
Chapter 11: Special Theory of Relativityp p y y
(Ref.: Marion & Heald, “Classical Electromagnetic Radiation,”    

3rd ed Ch 14)3rd ed., Ch. 14)
Einstein’s special theory of relativity is based on two postulates:
1 L f h i i i t i f i ll L t f (I1. Laws of physics are invariant in form in all Lorentz frames (In 

relativity, we often call the inertial frame a Lorentz frame.)
2 The speed of light in vacuum has the same value c in all Lorentz2. The speed of light in vacuum has the same value c in all Lorentz     

frames, independent of the motion of the source.
The basics of the theory are covered in Appendix A on anThe basics of the theory are covered in Appendix A on an

elementary level with an emphasis on the Lorentz transformation and
relativistic momentum/energy Here we examine relativity in therelativistic momentum/energy. Here, we examine relativity in the
four-dimensional space of x and t, which provides the framework for
us to examine the laws of mechanics and electromagnetism Theus to examine the laws of mechanics and electromagnetism. The
contents of the lecture notes depart considerably from Ch.11 of
Jackson Instead we follow Ch 14 of MarionJackson. Instead, we follow Ch. 14 of Marion.

In the lecture notes, section numbers do not follow Jackson. 1

Section 1: Definitions and Operation Rules of Tensors of
Diff t R k i th 4 Di i l S

     
id f d l 

The Lorentz Transformation :
Different Ranks in the 4-Dimensional Space
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     Consider two Lorentz frames,  and . Frame  moves along 
the common -axis with constant speed  relative to frame . v
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11.1 Definitions and Operation Rules of … (continued)

I b k h l i d bA b i     : In many books, the relative speed between 
two frames is denoted by  and the particle velocity in a given frame 
i d t d b Thi t ll l d t t d fi iti f

A note about notation
v

this denoted by . This eventually leads to two definitions fou

2 1

r the same 
notation : 

Lorentz factor for the transformation


  2

2

2
2

1

Lorentz factor for the transformation,        1      Jackson (11.17)
L t f t f ti l i i f

( )v
c

       
 2 2

2

1 Lorentz factor of a particle in a given frame,        1   Jackson (11.46) and (11( )u
c

 
  ..51)

T id f i i h h i ( h f

 
  

     To avoid confusion with the notation  (e.g. when we perform a
Lorentz transformation of the Lorentz factor of a particle), we will 
d t th l ti d b t t f b



d th ti l0denote the relative speed between two frames by  anv

2 1

d the particle 
velocity by throughout this chapter, and thus definev 
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      1    [Lorentz factor for the transformation]( )v
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        1    [Lorentz factor of a particle in a given fra( )v
c

 
  me].
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Four Dimension Space Quantities and Operation Rules :
11.1 Definitions and Operation Rules of … (continued)

Define a position vector in the 4-dimensional space of  and  as
( ) ( )

t
x y z ict ict

     Four - Dimension Space Quantities and Operation Rules :
     x

xx     ( ,  ,  ,  ) ( ,  )
1 0 0 0

x y z ict ict  xx
 
 4-vector spatial vector

0 0 0

0 1 0 0
and a 4-D matrix as 

0 0
a

i   
 0 0, /v c
 
  
 
 

p

1 4 b
0 0 0 0 0

h h L f i i (1) b i

i    
1 4,  row number  
1 4,  column number  

then, the Lorentz transformation in (1) can be written    
1 0 0 0x x     
     4

10 0 0

0 1 0 0
  or      (2)

0 0
y y

x a x
iz z   

   


    
      

      10 0 0

0 0 0

0 0
0 0

iz z
iict ict

  
  

    
         

4
and the

4

1
 inverse Lorentz transformation is:  .         (3)x a x  


 

4



The matrix in (2) shows that the Lorentz transformation isa
11.1 Definitions and Operation Rules of … (continued)

     The  matrix in (2) shows that the Lorentz transformation is
an orthogonal transformation because it satisfies 

d fi i i f h l

a

 definition of orthogonal                          transformation*a a  


     
  (4)

 by (2)  by (2)  by (4) 
*See H. Goldstein, "Classical Mechanics," 2nd edition, p.134.     

x x    
2 2

,
     Thus, x a x a x a a x x x         

       
        

 

2 2              x y z     2 2 2 2 2 2 2 2,
which is a statement of postulate 2 [see Eqs. (B.1) and (B.2) in

c t x y z c t    
which is a statement of postulate 2 [see Eqs. (B.1) and (B.2) in
Appendix B.]

