1
Emax 5 /5 same as (11.153)
2 o

= Duration of appeciable E,: At = % 21

14.1 ... Fields for a Point Charge (continued)

Electrodynamics in a Cavity : As shown in the figure, an electron
bunch moving uniformly on the axis with y = 2600 is about to enter

a cavity. Since E| = (2600)3 E,, the E-field lines of every electron are
concentrated in a flat disk with the electron at the center (velocity
field). As a result, the electrons hardly "see" each other, because the
(axial) electric forces between these electrons are negligible®. Then, as
the bunch enters the cavity, the acceleration fields emerge (next page).

- | - v
electron bunch cavit E-fleld
Vz._c) y hnes \ y= 2600

*Question: The negligible electric force betwen any 2 electrons
implies that the axial acceleration of either electron is negligible.
However, the acceleration will be non-negligible when it is viewed

in the lab frame. Why? [See lecture notes, Ch. 11, Eq. (A.23).] »

14.1 ... Fields for a Point Charge (continued)

Fields in the cavity produced by a y = 2600 electron bunch

(1

2

Combined "velocity" and "acceleration”
fields formed by a single electron bunch
(from Ch. Wang, NSRRC). Fields behind
the bunch are called the wake fields.

Question: How do the electrons get decelerated in the cavity? 23

14.1 ... Fields for a Point Charge (continued)

The lowest order (TM,,,) mode_ E-field lines of several cavity modes
is excited by the injection of high (from L. H. Chang, NSRRC)
power microwaves from a klystron.
The axial electric field of this
mode is used to accelerate the
electrons.

Wake fields left in the cavity by
the electron bunch can be viewed
as the superposition of the
complete set of cavity eigenmodes.

One or more of the higher-order |

I=t longitudngl mode Ist tronfverse made
1502551 MHs {+TA3ETS Miz

2nd Irensverse mode
121294.065 Mz

— % E FlELD LINES

mOdeS may thus be I'GSOl’lal’lﬂy 3rd longitudngl meds 3rd l[runweise Jauin

F= 1551295 WH; =TT 079
reinforced by a succession of 7
electron bunches to grow to —=J — =%\ —

significant amplitude and interfere — —
with the acceleration process. | 2




14.2 Total Power Radiated by an Accelerated Charge

nx[(n—]})xlﬂ:|
(I-pn)’R o

acceleration field

= S [Ex, D n(t)

. : —e| "B g
Rewrite (14.14) : E(x,t) = e|:;/2(1—[5~n)3 R2:| + C|:

velocity field
S Ex D x[n(t) < E(x,1)]

S(x,1)
Larmor's Formula : Neglect the velocity field and take the limit
p — 0 (= retarded y, R, B, n = present , R, B, n). Then,

_C _
_EExB_

lim E(x, t)~ nx(nx[}) n

p—0 el |V

limS-n = e ‘HX(nXB)‘Z o \nxﬂ‘ztsm@
= =0 R’ ) ‘B

dP

= M 46 = 4m:‘“x(“x|3)‘ = onxB (14.20)

power radiated
unit solid angle”’

:?M sin? © [ peak at@zg} (14.21)
T

25

14.2 Total Power Radiated by... (continued)

2 '
= 2 _ 2¢? |dp~ | Larmor's
= }lﬂlop [dPda= 3\ T=%0 e [formula } (14.23)
Note that all quantities in Secs. 14.1-14.4 are real. Hence,
%—It) ?jlt) ((jjlt) [In Jackson, this is denoted by( )2 }

Relativistic Generalization : The expression in (14.23) can be
generalized to a relativistic form in which P is a Lorentz invariant
and applicable to all electron energies. The procedure is as follows.

P=(p, E) (4-vect 2
p— (p, ;) (4-vector) — dt N gP —~P-= 2e223 EITP (14.24)
tor (Lorentz scalar) 3 - 3
— 2e dj _1(dE
Interms of pand E: P = dr| "2 (d ) (14.25)

2
dp _1(dE)2 (10)
dt| ¢2\dt
(10) agrees with results derived directly from (14.14) (See Sec. 14.3)%

. _ i 2e2 2
Convert to lab time by dz = x P= s {

14.2 Total Power Radiated by... (continued)

- 2e2C3 Y { ((jj? - —(%%) } in (10) can be put in different forms:
2. -1 2 2.1 )
:(l—vi) =y :(l—gj) :(I_W)
|O2 p2 \!
= 7’ _1+m2C2:>7 (1+m02)
48 =me® 4y =mc? (1+ 2)2 "
2P dp Note: dit) expresses both
= CZ M - Ldj £ di : d litud
- T~ ymdt Vit irection and amp mé €
2(1+m202)2 variations of p, but dit)
dp dE only expresses the
Sub. Vg for ‘g in (10) / amplitude variation of p.
2

