Chapter 11: Special Theory of Relativity

(Ref.: Marion & Heald, “Classical Electromagnetic Radiation,”
3rd ed., Ch. 14)

Einstein’s special theory of relativity is based on two postulates:

1. Laws of physics are invariant in form in all Lorentz frames (In
relativity, we often call the inertial frame a Lorentz frame.)

2. The speed of light in vacuum has the same value ¢ in all Lorentz
frames, independent of the motion of the source.

The basics of the theory are covered in Appendix A on an
elementary level with an emphasis on the Lorentz transformation and
relativistic momentum/energy. Here, we examine relativity in the
four-dimensional space of X and ¢, which provides the framework for
us to examine the laws of mechanics and electromagnetism. The
contents of the lecture notes depart considerably from Ch.11 of
Jackson. Instead, we follow Ch. 14 of Marion.

In the lecture notes, section numbers do not follow Jackson.

Section 1: Definitions and Operation Rules of Tensors of
Different Ranks in the 4-Dimensional Space
The Lorentz Transformation :
Consider two Lorentz frames, K and K'. Frame K’ moves along
the common z-axis with constant speed v, relative to frame K.
Assume that at t =¢' = 0, coordinate axes of frames K and K’
overlap. Postulate 2 leads to the following Lorentz transformation
for space and time coordinates. [derived in Appendix A, Eq. (A.15),
where the relative motion is assumed to be along the x-axis. ]

!

X'=x A B CR A
=y , (Y20
, K K :
z :7/0 (Z—Vot) Vo Z, z (1)
t'=y,(t— Z—g z) y oy Frames K and K’

coincide at ¢t =¢" = 0.
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where y, =(1- V—g) 2 is the Lorentz factor for the transformation.
c

11.1 Definitions and Operation Rules of ... (continued)

A note about notation: In many books, the relative speed between
two frames is denoted by v and the particle velocity in a given frame
is denoted by u. This eventually leads to two definitions for the same
notation y:

y=(1- 2 )—% {Lorentz factor for the transformation,}
2 Jackson (11.17)

_ 2,-J [ Lorentz factor of a particle in a given frame,
y=(1-%) 2
? Jackson (11.46) and (11.51) '

To avoid confusion with the notation y (e.g. when we perform a
Lorentz transformation of the Lorentz factor of a particle), we will
denote the relative speed between two frames by v, and the particle
velocity by v throughout this chapter, and thus define

2 1
7o =(1-"0)"2 [Lorentz factor for the transformation]
C

_1
y=(- %) 2 [Lorentz factor of a particle in a given frame].
C
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11.1 Definitions and Operation Rules of ... (continued)
Four - Dimension Space Quantities and Operation Rules :
Define a position vector in the 4-dimensional space of X and ¢ as
X =(x,y, z, ict) = (X, ict)

0 0

_ 1 0 0
and a 4-D matrix as a,,,, =
z 0 0
[z =1—4, row number]

[4-vector] |spatial vector| !

‘ , Po=Vvy/cC
708 00

0 0 —i
[v =1-4, column number]| 70ho 7o
then, the Lorentz transformation in (1) can be written

x' 1 0 0 0 X
V' 0 1 0 0 g @)
= or X,,= X a,,x
Z 1100y iro| 2 Lo
ict' 0 0 —i]/oﬂo 70 ict
4
and the inverse Lorentz transformation is: x, = ¥ a,, x,,. (3)

=l




11.1 Definitions and Operation Rules of ... (continued)

The a,,, matrix in (2) shows that the Lorentz transformation is
an orthogonal transformation because it satisfies

_ definition of orthogonal
%a/‘ Va1 =0y {transformation* } (#)
*See H. Goldstein, "Classical Mechanics," 2nd edition, p.134.

u by (2) x), by (2) 8, by (4)
r—’% r—’% —

Thus, Zx' =XX¥a,,x, ZaMxi X Xa,,d,; X,x,; = le
u uv ,/1/1
=x?+y? 422 -? =3t P+ 22
which is a statement of postulate 2 [see Egs. (B.1) and (B.2) in
Appendix B.]

Just as the 3-dimensional vectors (and tensors in general) are
defined by their transformation properties in the X-space, we may
define 4-vectors (and 4-tensors in general) by their transformation
properties in the (X, ¢) space and find rules for their operation.

11.1 Definitions and Operation Rules of ... (continued)

1. Any set of 4 quantities 4, (u=1-4) or A = (4, 4y, 43, 4;), which
transform in the same way as x, , 1.e.

A, - Z aluy Vo (5)
is called a 4-vector (or 4- tensor of the first rank).
The position vector X [=(x, y, z, ict)] of a point in the 4-D

space is obviously a 4-vector. As another example, the momentum
vector of a particle in the 4-D space, defined as

P=(py. Pys P2 E)=(p, B),
is a 4-vector because it transforms as [see Eq. (A.28), Appendix A.]

il 10 o0 0 [ 2]

Pyl |01 0 0 |l py o4

24 “lo 0 o 7P || P2 > pﬂ:lzlawpv
_%E,_ 100 —ivefy 7o __%_

11.1 Definitions and Operation Rules of ... (continued)

2. If a quantity @ is unchanged under the Lorentz transformation,
it is called a Lorentz scalar (or 4-vector of the zeroth rank). The
Lorentz scalar is also called a Lorentz invariant.

The Lorentz scalar is in general a function of the components
of a 4-vector. For example, we have just shown that

zx/2:zxﬁ
y7,
7] A

Hence, Zx/zl 1s a Lorentz scalar.
A

11.1 Definitions and Operation Rules of ... (continued)

3. Define the 4-D operator, O=[-2 = 0. 0 ] as the counterpart

5y’ 0z> O(ict)
of the operator V in the X-space. Then, the 4-gradient of a Lorentz

—ro® ob 8<D
scalar, OD = ox0 oy oo 8(zct)] 1s a 4-vector.

Proof : (0'®),, = 20 = za;ES;“ =Sau &P =2a,, (00), ©
\w-l

%/—/
, by (3) Transforms as a 4-vector.

4. The 4-divergence of a 4-vector, O-A = Z a , 1s a Lorentz scalar.

Proof -

A: 4-vector
=L2a A, by (5) A ;- component of A
o4, aA' B o4,
zaxv Zzaxv va Z Z Dopva Ox,, z@x =0-A (7)
%f_/
Ay by 3 =0, by (4)

= O-A is unchanged under the Lorentz transformation




11.1 Definitions and Operation Rules of ... (continued)

. 2 2
5. The 4-Laplacian operator, 0% =0-0= 2 e N ()|
e ol at o lot

1s a Lorentz scalar operator, i.e. 0@ =0°® [®@ :a Lorentz scalar].

Proof : We have shown in item 4 that the divergence of a 4-vector

is a Lorentz scalar, i.e. O'-A’ =0-A. Let @ be a Lorentz scalar, then

A’ =0'® and A =0 are both 4-vectors (see item 3). Hence,
O0A'=0-A =000 =000 = O0°0=0°d.

6. The dot product of two 4-vectors, A-B =X 4, B, , is a Lorentz scalar.

7
Proof : 4 B 6,7 by ()
! ! 14
A’-B'= ZAO'BO' _Zzam/ Vzamlel - %Zacﬂ/aoﬂ’q Bxi
VAo
:zAﬂB/I:A-B 9)

PUAT — 2 2 | a useful property of the
= ACASAAS I, ZA [orthogonal transformation

H 9

11.1 Definitions and Operation Rules of ... (continued)
Example : In frame K, a particle's position changes by dX in a
time interval d¢. Then, dX = (dx, dy, dz, icdt) is a 4-vector. Hence,
dX-dXx (= de ,dx,,) 1s a Lorentz invariant, i.e. in frame K', dx'-dx’

(=Xdx,d ﬂ) is given by dX - dX.
7

Special case: The particle is at rest in frame K’ (the rest frame of
the particle). Hence, dx' = 0and dx'= (0, 0, 0, icdr), where we have
denoted the differential time in frame K’ by d7 instead of dt’, because
frame K' is a unique frame. d is called the proper time of the particle.