J st as the 3 dimensional ectors (and tensors in general) are    Just as the 3-dimensional vectors (and tensors in general) are
defined by their transformation properties in the -space, we may 
define 4 vectors (and 4 tensors in general) by their transformation

x
define 4-vectors (and 4-tensors in general) by their transformation
properties in the ( , ) space and find rules for their operation.tx  5

11.1 Definitions and Operation Rules of … (continued)

1 A f 4 i i ( 1 4) ( ) hi hA A A A AA 1 2 3 41. Any set of 4 quantities  ( 1 4) or ( , , , ), which 
    transform in the same way as , i.e.   

A A A A A
x





   A  

                                   ,                                          A a A  

       (5) 

is called a (or 4-tensor of the first rank).4-vector    is called a  (or 4 tensor of the first rank).
         The position vector [ ( ,  ,  ,  )] of a point in the 4-D 

space is obviously a 4 vector As another example the mome

4 vector
x y z ictx 

ntum    space is obviously a 4-vector. As another example, the momentum
    vector of a particle in the 4-D space, defined as

( ) ( )iE iE                      ( ,  ,  ,  ) ( ,  ),

    is a 4-vector because it transforms as [see Eq. (A.28), Appendix A.]
x y z

iE iE
c cp p p  pp
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   

    
y

z

p

p




4

10 0 0

0 1 0 0
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0 0
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   
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    
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ci             6

11.1 Definitions and Operation Rules of … (continued)

2. If a quantity  is unchanged under the Lorentz transformation,
it is called a (or 4-vector of the zeroth rank) TheLorentz scalar


    it is called a  (or 4 vector of the zeroth rank). The
    Lorentz scalar is also ca

Lorentz scalar
Lorentz invariantlled a .

The Lorentz scalar is in general a function of the components         T

2 2

he Lorentz scalar is in general a function of the components
    of a 4-vector. For example, we have just shown that 

 2 2

2

                        

H i L t l

x x 
 
 



 

2         Hence,  is a Lorentz scalar.x


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3 Define the 4 D operator [ ] as the counterpart   
11.1 Definitions and Operation Rules of … (continued)

( )3. Define the 4-D operator, [ ,  ,  ,  ], as the counterpart 

    of the operator  in t 4-gradient of a Lorentzhe -space. Then, the   
x y z ict
   
   

 x



( )scalar    , [ ], is a 4-,  ,  ,  x y z ict
   
     vector. 

   


     :     (6)x
xx x xProof a a
      

 



           


 
b (3) T f 4 t

4-divergence of a 4-vecto

   

4. The , , is a Lorentz scalar.r
A
x


  A

by (3) a Transforms as a 4-vector.

g , ,

    :
x

Proof
 

b (5)A 
: 4-vector

A t f
A

A


xA A a   
     A (7)

AAa  
     A

 by (5)x a A
  



  A : component of  A


   x x x a

    
       A

 by (4)

       (7)x xa



  
  



     


 A

by (3) a

   is unchanged under the Lorentz transformation


  A

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2 2 2 22 15 Th t (8)4 L l i      
11.1 Definitions and Operation Rules of … (continued)

2 2 2 2 2
2

2 2

15. The  operator, ,      (8)

    is a Lorentz scalar operator, i.e.  [ : a Lorentz scalar].