27

14.2 Total Power Radiated by... (continued)

il LN
:mzczﬂ%—y m% (‘(’j{)— > (1-pB)
-t () v 2w o0 ()|
=m2c2_ ) (B B 27 (BB 47

rme?| (B-B) +(1-47 B | = im’c | B () - 5
- yimic?| p —\Bxﬁ\ ?| —@xb)-exa) (12)

=(a-c)(b-d)—(a-d)(b-c)

Sub. (12) into (10

=P =2 7°|[B’ - pxp’

(14.26)

28




14.2 Total Power Radiated by... (continued)

Example 1: Linear accelerator (p || accelerating force F)

p (P )2}
d =(‘3?)2:’ P- 25 (%) 0a)

3\ dt
=P 2 () dp:th}

2
Rewrite (11): P = 3%6%3 7/2

For linear acceleration,

m
do _dE _p| (14.28)

3m2c3 \ dX dE = Fdx/ — dt = dx
2¢*> dE1d 5 e
P _3m2c3 dxv A4t _ 2¢2 1dE ~ \mc2) dE
(dj) d 3m2cdV X ~ 3me?2 dx
dt t V~C —

3.7x10~1° m/MeV

AN
dE

P: radiated power. 3= externally supplied power

: dE Radiation losses are completely
Typically, dx < S0 MeV/m = [negligible in linear accelerators.

14.2 Total Power Radiated by... (continued)

Example 2: Circular accelerator (e. g. synchrotron)

gk

: .p—_2e
Rewrite (11): P = Il

For circular accelerators, LIPS p . Thus,
2

. 2e2 2/dp

T 3m2c3/ | dt
dp _ d(pep) _ do _ . degdg
at = ot = Pdieo+es dt = Pde dt = 7P

1 ible -€,
_ dp| _ negligible o
dt| P (=Y p= ;/mv
2e2 2 2 2 l

Note that (14.31) is an exact expression for P if the particle is in

uniform circular motion, i.e. if ?TI? =0. 30

14.2 Total Power Radiated by... (continued)
- .p . 2e%c p4 4
Rewrite (14.31): P = ?ﬂ y

= OE =radiation loss per revolution
_ 2Lp P

B~
~A4r e2 3.4 7 ~2 [E(in GeV)]*
3 p By =~ 8.85x10 po(in meters) MeV

1 keV, for early synchrontrons (accelerators)
~<72keV, forthe 1.3 GeV NSRRC synchrontron} storage

8.85 MeV, for the 10 GeV Cornell synchrontron
Total power radiated in circular electron accelerators:
P(in watts) =10° x SE(in MeV)x J (in amp)

rings
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14.2 Total Power Radiated by... (continued)

Problem: If a charge is in uniform circular motion, (14.31) is an
exact expression for the total power it radiates. Show that the total
power has the same value as viewed in the rest frame of the particle.

Solution: Consider an instantaneous position of the charge located
at the bottom of its orbit, where the charge moves horizontally to the
right at velocity v, (upper figure) and the acceleration a; points
vertically upward with a; = vg / p ( p 1s the radius of the circle).
Viewed in the rest frame of the charge (lower figure), we have
[see Eq. (A.22) in Ch. 11 of lecture notes]

al= 1L 4 2
70( - c2 ) 0 . .at vo
1 Vo e
"o 1 Yo (o K
a| = Yo [aL—C—zx(axv)]
2 MAAY !
70 (1_ (():2 ) al(l—vg/cz) )gaL

Kl
Thus, a;=0and a’, = 7ia,. -V, .




14.2 Total Power Radiated by... (continued)

Thus, the acceleration of the charge is vertically upward in both
frames and they are related by
' 2
a, =ya
Since the charge is at rest in frame K’,
Larmor's formula in (14.23) becomes exact,

which gives K €
22 2 2 2e¢2 4.2
Pr=2e |y = 28]y 2 = 287,45 ,
3C3 ‘V ‘ 3C3 ‘ L‘ 3C3 v 2l TaL
,l e
:E7/4£:72e20ﬂ47/4 a :ﬁ K
303 pz 3,02 L P —> VO