P 2,2 452 2 2 2.2
%dxﬂdxﬂ = %dxﬂdxﬂ = —c'drt” =dx" +dy" +dz" —c dt

= dr=dt,|1- % = % [a Lorentz invariant] (10)
C

—dx dy dz g
where v =97e, + e, +97e_ is the velocity of the particle in frame K.

Discussion : (i) For the special case that K’ is the rest frame of the
particle, v is also the relative velocity of the 2 frames. Hence, y = y,. 10

11.1 Definitions and Operation Rules of ... (continued)

(i1) The Lorentz transformation applies only to inertial frames. If the
particle has an acceleration, d7(=49) in (10) is the differential time in
the instantaneous rest frame of the particle, in which the particle has
zero velocity but a finite acceleration. In general the speed of the rest

frame (hence y) is a function of time, 1. €. d7 = ﬁ [Jackson, (11.26)].

(i11) Consider a special case of constant particle velocity. The muon
has a lifetime of 2.2 usec in its rest frame between birth and decay. If
the lifetime is measured in a Lorentz frame in which the muon has a
constant y, then by (10), the rest-frame lifetime (7,;) and the measured
lifetime ¢, are related by

Tdecay _ tdecay dt 1 decay td
J. Thirth dr = '[ Wirth Y '[ Y tbirth di= 14 v

This expresses the phenomenon of time dilation; namely, when the
time interval of a clock's rest time (e.g.7; above) is observed in a
moving frame, it is greater by a factor of y. The invariance of 7, (=% la )

means that ;’ will have the same value in all Lorentz frames. "

11.1 Definitions and Operation Rules of ... (continued)

7. A 4-tensor of the second rank (T) is a set of 16 quantities,
T,,(u,v =1-4), which transform according to
T,L'lV =X ay/laVO'Tﬂa (11

,O

8. The dot product of a 4-tensor of the second rank and a 4-vector,

(T'A)ﬂ = ZT A . is a 4-vector.

uvvo

/%T auﬂ,aVO'T/IO' Z avaA

0,
H, 7 —
Proof = (T 'A') _ZT;'WA;/_ 2 a,uxlzavc va TioAq
A,0,a
=ZaMZTMAG=ZaM(T-A)ﬂ (12)
A o A

Transform as a 4-vector.




11.1 Definitions and Operation Rules of ... (continued)

Ty

V

9. The 4-divergence of a 4-tensor of the second rank, (O T) =X
is a 4-vector. v

Proof :
— aT’ Ox
'

(D T ),u Z ’ Z a,u/”taVO'TAO' )Y axi axa > a,u/?,avaT/”tO'

4 4.0 Va——

O Ayg

oT oT. =

= X aun Zava vo 6)?0 = zayiz ax/la :ZayA(D'T)/I (13)

A,0,a A c % A

%/—/
Transform as a 4-vector.

11.1 Definitions and Operation Rules of ... (continued)

10. A 4-tensor of the third rank is a set of 64 quantities,
G, v (4, u,v =1-4), which transform according to

Y

Problem I' If F,,,, is a 4-tensor of the second rank, show that

v =1-4) is a 4-tensor of the third rank.
Solution : F;'w = ‘zkaﬂja‘/ijk

J
aﬂz

oFyy T OF
] i
= o, Za "vkZ o, o lz 30k Gy,

5)

Transform as a 4-tensor
of the third rank.

11.1 Definitions and Operation Rules of ... (continued)

Problem 2 : Show that the set of equations,

OF, oF oF,;
uv Au
>, + o, + ox, =04, u,v=1-4) (16)

is invariant in form under the Lorentz transformation.
O}, OF

Solution : Rewrite (15): W Za/hamavk B

Change indecies in (15) as follows: 4_)]/ # _)/.1’ VoHu
. i—>k, k—>j, j—oi
1, ij
= 5= 2“&;‘%;‘“%%2 17)
ijk
Vo uA-ov,u—>A

Change indecies in (17) as follows: { ki ik, j->i

OF,, oF,
= 8x Z A2i% %k 8xk~ (18)
ijk J
Combine (15), (17), and (18), =0 by (16)

oF,, OF;, OF OFy, OF; 0OF,
MYV /1/1 vA _ Jk i ki | _
o, e, T, Uzlcaﬂiaﬂjavk( & Toy Tax )70

11.1 Definitions and Operation Rules of ... (continued)

11. If a physical law can be expressed as a relation between 4-tensors
of the same rank, then it's form is invariant in all Lorentz frames.
Example I 1f the physical law in frame K is of the form A =B,
then, 4, =Xa,, 4, = Za B,=B,,ie. A=B=A"=B". (19)

7 hv—d sy H

By,

Example 2: 1f the physical law in frame K is of the form T=F,
then, 7, = %aﬂﬂam QE = /%aﬂia F, =F]

vl uv HV?
v
T-F=T =F [i.e. invariant in form] (20)

In the following section, we examine relativistic mechanics in
4-vector formalism. In Sec. 3, we will demonstrate that laws of
electromagnetism are in variant under the Lorentz transformation
by expressing them as relations between tensors of the same rank.
From the Lorentz transformation of these tensors, we also obtain
the transformation equations for various electromagnetic quantities.




Section 2: Relativistic Mechanics

We begin with a note on the terms "conservation", "invariance",
and "covariance".

The conservation of a quantity means that it remains unchanged
in time in a given Lorentz frame. For example, the relativistic
momentum and energy of an isolated system of particles are both
conserved after a collision. This is a fundamental law to be discussed
in this Section.

The invariance of a quantity means that it is invariant in value
under a Lorentz transformation. Such a quantity is called a Lorentz
invariant or Lorentz scalar. For example, the dot product of two
4-vectors is a Lorentz invariant. However, it may or may not be a
conserved quantity. An example will be provided in this section.

The term covariance refers to physical laws. A physical law is
"covariant" if it is "invariant in form under the Lorentz transformation."
As will be shown, the new laws of relativistic mechanics and existing
laws of electromagnetism are all covariant.

11.2 Relativistic Mechanics (continued)
The 4 - Momentum (p) of a Single Particle :
As shown in (A.28), if we define the momentum of a particle as
p = ymv and energy as E = ymc* (m is called the rest mass*), then the
4-momentum, p =(p,, py, P, %), is a 4-vector, which transforms as

Px = Px ’[ ‘PP, P.E (21.1)
Py =Dy K z (21.2)
Pt =70(p: =3 E) TP P PE (21.3)
E'=y(E-vp.) K Z (21.4)

-V,
*Throughout this chapter, m and M denote the rest mass.

Discussion: In Appendix A, we first define p = ymv and E = ;/mcz,
then show that the law of conservation of momentum and energy is
covariant. Conversely, from the requirement of the covariance of this
conservation law, we can deduce the definitions of p = ymv and
E= ymc2 (see Jackson Sec. 11.5).

11.2 Relativistic Mechanics (continued)

The dot product of two 4-vectors is a Lorentz scalar, hence

1A 2 ' 2
p-p=p-p' = p’-E=p?-£ (22)

c

ie E*— pzc2 is a Lorentz scalar (invariant).