4-Laplacian
x y z c t
   
   

 

   

  



 
 p , [ ]

    :  We have shown in item 4 that the divergence of Proof a 4-vector
is a Lorentz scalar i e Let be a Lorentz scalar then    A A

2 2

    is a Lorentz scalar, i.e. . Let  be a Lorentz scalar, then
     and  are both 4-vectors (see item 3). Hence,

 
    



 

   

 
 

A A 
A A

2 2                .
6. Th  e dot

                     A A  
, , is a Lorentz scalar.product of two 4-vecto sr A B A B

 by (4)
    :  

A B
Proof

 

 


 

A B a A a B a a A B
 

         
     
         

 
A B

                                         A B 

  A B

2 2

                 (9)

a useful property of theA A     A A A A 2 2 a useful property of the  orthogonal transformationA A 
 
          

 A A = A A
9

11.1 Definitions and Operation Rules of … (continued)

: In frame a particle's position changes by in aExample K dx     :  In frame , a particle s position changes by  in a
time interval . Then, ( ,  ,  ,  ) is a 4-vector. Hence, 

( ) is a Lorentz invariant i e in frame

Example K d
dt d dx dy dz icdt

d d dx dx K d d


    

x
x

x x x x( ) is a Lorentz invariant, i.e. in frame ,  d d dx dx K d d 

x x x

( ) is given by .dx dx d d    

x

x x

     :  The particle is at rest in frame  (the rest frame of 
the particle) Hence = 0 and (0 0 0 ) where we have

Special case K
d d icd

 





  x xthe particle). Hence, = 0 and (0,  0,  0,  ), where we have
denoted the differential time

d d icdx x
 in frame  by  instead of , because 

frame is a unique frame is called the proper time of the particle
K d dt

K d



 


2 2 2 2 2 2 2

frame  is a unique frame.  is called the proper time of the particle.
     

K d
dx dx dx dx c d dx dy dz c dt   

 


         

2
2   1    [a Lorentz inv

c
dtd dt

 

    variant]                   (10)

where  is the velocity of the particle in frame .
: (i) For the special case that is the rest frame of the

dydx dz
x y zdt dt dt K

Discussion K
  


v e e e

      :  (i) For the special case that  is the rest frame of the 
particle,  is also t

Discussion K
v 0he relative velocity of the 2 frames. Hence, .  10

11.1 Definitions and Operation Rules of … (continued)

(ii) The Lorentz transformation applies only to inertial frames If the    (ii) The Lorentz transformation applies only to inertial frames. If the
particle has an acceleration, ( ) in (10) is the differential time in 
the rest frame of the particle in w

dtd
instantaneous

 
hich the particle hasthe  rest frame of the particle, in winstantaneous hich the particle has

zero velocity but a finite acceleration. In general, the speed of the rest
frame (hence ) is a function of time i e [Jackson (11 26)]dtd  ( )frame (hence ) is a function of time, i. e.  [Jackson, (11.26)].
      (iii) Consider a special 

dt
td   

case of  particle velocity. The muonconstant
has a lifetime of 2.2 sec in its rest frame between birth and decay. If
the lifetime is measured in a Lorentz frame in which the muon has a

h



b (10) h f lif i ( ) d h dconstant , then  by (10), the rest-frame lifetime ( ) and the measured
lifetime  are related by 

d
d

t t td
t





1                    
                     .

This expresses t

decay decay decay d
birth birth birth

t t
dt t

tdtd dt
         

he phenomenon of time dilation; namely, when the    This expresses the phenomenon of time dilation; namely, when the
time interval of a clock's rest time (e.g.  above) is observed in a 
moving frame, it is greater by a factor of . The invariance of (= )d

d

d
t


 moving frame, it is greater by a factor of . The invariance of  ( )

means that
d  

  will have the same value in all Lorentz frames.dt
 11

7 A ( ) i t f 16 titi4 t f th d k

T

11.1 Definitions and Operation Rules of … (continued)

7. A  ( ) is a set of 16 quantities, 
    ( , 1 4), which transform according to 

4-tensor of the second rank
T    

T

,
                                                                  ( 11T a a T   

 
  )

8 Th d d f 4 f h d k d 48. The ,

    ( ) , is a 4-vector.

dot product of a 4-tensor of the second rank and a 4-vector

T A  

T A( ) ,



  






a a T  

 a A 




    : ( )Proof T A a a a T A


       
    



 
      


T A



    ( )a T A a    
  

 

    

T A    (12)


Transform as a 4-vector.
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11.1 Definitions and Operation Rules of … (continued)