This is the same power as viewed in the lab frame [see (14.31)].
The result here, P = P’, is consistent with the fact the total radiated
power is a Lorentz invariant [see (14.24)]. However, the angular
distribution of radiation will be different in the two frames. We will
show later in (14.44) that for the same acceleration, the angular

distribution depends sensitively on particle's velocity. “

14.3 Angular Distribution of Radiation Emitted
by an Accelerated Charge

{nx[(n—ﬁ)XB]}

(1-pn)’R

O|m

: , _ n—f
Rewrite (14.14) : E(x,1) = e{ﬁ(l_ﬂ'“)w}ret +

power per unit area
at observation point

A
S(x,1) = 2 E(x,t) x B(x, 1)
= 2 EGDx[n(t") < E(x,1)]

velocity field acceleration field

[E(x, 1), B(x, )] at
point of observation

= S [E(x,0) n(t")
= S(x,t)-n(t) = S E(x,t)]
(Neglect the velocity field)
.12
nx[(n—ﬁ)xﬁ}
(1-np)

_ e’ )1

=Sl (14.35)

ret
34

14.3 Angular Distribution of Radiation... (continued)

In this section (as in Sec. 14.2), we are interested in the angular
distribution of power radiated by the charge. But S(x,t)-n(t") =
&\E(x,t)\z in (14.35) gives the power per unit area received at the

observation point. Power radiated by the charge into a unit solid angle
[dP(t")/dQ] is in general different from the power received over the
area subtending the solid angle [dP(t)/dQ]. The reason is that motion
of the charge toward (away from) the observation point will shorten
(Iengthen) the radiated pulse, which results in increased (decreased)
power at the observation point because the total energy received must
equal the total energy radiated (conservation of energy).

Thus, to express the power radiated
in terms of the power received, we need
to determine the ratio of dt (received
pulse length) to dt’ (radiated pulse
length).

35

14.3 Angular Distribution of Radiation... (continued)

Observation time t and radiation time t’ are related by

_¢r R(M) 7
t=t+—¢" Use (4): B = v(t)-n(t)
Thus, 3t =141 R®) 2B ()

= A pulse of duration dt received at x and t is radiated by the charge
at r(t") and t’ for a duration of dt' = dt/[1-B(t") -n(t")]. Note that
dt and dt’ are quantities in the same reference frame (lab frame).

R*(t)S(x,t)-n(t) dt = R*(t)S(x,t)-n(t) &L dt’

dP(t)/dQ dP(t')/dQ
power received | | power radiated by
atx and t charge at r(t') and t'

unit solid angle

unit solid angle

In both dzg) and d(l;’g()t)’ dQ is

with respect to the charge.




14.3 Angular Distribution of Radiation... (continued)

Rewrite R%(t)S(x,t)-n(t")dt =

R*(t)S(x,t)-n(t") &L dt’

dP(t)/dQ dP(t)/dQ
dP(t) _dP() dt _ o2 v : A
= %o —W@_R (t")S(x,t)-n(t)[1-B(t)-n(t")]
2
=1-p(t") n(t") ) nx (n—[})x'}
=L g by (14.35)
ret
2 B 27 dP(t
) _ nx[(n—p)xp] ' (14.38)

dQ " 4zc (1--nY " elatr) X

where n, B, B are to be evaluated

at the retarded time t'. (14.38) gives r
the power radiated into a unit solid

14.3 Angular Distribution of Radiation... (continued)

Case L B||p 2 ‘ o ]‘
n x ><B
~4re (1-B- n % .8,B

Rewrite (14.38): dp(t )

Bxp=0 dP(t):eV sin” 0 14.39
{nx (nx |3)‘2 = “3‘2 sin’ 9} - dQ 4z’ (1-Bcos 49)5 (1439

g ith (14.26
= p)=[d0 ~3650% [0 14y

For f « 1, (14.39) reduces to Larmor's result (14.21), with the
radiation peaking at € =90°. But as # — 1, the angular distribution
is tipped forward more and more s<1
and increases in magnitude, with
the maximum intensity at