If frame K is the rest frame of the particle (i.e. p' =0, E' = mc?)
22

then p’=(0, 0, 0, imc) andp-pzp'-p'givesp E—; —m~c”, or
C
E?- pzc2 =m?*c* (23)
Since EZ - p202 is a Lorentz invariant, (23) shows that the rest
mass m is a Lorentz invariant. This has in fact been assumed in
Sec. 2 of Appendix A, where we derive the Lorentz transformation
equations for p (= ymv) and E (= }/mc2 ). (23) is a useful formula
for it relates the particle's total energy (£) to its momentum (p).
(Momentum in particle physics is often expressed in unit of GeV/c.)
For a relativistic particle, we can still speak of its (macroscopic)

kinetic energy K, defined as: K = E — me? = (y— l)mcz. 24)

11.2 Relativistic Mechanics (continued)
The 4- Momentum (P) of a System of Particles
Consider a system of particles, each with the 4-momentum
;=(Dyjs Pyjs Pz IE; /) =(P;, iE; /), j=1, 2, 3,
Since the Lorentz transformation is a linear transformation, the

sum of any number of 4-vectors also obeys the Lorentz tansformation.

Thus, P=%p; is a 4-vector and its components transform as
J

pr] _pr] (25.1)
Zpyj = Zpyj (25.2)
szj 70(szj —8%E)) (25.3)
J J J
SE;=yy(ZE; —vX pj) (25.4)
J J J
and P-P=(xp,)-(Zp,) = (Ep,)-(=p,)~(ZE; /c)? (26)
J J J J J
is a Lorentz invariant. 20




11.2 Relativistic Mechanics (continued)
1Py =1Py

J , J
L Py =2Dy
Rewrite (25): <2 , 7 v
25) zpi=r0(Zps _C%ZE]')
J J J
LE;=y(EE; -wZpy)
J J J

We see from (25) that only when all the components of P (i.e. the
three components of total momentum plus the total energy) are each
conserved in frame K will all the components of P’ be conserved.

If one component of P is not conserved, a rotation of the spatial
coordinate system can make any component of P’ (momentum or
energy) unconserved in the new spatial coordinate system. Thus, the
relativistic law of conservation must take the form as described below
in order for it to be a covariant law.

21

11.2 Relativistic Mechanics (continued)

Law of Conservation of Momentum and Energy :

For reasons just discussed, in relativity, the conservation of
momentum and energy comes in one law rather than separate laws
for the momentum and energy as in nonrelativistic mechanics. The
law states that, for an isolated system of particles,

P (before collision ) = P (after collision), (27)

which implies that ¥ p,;, X p,;, X p.;, and £ E; are each conserved,
J J J J

ie.
TP (before collision) = £ p ; (after collision) (28)
J J
Y E; (before collision) =3 E; (after collision ) (29)
J J

Since the law in (27) is expressed as a 4-vector relation, it has
the same form in all Lorentz frames [see (19)]. Thus, in frame K,

we have P’(before collision ) = P’ (after collision).
22

11.2 Relativistic Mechanics (continued)

If P is conserved, the dot product P -P must also be conserved. Thus,

EP)-EP) - =Ep)-Ep)-EH  (30)
J J J J J J

before collision after collision

Discussion :

(1) P -P for an isolated system is both a Lorentz invariant [see (26)]
and a conserved quantity [see (30)]. If the system is not isolated, it is
still a Lorentz invariant, but no longer a conserved quantity.

(ii) P (before collision ) = P (after collision) in (27) is a fundamental
law (rather than a derived relation), in which the nonrelativistic law
of conservation of momentum has been extended to include the energy,
E= ym02 . A very important aspect of this law is that it applies to all
processes in an isolated system, such as elastic and inelastic collisions,
nuclear reactions, and particle decays. As a result, the total rest mass
of the system may not be conserved, as is illustrated in the following
two problems. 23

11.2 Relativistic Mechanics (continued)

Problem 1:Two identical particles of rest mass m and equal and
opposite velocities *+ V collide head-on inelastically to form a single
particle. Find the mass and velocity of the new particle.

Solution :

m, y «—>V V< em, y (before)
M, ® (after)

cm

The total momentum before
the collision is ymVv —ymv = 0.
So the collision occurs in the center-of-momentum (CM) frame, i.e. the

frame in which the sum of the momentum of all particles vanishes. For

later comparison with the result in problem 2, we denote the mass of

the new particle by M, to indicate that it is created in the CM frame.
{Conservation of momentum = The new particle is stationary.

Conservation of energy =>ym+ym=M_,, = M., =2ym




11.2 Relativistic Mechanics (continued)

Discussion: In this problem, we | 7 ®—=>V V< em, y (before)

find M, = 2ym > 2m, i.e. rest mass M., ® (after)
has been created from the kinetic energy [(y-1)mc?] of the colliding
particles. There is no need to know what’s inside the new particle. We
only need to know its rest mass and hence the energy associated with
it. A hot object has a rest mass greater than when it’s cold. The
difference in rest mass due to an increase in temperature can in
principle be measured by its acceleration under a known force, and we
know that at least some of the added mass is in the form of thermal
energy. In many other cases, it’s not possible to know what’s inside.

Nuclear fusion and fission reactions are examples of non-
conservation of rest mass. The total rest mass is reduced after the
reaction and the mass deficit appears as kinetic energies and radiation.
In fact, all reactions (chemical or nuclear) in which energy is absorbed
(e.g. photosynthesis) or released (e.g. digestion of food) involve a
corresponding change of the reactants’ total rest mass.

25

11.2 Relativistic Mechanics (continued)
Problem 2: A particle of rest mass m and velocity v collides with
a stationary particle of the same rest mass and is absorbed by it. Find
the rest mass and velocity of the new particle.
Solution : The collision occurs in the stationary-target (ST) frame. So,
we denote the new particle mass by M ,, velocity by V,, and Lorentz
factor by y,, [=(1- ng / 02)_1/ 1. (m,y,V are also ST frame quantities.)

Conservation of momentum = ymv =y MV, (31
Conservation of energy = (y+Dm=y,M, (32)
31

E37; = Vg }/+1 v m, ye—>V e m (before)

Mst’ 7st e _) Vst (after)

(32) =M, =""m

st

2.2
M= D =2 211 =1 ]
Ve 02(;/+1)

=m2 (2 + 2y +1-52 Z—;):mz[yz(l—z—j)z +2y+1]=2m>(y +1)

=M, =2(y+1)m 26

11.2 Relativistic Mechanics (continued)

Discussion :
In problem 1 (CM frame), the new |m, y ® >V V<« em, y (before)
particle's mass is M, = 2ym. (33) M, ® (after)

In problem 2 (ST frame), the new m, y «—>V e m (before)
particle's mass is M, =2(1+y)m. (34) My, 7y ® >V (after)
Note that y is the Lorentz factor of the particle(s) before collision.

In particle physics experiments, M c or M S,c is the energy
available for the creation of new particles (why not y M ,c 29).

The rest energy of the electron or positron is mc* =0.511 MeV. If
2 TeV of energy is needed for particle creation (i.e. M Cmcz =2TeV
or M Stcz =2 TeV), then the required y of the colliding particle(s) is

by (33), M, c* =2ymc* =2 TeV = y ~1.957x10° [CM frame]

by (34), M ,c* = [2(1+ 7)me® =2 TeV = y ~ 7.66x10'2 [ST frame]

The energy associated with y is to be obtained in an accelerator. "

11.2 Relativistic Mechanics (continued)

Thus,

kinetic energy needed in CM frame _ 2x(1. 957x10°

D xs5x107
kinetic energy needed in ST frame

7.66x10'2-1
This shows that far less kinetic energy is needed in the CM
frame than in the ST frame. In fact, all the kinetic energy of the

two colliding particles [2x (1.957 x 10° - 1)x0.511 MeV =2 TeV]
is put in use in the CM frame, while in the ST frame, 99.99995%
of the kinetic energy of the incident particle is wasted! This is why

the International Linear Collider (ILC) project plans to accelerate
both electrons and positirons to energies up to 1 TeV so that the
the collision occurs in the CM frame.
Question: Why use a long linear accelerator instead of a more
compact circular accelerator?