9. The  of a 4-tensor of the second rank, ( ) ,
    is

4-d
 a 4-vector. 

ivergence
T
x






 


 T

    :

( )
T x

Proof

T T  

T

,
   ( ) x

x x x x
a

a a T a a T 
   



      
      



              T

     a a a


  







( )     (13)T T
x xa a 
   

     

 
      

 
 T

, ,     
Transform as a 4-vector.
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11.1 Definitions and Operation Rules of … (continued)

10. A 4-tensor of the third rank is a set of 64 quantities, 
      ( 1- 4), which transform according toG     

                                                        (14)i j k ijk
ijk

G a a a G


    
j

Proble : If  is a 4-tensor of the second rank, show that 
F

m 1 F


( 1- 4) is a 4-tensor of the th                 .   

:

ird rank
F
x

Solution F a a F



   




   





:   

i

j k jk
jk

a

Solution F a a F



  


jk i
ij k i

jk i

FF x
x x xa a a a
    

 
                  (15)jk

ij k
ijk

F
xa


 
 

Transform as a 4-tensor 
of the third rank.
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: Show that the set of equationsProblem 2
11.1 Definitions and Operation Rules of … (continued)

:  Show that the set of equations, 
                   
                    ( 1- 4)                     (16)0

FF F
x x x

Problem 2  
     

 
        ( ) ( )

                    is  in form under the Loreninvariant
x x x 

    

tz transformation. 
jkFF 


:  Rewrite (15):   jk

ij k
ijk

FF
ix xSolution a a a

   

     


 

   , ,       Change indecies in (15) as follows: , ,
ij

i j k
F F

i k k j j i
a a a


     

 
 

  
  

  (17)                              
kijk

i j kx xa a a
     


                          (17)
, ,     Change indecies in (17) as follows: k j i k j i

       
   , ,

                                                        (18)ki
jijk

i j k
FF

x x

k j i k j i
a a a

   
 

 

  
 

     Combine (15
j

 
0 by (16)), (17), and (18), 

kFF FF FF    



  0     jk ij ki
i jki j k

ijk

FF FF FF
x x x x x xa a a  

    
   

            
15

11 If a physical law can be expressed as a relation between 4 tensors
11.1 Definitions and Operation Rules of … (continued)

11. If a physical law can be expressed as a relation between 4-tensors 
      of the same rank, then it's form is invariant in all Lorentz frames.

: If the physical law in frame is of tExample 1 K he form A B      : If the physical law in frame  is of tExample 1 K



he form ,
      then, , i.e. (19)A a A a B B     

 
 


        

A B
A B A B .  

: If the physical law in frame  is of the form ,
B

      Example 2 K


 


 
T F

      then, ,  i.e. 
F

T a a T a a F F


       
 
    

 


                   [i.e. invariant in form]                   (20)
I th f ll i ti i l ti i ti h i i

   
   
T F T F

     In the following section, we examine relativistic mechanics in
4-vector formalism. In Sec. 3, we will demonstrate that laws of
electromagnetism are in variant under the Lorentz transformationelectromagnetism are in variant under the Lorentz transformation
by expressing them as relations between tensors of the same rank.
From the Lorentz transformation of these tensors we also obtainFrom the Lorentz transformation of these tensors, we also obtain
the transformation equations for various electromagnetic quantities. 16



Section 2: Relativistic Mechanics
We begin with a note on the terms "conservation" "invariance"

conse

     

rvati

   We begin with a note on the terms conservation , invariance , 
and "covariance".

The of a quantity means that it remains unchangedonconservati     The  of a quantity means that it remains unchanged
in time in a given Lorentz frame. For 

on
example, the relativistic

momentum and energy of an isolated system of particles are bothmomentum and energy of an isolated system of particles are both 
conserved after a collision. This is a fundamental law to be discussed
in this Sectionin this Section.
     The  ofinv  a ariance quantity means that it is invariant in value 
under a Lorentz transformation Such a quantity is called a Lorentzunder a Lorentz transformation. Such a quantity is called a Lorentz 
invariant or Lorentz scalar. For example, the dot product of two
4-vectors is a Lorentz invariant However it may or may not be a4-vectors is a Lorentz invariant. However, it may or may not be a 
conserved quantity. An example will be provided in this section.