angle in the directio.n of n in terms : . 0 1 =COS~ [w(, 1+154% - 1)} (14.40)
of the charge e and instantaneous  and f of the particle. 37 38
14.3 Angular Distribution of Radiation... (continued) 14.3 Angular Distribution of Radiation... (continued)
! 2 — 3 2 :
As /1, we have 0 < 1. Hence, Case2: p Lp. In D) ° nx[(n ")XSB] , 1 (14.38)
_ ~1— _1p2 ] 4zC  (1-B-n) n
1-fcosf =1 ,8(1 291) let{B”ez’B”ex 0 |
~ ! =sind +sin @si +cos 6 '
1] e (1-p)1+ ) +6£ n =sin cos¢ezx sin @sin ge,, + cos Oe, i
2 2 dP(t) _ g2 v sin? @cos? ¢ é > b7
2 = 40 3 L= 5 s S 1 (14.44)
—i+9——i(l+ 292) 47’ (1-fcosb) y (l—ﬁcose) P AN
T2 T2 207 A
2 e 2 e’c ,B agree with (14.31)]
o 2 = P(t)= dQ =2 [ " =
= gim PO st sel? 5 (70) (14.41) Pan 00255 "] *TZQ/ (14.47)
p-1 47¢ (1-Bcosb) c (1+7292) v 3 %
1 . . . 1
Orrax = 27 [angle of maximum intensity] (14.40) lim dg(t ) 2(% 6 “;‘ . [1 ~ 472922002822 q » g y> (14.45)
dP(t po1 9T 120 (14707 g
= 2> 16’2 ( )dQ 1 _mc2 | root mean J
<" >2= W =y T E [square angle} (14.42) O,0x =0 [angle of maximum intensity] 7

39

<> ; [= narrow cone like a searchlight] 40




14.4 Radiation Emitted by a Charge in Arbitrary,
Extremely Relativistic Motion

In Secs. 14.2 and 14.3, we examined the radiation problem from
the viewpoint of the charged particle and expresssed the radiated
power in terms of the instantaneous B and p of the particle.

From here on, we will switch our viewpoint to the observer.

The emphasis will also be switched from the power of radiation to
the frequency spectrum of the signal received at the observervation
point.

To find the spectrum, we need to first know the time history of the
observed ratiation. Hence, we can no longer stick to instantaneous
quantities as in Secs. 14.2 and 14.3. We must now follow the particle's
orbit. As the particle travels along its orbit, it continuously radiates
toward the observer. A Fourier transform of the time-dependent signal
received then reveals its sprectral contents.

We will be interested only in perpendicular acceleration (B L p).
The reason is as follows. 4l

14.4 Radiation Emitted by a Charge with y>>1 (continued)

2
P(t')= 262 (f;‘?) , forBlIp (14.27)

Rewrite

P(t) = , forpLp (14.47)

i
which implies P(f L B) = ;/2 P(BIIB) for the same accelerating force.

Hence, for a charge with > 1 in arbitrary motion, we may
neglect P(t) due to f || p and consider only P(t") due to p L p. The
instantaneous radius of curvature p can be expressed in terms of the
perpendicular component of the acceleration (V| ) as follows.

2
FL = 7”/1) =ymv,
) ) For acceleration L to v, the
=p=V" ~ O effective mass is ym. See (14.48)
VisaVe lecture notes, Ch. 11, Eq. (49).
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The Spectral Width for § Lp: 1
Angular distribution of radiation: < 6% >2~
= The observer is illuminated by light emitted

observer

in an arc of length d ~ % corresponding to a
(retarded time) interval of emission At’ ~ %
In the interval At’, the front edge of the pulse

travels a distance D = cAt' = 2, while the rear

edge of pulse is behind the front edge by a distance 1
_D_d=(L_nL=1Bp (=AW p
L=b d_(ﬂ 1)7_/3’7 28 v~
= Pulse duration (to the observer): T =L/cC
= A broad spectrum ranging from near O up to a
1
critical frequency of @ ~ 1~ E ~5 7/ , (14.50)

where @, 1s the maximum frequency of appreciable radiation.

14.4 Radiation Emitted by a Charge with y>>1 (continued)

Synchrotron Radiation-A Qualitative Discussion : If the charge
is in circular motion with rotation frequency @, then w,p = ¢ and

e ,07 ~ ay” T To=Lo/c

The pulses occur at the P(t) M (L = 27p)
observation point at regular T=Lic,

intervals of %(L =p/2y7)

t——-——»

T, = 2% = 27 270
@ v ¢ Pulses of synchrotron
Eexample: Cornell 10 GeV synchrotron  radiation propagating

4 radially outward
y=2x10
6 ?\/‘”‘*‘
@y =3x10° /sec %L
@, ~2.4x10" /sec (16 keV x-ra , ] LO?
c~ < ys) \)/«\—, ;
S

44




14.4 Radiation Emitted by a Charge with y>>1 (continued)

Discussion: In (14.50), @, ~ 27/3 the critical frequency
@, (maximum frequency of appreciable radiation)
scales as 73 , which explains the extremely high v y>1
frequency radiation from a synchrotron. The factor
7/3 1s due to the short duration of the pluse seen by
the observer. The pulse is shortened by two effects: v
1. Because the angular width (1/y) of the radiation
is very narrow, only the radiation emitted by an electron

over an arc of length d (= p/y) can reach the obser\?efﬁ " observer

Thus, to the electron, the emission interval is At’ ~ W

2. The electron is "chasing" its radiation. Hence,
to the observer, the received pulse length is not At'.
Instead, it is At" compressed by a factor of