28




Section 3: Covariance of Electrodynamics

In the special theory of relativity, Newton's law has been radically
modified. The electromagnetic laws do not need any modification
because they are already covariant. However, the covariance of these
laws (such as Maxwell equations) is not immediately clear from the
equations by which they are usually represented.

Our purpose in this section is to prove that the EM laws are indeed
covariant by casting them into relations between 4-tensors of the same
rank [see (19) and (20)]. We will do this by first defining 4-tensors in
terms of known EM quantities and forming equations with 4-tensors
of the same rank, then show that one or more existing EM laws are
implicit in each equation. This will prove that the laws are convariant

11.3 Covariance of Electrodynamics (continued)

1. Define a 4-current as (cp, Jy» J s I, ) < Griffiths

‘]E(‘]x9 Jy’ Jz’ icp):(‘J: icp) (35)
and use it to form a relation
0J=0 (36)

Then, (36) gives the law of conservation of charge

) 0 ) oicp) _ .1.9P _
aJer@Jy“LngJr 2Get) =0 =V J+§—O (5.2)

Thus, the definition of J in (35) as a 4-vector leads to the
covariant representation [(36)] of the EM law in (5.2). This
in turn justifies the definition of J as a 4-vector. The Lorentz
transformation of J then gives

and justify the defined quantities to be legitimate 4-tensors. J.=J, Jo Iy Jo p
Furthermore, Lorentz transformations of these tensors will yield J 'y =J, K z
the tranformation equations for various EM quantities. JL=y(J, —vpp) T T T (37)
Note: Jackson switches to the Gausian unit system starting from o' =r(p- L(z) J.) K' g S
Ch. 11. From here on, we also adopt the Gaussian unit system. 29 c -V 30
11.3 Covariance of Electrodynamics (continued) (K, Ay, 4y, 4., ) « Griffiths 11.3 Covariance of Electrodynamics (continued)
2. Define a 4-potential as A =(4,, 4,,, Azf iD) (38) Note: The source-free wave equation can be directly put into the
_ _ . {DZA —_47] (39) covariant form: Vzt// — %8—22(// =0 = I:lzl// =0. (42)
and write the covariant relations: ¢ ¢t ot
OA=0 (40) 3. Define a 4-wavenumber as
VIA- L&A _dn] 6.15) k=(ky ky, ke, 1) = (K, 72) (43)
(39)= ) Cl th Then, k'-x'=k-x = K'-X'—a&'t' =k -X—wt
Ve c—zycb =TI v+ Hogo G =0 « Griffie-16) = Invariance of the phase
(40)= V-A+ %%d) =0 [Lorenz condition] (6.14) By the same argument, we find that kK defined in (43) is a

This again shows the consistency of A being a 4-vector and
(6.14)-(6.16) being covariant laws. The Lorentz transformation

A% =A, ’{ A, A, A, D

fA th 1 Hh * )

0 engives | o _ . (4 _Vog P4y
L =70(4: K ) ]:-Ax,Ay,AZ,CD
Q' =yy(@-24,) XK' z

-V 31

(41)

legitimate 4-vector. Thus, its Lorentz transformation gives

k. =k
e ckyoky, ko
s K z (44)
kz:70(kz_67w) ik o
xX° ya zo
K'T———HZ'