The term refers to physical laws A physical law iscovariance     The term  refers to physical laws. A physical law is 
"covariant" if it is "

c
i

ovaria
nva
nce

riant in form under the Lorentz transformation."
As will be shown the new laws of relativistic mechanics and existingAs will be shown, the new laws of re
laws of ele

lativistic 
ctromagneti

mechanics and existing
sm are all covariant. 17

The 4 - Momentum ( ) of a Single Particle :p
11.2 Relativistic Mechanics (continued)

2
     As shown in (A.28), if we define the momentum of a particle as 

and energy as ( is called the rest mass*) then them E mc m  

     The 4 - Momentum ( ) of a Single Particle :    

p v

p

and energy as  (  is called the rest mass*), then the 
4-momentum,  (

m E mc m
p

  


p v
p , , , ), is a 4-vector, which transforms asx y z

iE
cp p

K  z
   ,  ,  ,x y zP P P E                                                                        (21.1)

                                                             
x x

y y

p p
p p
 
            (21.2)






K  z
, ,   ,  x y zP P P E   

y yp p
0
20

( )
  

( )                                                        (21.3)
( ) (21 4)

z z
v
c

p p E
E E



   
  K

0v
 z0 0( )                                                         (21.4)

*Throughout this chap
zE E v p   

ter,  and  denote the rest mass.m M
2     : In Appendix A, we first define  and , 

t the law of conservation of momentum and energy is hen show that 
Discussion m E mc  p v

gy
. Conversco ely, frvariant om the requirement of the covariance of this 

conservation law, we can deduce the definitions of  and mp v
2  (see Jackson Sec. 11.5).E mc




p

18

The dot product of two 4-vectors is a Lorentz scalar hence
11.2 Relativistic Mechanics (continued)

2 2
2 2

2 2
     The dot product of two 4 vectors is a Lorentz scalar, hence

                                    (22)E E
c c

p p         p p p p   
2 2 2  is ai.e. .     

If
 Lorentz scalar (inv

frame
aria )ntE p c

K


 2is the rest frame of the particle (i.e. 0, )p E mc       If frame  K
2
2

2 2 2

2 2 2 2 4

is the rest frame of the particle (i.e. 0, )
then (0,  0,  0,  ) and gives , orE

c

p E mc
imc p m c        p p p p p  

2 2 2 2 4

2 2 2
  (23)

     Since   is a Lorentz invariant, (23) shows that the rest

E p c m c
E p c

 

 , ( )
m

p
ass  is a Lorentz invariant. This has in fact been assumed in

Sec. 2 of Appendix A, where we derive the Lorentz transformation
m

2
pp ,

equations for  ( ) and  ( ). (23) is a useful formula
for it relat

m E mc  p v
es the particle's total energy ( ) to its momentum ( ).E pfor it relates the particle s total energy ( ) to its momentum ( ).

(Momentum in particle physics is often expressed in unit of GeV/ .)
For a relativistic particle we can still speak of its (macroscopic)

E p
c

     For a relativistic particle, we can still speak of its (macroscopic)
kinet 2 2ic energy , defined as:  ( 1) .        (24) K K E mc mc    19

The 4 Momentum ( ) of a System of ParticlesP
11.2 Relativistic Mechanics (continued)

     Consider a system of particles, each with the 4-momentum 
/ / 1 2 3( ) ( )iE iE j

     The 4 - Momentum ( ) of a System of ParticlesP

    ,  ,  ,  / ,  / ,  1,  2,  3,
  the Lorentz transformati   Si once 

( ) ( )j jj xj yj zj jp p p iE c iE c j  p p
, then is a linear transformation

sum of any number of 4-vectors also obeys the Lorentz tansformation.
Thus,  is a 4-vector and its components transform as j

j
P p

     (25.1)

j
j

xj xj
j j

p p  


     
j j

yj yj
j j

p p  

0

(25.2)

( ) (25 3)vp p E  



   0

20

0 0

( )                                         (25.3)