1-4)(1+5)
$=1-pyny=1-p= AL
Effect 2 is exploited in a device called the free electron laser (FEL)#

\4

Id=

<R

14.4 Radiation Emitted by a Charge with y>>1 (continued)

Example: As a practical example of the pulse duration to the
observer, consider again the Cornell 10 GeV synchrotron, for
which we have

W, = 2.4x10" /sec.

Since @, ~ Tl’ the pulse duration T of a single electron is
incredibly short,

1 - -20
T~5c~4.2><10 sec

This explains the broad spectrum. However, the actual pluse in
a synchrotron does not come from a single electron, but from an
electron bunch of finite length (typically a few mm). Electrons in
the bunch radiate incoherently. So the spectrum of the bunch is the
same as that of a single electron, but the pulse duration (7) equals
the passage time of the electron bunch (7 = bunch length/c). For

example, for a bunch length of 6 mm, we have 7 = 2 x 107 sec.
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The Synchrotron as a Light Source : The synchrotron emits
intense radiation with a very broad frequency spectrum in a beam
of extremely small angular spread (1/y). It is a unique research tool
and can also be used for micro-fabrication and other applications.
The photo below shows the light source facility at the National
Synchrotron Radiation Research Center (N SRRC) in Taiwan.

- storage ring

g
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Electron bunches are first accelerated to an energy of 1.3 GeV
in the booster synchrotron, and then sent to the storage ring (also
a synchrotron), where the energy is maintaind at 1.3 GeV while the
electrons provide synchrotron radiation to users around the ring.
The electrons are powered by microwaves from the RF systems.

RF SYSTEMS FOR THE
BOOSTER SYNCHROTRON AND STORAGE RING

Synchr en- Rodiation Reseorch Center
Nainehy, Taiwan, R.O.C

storage ring

booster i
synchrotron s

SYNCHROTRON STORAGE RING

(

KEY PARAMETERS
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The RF system 500 MHz microwave

coupling
low level structure

RF systems J | l/

— ]

E-field lines

—

electron bunches:
S e -

acceleration cavit

line
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Photo of the NSRRC booster synchrotron showing
some key components of the accelerator

coaxial acceleration

cavity magnet

vacuum electron channel
pump (in high vacuum)
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Research stations around the NSRRC storage ring
: =2 M
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14.7 Undulators and Wigglers
for Synchrotron Light Sources

The broad spectrum of radiation emitted by relativistic electrons
bent by the magnetic fields of synchrotron storage rings provides

a useful source of energetic photons.

As application grew, the need for brighter sources with the radiation
more concentrated in frequency led to the magnetic "insertion devices"

called wigglers and undulators to be placed in the synchrotron ring.

The magnetic properties of these devices cause the electrons to undergo
special motion that results in the concentration of the radiation into a

much more monochromatic spectrum or series of seperated peaks.

52




Essential Idea of Undulators and Wigglers

The essential idea of undulators and wigglers is that a charge

particle, usually an electron and usually moving relativistically

(¥ >1), is caused to move transversely to its general forward

motion by magnetic fields that alternate periodically.

5

DDDDD |

#
#
-

a
Vo ¥

~ i #

DTS

Mv

(b)

The external magnetic fields induce small transverse oscillations in

the motion; the associated accelerations cause radiation to be emitted.
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Classification of Undulators and Wigglers
(a) Wiggler (v > A@): An observer detectors a series of flicks

of the searchlight beam. A#: angular width of the radiation about the path.

(b) Undulator (yy < A@): The searchlight beam of radiation
moves negligibly compared to its own angular width. The radiation
detected by the observer is an almost coherent superposition of the

contributions from all the oscillations of the trojectory.

-
Se—
—_— -

F .,
W08 # N N Y
0 F 15 G unduistr' 7 GeV undulato \\undulatOI
\ \ ]
1

—
1017

E W]ggler 7 GeV wiggler

7 GeV
bending magnet

bending magnet
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Homework of Chap. 14

Problems: 1,4, 5,9

55




	Electrodynamics, chap08p1
	100 spring ED syllabus
	Electrodynamics, chap08
	Electrodynamics, chap09
	Electrodynamics, chap10
	Electrodynamics, chap11
	Electrodynamics, chap14