@' =y (@—vyk,)
-V

relativistic Doppler shift

32




11.3 Covariance of Electrodynamics (continued)

4. Define a field strength tensor of the second rank F [Marion, (14.62)]:

[0 B, -B, -iE,

Tt
IIl
~~~
N
D
p—a

: , [V-D=p
| iE, iE, IE, 0 | :SI VxH—%_J:
- V-E =4z Sho go
Then,I:l-F:‘%”J = { 155 4y ! vV-B=0
VxB— c ot cJ : VXE+%=O'
In the covariant set of equations [see (16)] '~~~ "~ ~""77 777"
oF oF F,,'s are elements
Ay a*ﬂ+%F =0 (Auv=1-4)|
2o G G of F in (45).

set (4, 1,v)=(1,2,3)=V-B=0
set (4, 1,v)=(1,2,4), (1,3,4), and(234):>V><E+% =0.
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11.3 Covariance of Electrodynamics (continued)

OF
The covariant equations, O+ F = 4” J and ‘; e 8’1’”’ + %I; =0,

give the set of Maxwell equations in free space. This shows that
Maxwell equatins are covariant as well as justifies the definition of

F as a tensor of the second rank. Thus, F,, Z 4,0, gives

the transformation equations for E and B (see Marlon Sec. 14.6.)

Ei=E ) \ -E,, E., By, B,
E’Lzyo(El+co><BL o
B =B, ‘ - Ej, E|. By, B}

, v

J_:7O(BJ__69XEJ_ — V
In (46), v, is the velocity of frame K’ relative to frame K, and
"||" and " L" refer to the direction of v,.

See Appendix C for a summary of transformation equations. »

11.3 Covariance of Electrodynamics (continued)

dp_ e

5. The covariant equation™, dr

e F-P (dr is a Lorentz scalar),
gives (Marion, p.439)

dP _dt e

= dt _ dt mc F P, Wherep—(px,py,pz,lE)andp ymV

0 B, -B, -iE,
= -B. 0 B, -iE,
B, -B, —iE,
i lEx iEy ik, 0
d ., _ £ — 1
dt Px = yme —£(E, +]/m(v -v,B,)) e(E+cv><B)x
d A _ 1 relativistic equation
ar® —e(E+cv><B) [of motion } (47)
2d ., _ .. This equation is
me” g7 =evE [implicit in (47). }

*In order for this equation to be covariant, the charge e must be
a Lorentz invariant. This has been experimentally established
(see Jackson, p.554).
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11.3 Covariance of Electrodynamics (continued)

6. In a similar manner, we can demonstrate the covariance of the
conservation laws for field/mechanical energy and field/
mechanical momentum, as given by Jackson (6.111) and (6.122):

i(Emech + Efelg) = —$,Nn-Sda (6.111)

dl«(pmech_'_pﬁeld) @Z ﬁnﬁda (6.122)
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11.3 Covariance of Electrodynamics (continued)
Consider the general form of the relativistic equation of motion in
47), %p =F, where F is any force, such as the gravitational force.

Special case I: F || v (one-dimensional problem)

F =4 (ymv)= mvd +7md"—7mdt (yzv +1) =y mdr (48)

\ﬁ/——/
ve\-1/2 2.2
212 ve/e
=—71(1——2> ”(i;)@ -P 32| fpute
c 2’ dt Adt |2y 2+1-v% /e _ :7/2
1-v2/c? 1-v2 /2

= F = 7/3 ma = Constant force does not cause constant acceleration.
Special case 2:F L v (= 7 = const., as in uniform circular motion)

—F=d p dt(]/mV) ym V (Undulator & Wiggler) (49)

Questzons. (1) Itis sometlmes said that a particle has two masses,
y3m and y m. Why? (ii) The acceleration is not necessarily
parallel to the force. Give an example. (iii) Relate (48) to (A.23). 37

11.3 Covariance of Electrodynamics (continued)

Problem I: A police radar operates on a frequency of @. What is
the frequency received by the police after the signal is reflected from
a car moving at the velocity v? Vo

NS o, K 9 sk

Solution: We do it in 2 steps. _
police car

Step 1. In the police frame, the
radar sends a wave (@, K) toward
the car, which is moving at velocity v, (direction shown in the figure).
Transformming o to the car frame by (44), we obtain

o' =y (0—vyk,),
where £, is the component of K along v, i.e. k, =k cos & (see figure.)

Thus, —-k —olc Yo = (1 . %/02)—1/2

Vo cos<9)

shown in police frame

@' =yo(@—kvy) =y, (@—kvycos0) = 7060(1—

This is the Dopper-shifted frequency detected by the car. It is also
the frequency of the wave reflected by the car as seen in the car frame. ;5

11.3 Covariance of Electrodynamics (continued)

Step 2. In the car frame (see figure), the car sends the reflected
wave (@', K") back to the car at the frequency

o = 7/060(1 % 0059)

In the car frame, the police is

car

60,, K'énre

,  police
K 4

. . . . \

moving at velocity v, (direction 0 n ' "
shown in the fugure) relative to ShOWIL I cat trame
the car. Tranformming @' to the police frame by (44), we obtain the

frequency observed by the police (Doppler shifted again)
Vv €OS 6?)

" =y (0 —kLvy) =y (@ —k'vy cos 0) = yyo'(1-
vocosé’) (1 2vocost9

=yoa(l- ) since v, < c.

If the radar frequency is f(=w/27) = 10° Hz and the car moves
away from the police (8 = 0) at vy =150 km/hr, the police would

detect a frequency /(= "/ 27) shifted by Af ~ - f=* 2V ~—278 Hz.

39

11.3 Covariance of Electrodynamics (continued)

Problem 2: An observer in the laboratory sees an infinite electron
beam of radius a and uniform charge density p, moving axially at
velocity v,. What force does he see on an electron at a distance r (< a)
from the axis? Assume the electron moves axially at the velocity v,,.

Solution: The problem can be readily solved in the lab frame. Here,
we will take a long route for an exercise on some of the transformation
equations just derived. ay

The current density J, in the lab frame is l ’ O P> Iz v (5vp) >

J, =pvy. [p has anegative value.] K z
By (37), we have, in the beam frame
JL=70(Jz =wp) =0,
K’ 2
p'=ro(p="57.)=rop(1-" )=7’;- =V
We see that the lab frame p is greater than the beam frame p' by

the factor y. This is because every unit length of the beam in its rest
frame is contracted by this factor when viewed in the lab frame.

a
‘ Top’(=p/7o)3 Jr=v;=0
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11.3 Covariance of Electrodynamics (continued)

In the beam frame, J. =0, p' = p/y, ; hence, there is only a radial

electric field. Gauss law, 95 E'- da':4ﬂfv, p'd’x', TE..B, (=B, =0)
K

then gives 277r'E]. =4n(mp'r '2) forr'<a

TE (E| =B/ =B/ =0)
2mpr F=r p= / ] © ==
70 =r, P =P/ >V,

e,) into lab-frame E | and B | by using

= E =2z0'r" =

We now transform E'| (= E

the reverse transformation equations in (46), in which we set v, = ve,.

' 2
E, = (B —0x x BY)=70E"L =7 7['0 e, =27pre,

2
B, = 70(§/+ IxE| )= 70(v0e) ;,Tpre = 0277/0’”90

Thus, the force f on an electron (in the lab frame) is

f= —e(E+%V>< B) = —e[Zﬂprer +[1:(v0ez)><(vco27zpreg)}

2
i 2repr e=
:—27zepr(1—c—g)er =— yz'o e, {

le| is positive. For an }
0

electron beam, p is negative. |

Homework of Chap. 11

Problems: 3,4, 5,6,9
16, 19, 23, 30
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Appendix A: Relativity in College Physics
(Ref. Halliday, Resnick, and Walker, “Fundamentals of Physics”)
Section 1: The Lorentz Transformation

The Galilean Transformation: Consider 2 inertial frames S and
S'. Frame S’ moves along the common x-axis* with constant speed v,
relative to frame S. At ¢ = 0, the coordinates coincide and, at time ¢,
the position of point P is (x, y, z) in S and (x', ', z') in S". Then the
Galilean transformation gives

t is unchanged in
t {the transformation} (A1)
* In the main text, the z-axis is the ,

direction of relative motion. To g ' g
be consistent with the references J-—— X X J—
cited in this appendix, here we
assume that the relative motion A
is along the x-axis. y y

Question: How do you determine 0 | x & l
a reference frame is inertial? Vol =Y

X'=x-vyt,y' =y, 2=z, 1=




11.A.1 The Lorentz Transformation (continued)

Einstein's Postulates: The laws of classical mehanics do not vary
in form under the Galilean transformation. For example, (A.1) shows
F = ma in frame S transforms to F = ma’ in frame S'. However, when
the same transformation is applied to the wave equation in vacuum,

sz// — %%l/f =0, its form changes completely (see Jackson, p. 516.)
C

So, when Einstein began his work on relativity, there were two
approaches to make a/l the laws of physics invariant in form in all
inertial frames: (1) Modify the theory of electromagnetism so that it is
invariant in form under the Galilean transformation; or (2) Modify the
Galilean transformation and the laws of mechanics so that the laws of
both mechanics and electromagnetism are invariant in form under the
new transformation. Einstein took the second approach. His special
theory of relativity is based on 2 postulates:

1. Laws of physics are invariant in form in all inertial frames.

2. The speed of light in vacuum has the same value ¢ in all inertial

frames, independent of the motion of the source. 45

11.A.1 The Lorentz Transformation (continued)

Event and Simultaneity: An event is something (such as the
emission of a light pulse by a source) which happens at position (x, y,
z) and time 7. An event [described collectively as (x, y, z, f) in a given
frame] will have different coordinates in different frames. The
frames mentioned here and later are all inertial frames.

The time of an event can be measured by methods we normally
think of. But, in relativity, time measurement often requires high
precision (which can at least be done in a thought experiment) and
we must bear in mind the frame in which the time is measured. The
simplest way to measure time is to read the clock at the position of
the event. If the clock is away from the event, the time of the event
is the time shown on the clock (at the instant the light signal of the
event reaches the clock) minus the time delay due to the travel of the
signal (at speed c¢) from the event’s position to the clock’s position.
The position of the event and the measured time of the event all refer
to the frame in which the observer and the clock are both at rest (but
the source which generates the event is not necessarily at rest.) 46

11.A.1 The Lorentz Transformation (continued)

Two events are simultaneous in a reference frame if they have the
same time coordinate in that frame, whether or not they have the same
spatial coordinates. Simultaneity can be experimentally tested as
follows. If two events are detected at the same instant by an observer
located midway, they are simultaneous in the observer’s frame.

Within a given frame, the concept of space and time in the special
theory of relativity is not different from our usual concept of space
and time. However, radical differences arise when space and time
coordinates of an event measured in one frame are compared with
those measured in another frame. In making the comparison, we find
that space and time are entangled with each other in relativity. For
example, two simultaneous events occurring at different positions in
frame S will no longer be simultaneous in frame §’, and their time
difference in S’ depends upon their spatial separation in S. In relativity,
space and time coordinates transform according to the Lorentz
transformation, which is derived below from postulate 2. 4

11.A.1 The Lorentz Transformation (continued)

Time Dilation: Consider a pulse of light emitted by a source on a
train (event 1). It travels vertically upward for a distance D, then is
reflected back by a mirror, and later detected at the source (event 2).

In the train frame (Fig. 1), the time interval between the 2 events is
Aty =20, (A.2) mirror
In the lab frame (Fig. 2), the train, mirror,
and source are all moving at speed v, butthe D
light still travels at speed ¢ (by postulate 2).
So, the time interval of the 2 events is

_2L
At =42, (A.3)
where L =[(1voAt)* +D*1'%  (A4)
Eliminating D and L from

(A.2)-(A.4), we obtain

where y, =[1-v3 /2TV2 (A6)

Fig. 1

Event 2 (at the same
location as event 1)

source




11.A.1 The Lorentz Transformation (continued)
Question: Why is D the same in both frames?

Lengths perpendicular to the direction of motion are the same in
both frames, i.e. the y and z coordinates transform as:
yi=y, Z'=z (A.7)
The proof of this is by contradiction. .
)

Suppose that we have two identically
manufactured pieces of pipe (see figure).

)l

\
from H. C. Ohanian, "Physics"

They cannot fit inside each other because
they have identical radius. Imagine that one
pipe is at rest on the ground and the other
is at rest on the train. If the motion of the train relative to the ground
were to bring about a transverse contraction of the train pipe, then by
symmetry, the motion of the ground pipe relative to the train would
have to bring about a contraction of the ground pipe. But these two
effects are contradictory, since in one case the train pipe would fit
inside the ground pipe, and in the other case it would fit outside. 49

11.A.1 The Lorentz Transformation (continued)

Going back to (A.5): At = y,At,. In this equation, Az, is the time
interval of 2 events measured in a special frame in which the 2 events
occur at the same position. It is called the proper time. Viewed in any
other frame, these 2 events will occur at different positions and, by
(A.5), their time interval (Af¢) will be greater than the proper time by a
factor of y,. This 1s known as the effect of time dilation.

The muon has an average lifetime of 2.2 usec (between birth and
decay) in its rest frame. In a 1977 experiment at CERN, muons were
accelerated to a speed of 0.9994c¢, corresponding to a y, value of 28.87.
Within experimental error, the measured average lifetime of these
muons was indeed 28.87x2.2 = 63.5 usec. In another experiment, two
synchronized clocks with near perfect precision showed slightly
different readings after one had been flown around the world. The
difference was again in agreement with (A.5).

Time dilation runs counter to our intuition, because it is rooted in a

postulate which also runs counter to our intuition. 5

11.A.1 The Lorentz Transformation (continued)

The Twin Paradox: Suppose someone travels on a spaceship with
a Lorentz factor of y, = 20 (in the earth frame) and his twin brother
stays on earth. Then, by time dilation, every day measured by the
traveling twin in the spaceship frame (this is his proper time) will be
20 days when measured by the earth twin in the earth frame. So the
earth twin ages faster and his traveling brother will be 19 years
younger when he returns to earth after an 1-year journey (neglect the
spaceship’s acceleration/deceleration periods). The paradox is: if the
traveling twin measures the age of his earth twin, will he conclude that
he himself ages faster by the same argument of time dilation?

There is no paradox at all. Only the earth twin’s measurement is
correct because he is always in an inertial frame. The traveling twin
will have to be accelerated and decelerated in the spaceship. During
these periods, he cannot use the special theory of relativity (Einstein’s
2 postulates refer to inertial frames.) In fact, he will confirm the
measurement of his earth twin if he uses Einstein’s general theory of
relativity, which deals with accelerating reference frames. 51

11.A.1 The Lorentz Transformation (continued)
Length Contraction: Assume that planet neptune is stationary in
the earth frame and at a distance L, from earth (Fig. 1). A spaceship is
traveling at speed v, to neptune. The duration of the trip, measured on

earth, is At =Ly /vy. (A.8)
In the spaceship's frame ” .
(Fig. 2), both earth and neptune -’ 5 Fig. 1

move at speed vy. The duration | cth spaceship  neptune
of the trip, Aty, is the interval [V~ ) S e Fig.2
between the departure of the from Giancoli, "Physics for Scientists and Engineers"

earth and the arrival of the neptune. This is the "proper time" of the
spaceship because both events occur at the same position. Thus,

by (A.5) Aty = At/ y, (A9)
At can be used to calculate the earth-naptune distance as viewed
on the spaceship L =vyAt. (A.10)
Eliminating At and A¢, from (A.8)-(A.10), we obtain
_L
L= %o (A.11)




11.A.1 The Lorentz Transformation (continued)

In (A.11), L = Ly/y,, L,is the length of an object (or, in the above
example, the earth-neptune distance) measured in the rest frame of the
object (i.e. the frame in which the object is at rest). Length measured
in this special frame is called the proper length. Viewed in any other
frame, the object will be moving and, by (A.11), its length will be less
than the proper length by a factor of y,. This is known as the effect of
length contraction. Note that the contraction effect applies only to
lengths along the direction of motion.

Length contraction is a direct consequence of time dilation [see
(A.9)]. It is therefore not surprising that time dilation can be inferred
from length contraction. If, for example, the spaceship has a y, value
of 2. The earth-neptune distance, as measured in the spaceship, would
be half of that measured on earth. But the speed of earth/neptune
relative to the spaceship is still v,. So, to the spaceship, the journey’s
duration is only half of that measured on earth. Hence, one minute

elapsed in the spaceship will be 2 minutes elapsed on earth.
53

11.A.1 The Lorentz Transformation (continued)
The Lorentz Transformation: Assume frames S and S’ coincide at
t =0 and S’ moves along the common x-axis with speed v, relative to S
(see figure). A point P has coordinates (x, y, z, ) in S and (x', y', z', t')

in S’. The length x', when measured in S, is % (length contraction). So,

xX= v0t+7 or x' = yy(x—vpt). (A.12)
By symmetry or by similar argument, x =y, (x'+ vot’) (A.13)
Eliminating x from (A.12) and (A.13) [using 75 0 v / c’],
= t'=}/0(t—l}—gx) (A.14)
(A.7), (A.12), and (A.14) give the Lorentz transformation:
x" =y (x=vt) y Y
- S x' S’
r=7 A, > 5 (A.15)
z=z e e e e e o o e e ] —-...: cP
1'270(1—*?‘) ) r
y y
See Appendix B for a more ol | O I
formal derivation. Vol ) 54

11.A.1 The Lorentz Transformation (continued)

Transformation of Coordinate Difference between 2 Events :

Since the Lorentz transformation is linear, the coordinate differences
between 2 events:

inS: Ax=x,-x;, Ay=y,—y, Az=2z,—2z, At=t, -1 (A.16)

inS"AX'=x) —x;, AV =yy—y, Az’ =25 —z{, At =t; — 1] (A.17)
transform in the same manner. Thus,

Ax' = 7o (Ax —vpAr)

A =y

A =z (A.18)
r_ Vo

At —70(At—c—2Ax)

« Event 1 Ax =Xx, —x -giyentl ) Ax'=x) —x
xa ,Z,t xl’y{’Z{9 t{ ’ ! r
(s vis 215 1) Ay =y, -y AY = yh =yl
« Event 2 Az =1z, « Event 2

= —Z ’ ’ ’ ’ AZ,ZZ'2 _Z{
(XZ, Vo, Zp, tz) 1 (x27 Y2, 2o, t2) , , ,
. At=t, -1, N Al =1, —t]
. ’

S S > 55

11.A.1 The Lorentz Transformation (continued)

Discussion on simultaneity: Consider the transformation equation
for the time interval between two events

A" = yo(At —:gm) [from (A.18)] " . C o C :
It indicates that 2 simultaneous S i ->X
events in frame S (A7 = 0) which My o Comonsc vy @
occur at different positions (Ax # 0) , 4 source
will not be simultaneous in frame S’ -V X

(At" # 0). This can be explained on the basis of postulate 2 through the
following example.

In frame S, a pulse of light emitted midway between points 4 and
B (see figure) will reach 4 and B at the same time, 1.e. the two events
(arrivals of the signals at A and B) are simultaneous in frame S. In
frame S’, the signal still travels at speed ¢ in both directions, but B is
moving toward the light and 4 away from it. So, the signal will reach
B first and the two events are no longer simultaneous. 56




11.A.1 The Lorentz Transformation (continued)

The example discussed above
P >ee > A b A
can be examined quantitatively as . s .
follows. A Csouqce B
Assume that, in frame S, the S 7 X
two events are spatially separated ;

Vy < @ CenOry(C V) < ©
0 4 PN 0

the distance is shorter by a factor
of y, due to length contraction, i.e.
Ax
Ax' = N
Thus, in frame S’, the signals reach 4 and B with a time
difference of

source

by a distance Ax. Observed in S’, T
S!

-V

Ax Ax
o 20 20 _ A Vo _ Yo%
At =ty tA_ic+v0 v = 7’0c2—v§_ 2 Ax.

This is precisely the prediction of (A.18),
At' = ;/O(At—:—gAx) = —yco—;oAx. [A¢ =0 in frame S]
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11.A.1 The Lorentz Transformation (continued)

Problem I In frame S, events 4 and B occur at different positions,
and event B occurs after event A. Is it posible for event B to precede
event A4 in another frame S’ moving at speed v, relative to frame S?
If so, does this mean that an effect can precede its cause?

Solution: In frame S, let the 2 events have a spatial interval
Ax = xz —x, and time interval At = ¢, —¢,. Then the time interval

At'=ty —t',, is given in (A.18): At' = ;/O(At— Yo Ax).
We see that if Af < vOAx/c then A¢' < 0, which means ‘that the
order of independent events in frame S may be reversed in frame S".

Suppose, however, that the events are connected, i.e. event B is

caused by event A. This would require a body, or a signal, to travel
from 4 to B. Rewrite (A.18) as A" = y,At(1 —Lg%). Since the fastest
C
Ax

speed for a signal to travel from 4 to B is ‘Af = > We must have v, > ¢

in order for At' < 0. This is not possible [see (A.6)] and thus the order
of connected events (cause and effect) cannot be reversed.

in frame S,
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11.A.1 The Lorentz Transformation (continued)
Problem 2: Show that the effects of time dilation and length
contraction are implicit in the Lorentz transformation.
Solution : The time interval between 2 events transform as

At =y, (At - :—gAx) or At =y, (A" + :—gAx') If A¢' is the proper

time in S’, then the 2 events occur at the same position (Ax’ = 0).
So we use the latter equation and obtain
At = y,At" (time dilation).

The difference in the x coordinates of the 2 events transform as

=70 (Ax—vyAt) or Ax =y, (Ax"+vyAt'). Again, the question is
which equation to use. If Ax’ is the "proper length" in S, then the
two end points are at rest and their coordinates do not have to be
measured simultaneously (i.e. we do not know At¢’.) But since the
rod is moving in S, its end points must be measured simultaneously
in § (At =0). So we use the former equation and obtain

_AX' :
Ax = 7 (Iength contraction). “

11.A.1 The Lorentz Transformation (continued)
Transformation of Velocity : The Velocity of a particle is given by

V= hm (m frame $); v'= lim 2 A t' (in frame S'). (A.19)
At—>0 At'—0 V'
171
Let At — 0, yx S s X'
Vo= A Yo(Ax=1AL) _ vy=vy Y
A - Yo (Ax —voAr) A (A CTA’C) l_z%"x
y :y , Ay’ Ay Vy
AZ, — =<V, = = = (AZO)
A z Ar— Y Ax yoM 70(At_;%Ax) 70(1_V*0Vx)
t_70( t_? ) V _AZ:_ AZ VZ
ALy (Ar-" Ax) 7/0(1 VO )

Problem: A spaceship moves away from the earth at speed V-
A pulse of light is emitted from the earth in the direction toward the
sapceship. What is the speed of light measured on the spaceship?

) Vo=V, C—V
Solution: v,=c = V. =" "0 =""0_¢
X X 1 Vo VO
— 1=z
c

60




11.A.1 The Lorentz Transformation (continued)

Transformation of Acceleration : For simplicity, we first
consider the transformation of acceleration in the direction of

relative motion (i.e. dvy T

RN av
V=% [ from (A.20)] Vo dr
2Vx . S X
(vy=vo)(—2)dv

= dV;C = d\::)x — . OV() 622 : =— d‘\)/')(; 2 ° V,a dv%

=ave A=) -2 g - x'
F= (=) [from (A15) o
Cc

Hence. Wx _ 1 dvy 1 A (A.21)

Ll (- B0 T 730 di
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11.A.1 The Lorentz Transformation (continued)

By the same method, we may obtain the transformation equations
for acceleration in arbitrary directions (see Jackson Problem 11.5).

Lv

&

|
<

Lo
—
Ql\-) <

<
—

w

o
0]
J m

where "||" and " L " refer to the direction of v,,.

62

11.A.1 The Lorentz Transformation (continued)

Problem : A rocket is launched from the earth into outer space.
It moves on a straight line with a constant acceleration (a') with
respect to its rest frame (Why is a’ specified in the rocket's frame?)
Calculate the time required for the rocket to accelerate from zero
speed to the final speed v, according to earth and rocket clocks.

Solution : Let S be the earth frame, S’ be the rocket rest frame,
and the one-dimensional motion be along the x-axis. The inverse
transformation of (A.21) gives (omitting subscript "x"):

' —>
Cdv_ 1 av S d_a
dt  y3(+vgy'/c?y® dt’ 0 dt
. N S[ Sy

Lorentz transformations apply to two inertial
frames. So, S’ is the instantaneous rest frame of V=0, =g
the rocket, but S’ does not accelerate with the 5 '
rocket. In S, we have v =0 and dv' / dt' = a'. -

This gives a (acceleration in S)=a'/ y;. Since S’ is the rest frame of
the rocket, y, for the transformation equals y of the rocket in S. Thus,

a:a'/yg =da'/y>, where y =(1=v* /¢*)™V? [Note: a' > a] 63

11.A.1 The Lorentz Transformation (continued)
From the expression of the acceleration in the earth frame (),
a=d'ly =d1-v* /)2, (A.23)
we may evaluate the total acceleration time as measured on earth
r= Io dt = jgf clzdv jvf r rdv = 1 ;f (- Vzcjz,z)yz ,(l_v;f/cz)l/z :

The rocket frame is accelerating. So, to find the total acceleration
time as measured on the rocket, we must still work in the earth frame
by using the relation dt’' = dt/y.

’ I+v,/c
_r ry 1 f
- IO dr’ = .[ dt = IO ya 0 1— vz/c (l—vf/c)'
We find that, in the limit v, / ¢ — 0,both 5t '
T and T' approach the expected value of o !
, o ) 3} !
Ve /a’. However, T/ T' increases rapidly as of Vi
vy /¢ —>1due to the effect of time dllatlon . _----"'T/T,
(see figure). In the figure, 7, = (1— vf /c? ) 2 YR TR TR
is the time dilation factor at the final speed v . vele 64




Section 2: Relativistic Momentum and Energy
(Ref.: H. C. Ohanian, “Physics,” 2nd ed., pp.1013-1014.)
The law of conservation of momentum states that, for an isolated
system of particles, > m, Vv, (before collision) = > m;u; (after collision).
Under the Galilean transformation, the statement is true in all
(inertial) frames. However, under the Lorentz transformation, ¥ m,V;,
though conserved in one frame, will in general not be conserved in
another frame. Thus, postulate 1 is violated if we continue to define

the momentum as mV. The theory of relativity takes a major step by
redefining (or postulating) the momentum and energy as

of a particle. It is to be distinguished from the

{p =ymv | Note: y =(1-v*/c*) "% is the Lorentz factor (A.24)
Lorentz factor y,, for the transformation. (A.25)

E= 7m02

For simplicity, we will consider only one-dimentional motion

along the x axis. The momentum and energy of a particle are then

and E = m?

_ o myy
Px xll—v)%/cz xll—v)%/cz 65

11.A.2 Relativistic Momentum and Energy (continued)

From (A.20), the velocity in frame S” is v/, = L"oz Hence, the
I=vyv / c
momentum of the particle is (assuming m has the same value in S”)
L) S m(Vx_Voz) 1
X
Vs /e 1= e i1y ) (—vevy /)P

m(vy—=vp)

= v, D, E
\/(I_VxVO/C2)2_(Vx_Vo)2/02 Y o X

Since (1-v,v,/¢*)? = (vy—v /2

2/ 2 2/ 2y Ve Ps B
=(1—v0/c )(l—vx/c ), D, becomes S” o 5 X'

pl = 1 mvy %W m >
* \/l—vg/cz \/l—v)%/c2 \/l—v(%/cz \/l—v)%/c2
v,
=1(pe= 2 E) (A.26)
Similarly, we derive the Lorentz transformation equation for energy:
E’ = yo(E—Vopx) (A27) 66

11.A.2 Relativistic Momentum and Energy (continued)

By the same method, we can extend the motion to 3 dimensions and
derive the Lorentz transformation equations for p and £. The result is

' V,
pxzyo(px_c%E) .paE
py=r, SL——‘”
p:=p: ‘ -p, E

E’:yO(E—vopx) S’ =~ x'
V,

0

(A.28) shows that p’ and £’ in S” is a linear combination of p and E
in §, with constant coefficients (i.e. the coefficients are independent of
p and £ of the particle). The same equations will therefore hold true for
the fotal momentum and energy (Xp;, X E;) of a system of particles,
P =10(E P~ 3 TE))
LP= Py
x p ;‘z =X p jz
YE; =y(XE; —voX pj)

(A.28)

(A.29)
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11.A.2 Relativistic Momentum and Energy (continued)
r Vo
ijx - 70(Zp]x _CTZEJ)

Rewrite (A29) | =F»= 2Py
x p jz =2 p jz
ZE} = 70(2Ej _VOZij)

Form this set of equations, we see that if (and only if) the total
momentum (X ;) and total energy (X E;) of a system of particles
are both conserved in S, the total momentum and total energy will
be both conserved in S’

Discussion: (1) This shows that the postulation of p = ymv and
E = ymc* will preserve the conservation law under the Lorentz
transformation. However, the conservation law must now be
extended to include both the momentum and energy.

(ii) Writing E = ymc® = (y —1)mc* + me?, we may divide the total
energy into the kinetic enery (y —1)mc? (due to motion) and a new
form energy mc” (an intrinsic energy) called the rest-mass energy.




11.A.2 Relativistic Momentum and Energy (continued)

Problem: A particle of rest mass m moves on the x-axis is attracted
to the origin by a force me’x (@ = const). It performs oscillations of
amplitude a. Express the relativistic oscillation period as a definite
integral, and obtain the 2 leading terms of this integral for small a.

Appendix B: A Formal Derivation of
the Lorentz Transformation

In Appendix A, we begin with the derivation of "time dilation" and
"length contraction" from postulate 2, followed by a derivation of the
Lorentz transformation. Here, we present a more formal (but physically

. . . . a
Solution: The period 7 is given by 7= 4,[0 %, (A.30) less transparent) approach, whereby the Lorentz transformation is
where the velocity v can be calculated from the energy equation derived directly from postulate 2. The following paragraphs are taken
: n M n
me (1—v2 /Cz)—l/z L ma?x? = mc? + L maa? (A31) from Alonso & Finn "Physics," p.92.
o S 5 . Referring to the figure to the right,
Substituting v from (A.31) into (A.30), we obtain e
suppose that at # = 0 a flash of light is A(x.2.1)
1+ (a*—x*)/2¢? : o AN
r= % Jg dx s emitted at the common position of the (x,y,2,t')
(a2—x2)1/2[1+w2(a2—x2)/ (462)} two observers. After a time ¢, observer
Expanding the integrand in powers of w? (a2 —x? )/c2 and using 0 Wln note tha}t the.hght has reached
point A4 and will write r = ct, where ¢ ~ X’
[Pdy—L — —zand [Pdy—2— =57 (for b>0), we obtai : i, 2, 2 2 /T x
R s rand jpdy o 2 Jer » WE obtain is the speed of light. Since x” + y* +z S
(by=y?) (by=y?) 2 .
5 5 =r”, we may also write
=27 |14 3w%a” ...
r= 0] [1+ 16C2 + i| 69 )Cz-l-yz+Z2 20212 (Bl) 70
11.B A Formal Derivation... (continued) 11.B A Formal Derivation... (continued)
mi ' it y , : : :
. Similarly, (?bsgwer O_, whose position y This result must be identical to (B.1). Therefore
is no longer coincident with that of O, will (A(-“Jyz’t) I
) . . (X,y,7,t') k“—=ba‘c” =0
note that the light arrives at the same point 5 -
A in a time ¢, but also with velocity c. k*vo—ba“c” =0
: c 2 22,2 _
Therefore he writes 7' = ct’, or ; N a”—k*vy/c” =1
X4y =M SN v * (B.2) Solving this set of equations, for k, a, and b, we have
Our next task is to obtain a transformation relating (B.1) and (B.2). k=a= % and b =v, /c?
1-vg/c

The symmetry of the problem suggests that y' = y and z' = z. Also since
OO’ = vt for observer O, it must be that x = vt for x' =0 (point O").
This suggests making x" = k(x —v,t), where & is a constant to be deter-
mined. Since ¢’ is different, we may also assume that ¢' = a(z — bx), where
a and b are constants to be determined (for the Galilean transformation,
k =a=1and b =0). Making all these substitutions in (B.2), we have

I (x% = 2vgxt +vgt2 )+ y* + 22 = 2a® (12 = 2bxt + b*x*) or

(k* —b*ac?)x? = 2(k*vy —ba*cH)xt + y* + 22 = (a® k3 1 2P
71

Inserting these values of &, a, and b in x" = k(x —vyt) and
t' = (a—bx), we obtain the Lorentz transformation

' X—Vyl
X = —F7——7r—
\ll—vg/cz
y'=y
R (B.3)
/= t—vyx/c?
72




Appendix C: Summary of Lorentz
Transformation Equations

2 _1
For all equations, y, = (1— :—g) 2. By symmetry, equations for

the inverse transformation differ only by the sign of v, (or v)).

!
x'=x '
: S N RN
y =y , (X, Z, 1)
L2 =r (z—wt) e zz
Vo
t'=y(t—22) y oy Frames K and K’
¢ coincide att =¢'=0.
ro_ vx
v P,
Vi
* 70(1_0%"2) ‘ /V
i vy : K
2.4V T oy
7 70(1_0%‘}2) ,
[} — VZ_VO /V
z YV !
-9y K
2’ -V 73

11.B Summary of Lorentz Transformation Equations

r_ 1 a
) =—=4
I 39 Vv
VoV
7/8(1_ 02 j L’
3 ‘ K
' _ 1 Vo a
2= L fa - Yx(ax)] ,
VoV c
78( —O—zj ’ Lv
C K,
where "||" and " L " refer to the direction of v,. -V,
Special case: one dimensional motion *Vzs Qg
a=—>1 4 K z
: 73(1_‘)7(2)‘}2)3 :
C ! !
* VZ’ aZ
! — K! Z,
pic Px ! *P,P,P,E —> v,
4 Py =Py z

K
12 V,
P :yO(pz_c%E) .era P):s ])Zr, E'
E'=y(E-vp,) K’ z'

—>V
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11.B Summary of Lorentz Transformation Equations

J.=J, I Jy I p
J,=J, K z
5. ! ! ’ ! !
']Z :}/O(JZ _Vop) .J_xﬂ ‘]yﬂ Jz) p
’ V i
P'=rp=37.) K’
0
A, =4, ! A, A, A, D
. A)'/ZAy K z
. ' W
A =104 =) C Ay A A, D
4 Y ' ’
@ :70((1)_?0‘42) K Zz

—>V
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11.B Summary of Lorentz Transformation Equations

k)'c :kx . kx, ky, k.,
. k;,zky K z
k; :70(kz—:%w) ° k),ca k)';a ;7 a),
, K' z'
@' =yy(@—vyk,) -V
Ej=E c E B B
' Vo *Ep EL P Pl
. J_:70(EJ_+CXBJ_) K
) B, :B ! ' ’ ’
” H y K L4 E”, EJ_) BH, BJ_
" 0 !
BJ__70(BJ__CXEJ_) -V,

where "||" and " L " refer to the direction of v,.
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