( )      (25.4)

zj zj j
j j j

j j zj

c
p p E

E E v p





  

  

  

   


0 0

2

( ) ( )

and ( ) ( ) ( ) ( ) ( )   (26)

j j zj
j j j

j j j j j
j j j j j

p

E c



    


     p pP P p p

is a Lorentz invariant.

j j j j j
j j j j j

20



11.2 Relativistic Mechanics (continued)

                                           xj xj
j j

j j

p p

p p

 

 

 

 





0
20

                                           
     Rewrite (25):  ( )                 

yj yj
j j

zj zj j
j j j

v
c

p p

p p E

 

  



  





0 0( )       

j j j
j j j

j j zj
j j j

c
E E v p                     



 j j j    

     We see from (25) that  when all the components of  (i.e. the
th total momentum total eneree components of plus the ) are each

onl
rgy

y


P
th total momentum total eneree components of  plus the ) are each
conserved in frame  will all 

rgy
the cK omponents of  be conserved.

If one component of  is not conserved, a rotation of the spatial 
P

Pp , p
coordinate system can make any component of (momentum or 
energy) unconserved in the new spatial coordi

P  
 nate system. Thus, the gy) p y

 must take the form as described below 
in orde
relativistic law of conserva

r for it to be a covariant 
tion

law.

21

:Law of Conservation of Momentum and Energy
11.2 Relativistic Mechanics (continued)

the conse
     :
     For reasons just discussed, in re rvatilativity, 

rather than sep
on of 

momentum and energy ac rate lawsomes in one law

Law of Conservation of Momentum and Energy

 rather than sepmomentum and energy ac rate laws
for th

omes in one law
e momentum and energy as in nonrelativistic mechanics. The

law states that for an system of particlesisolated
   before collision after co

law states that, for an  system of particles, 
,                     (27)llision

isolated
P P

which implies that , , , and xj yj zj
j j j

p p p    are each conserved, 
i.e.

j
j

E

   

   

           before collision after collision               (28)j j
j j
 p p

       before collision after collision               (29)

Since the law in (27) is expressed

j j
j j

E E 

as a 4 vector relation it has     Since the law in (27) is expressed 

   

as a 4-vector relation, it has
the same form in all Lorentz frames [see (19)]. Thus, in frame ,K 

   before collisionwe hav after coe llisio .n P P
22

11.2 Relativistic Mechanics (continued)

    If is conserved the dot product must also be conserved ThusP P P
2 2

    If  is conserved, the dot product  must also be conserved. Thus,

( ) ( ) ( ) ( ) ( ) ( ) (30)j jE E
j j j jc cj j j j j j

         p p p p
P P P

before collision after collision    
:

j j j j j j

Discussion

 

     :
  

Discussion

[see (30)] If the system is not isolated it is
   (i)  for an  system is both a Lorentz invariant [see (26)]

and a conserved quantity
isolatedP P

[see (30)]. If the system is not isolated, it is
still a Lorentz invariant, but no longer a conserved qu
and a conserved quantity

   
antity.

(ii) b f lli i ft lli i i (27) i f d t lP P       (ii) before collision after collision  in (27) is a fundamental 
law (rather than a derived relation), in which the nonrelativistic law
f ti f t h b t d d t i l

P P

d thof conservation of momentum has been extended to inclu
2

de the energy,
 . A very important aspect of this law is that 

i i l t d t h l ti d i l ti lli i
it applies to allE mc

 in an isolated system, such as elastic and inelastic collisions,
nuclear reac
pro

tions, and particle 
cesses

decays. As a result, the total rest mass
of the system may not be conserved as is illustrated in the followingof the system may not be conserved, as is illustrated in the following
two problems. 23

11.2 Relativistic Mechanics (continued)

1: Two identical particles of rest mass and equal andProblem m
hea

   
d-o

   1: Two identical particles of rest mass  and equal and 
opposite velocities  collide  inelastically to form a single 
particle Find the mass and velocity of the new particle

n
Problem m

 v
particle. Find the mass and velocity of the new particle.
     :Solution

(b f )     ,      ,   (before) 
                               (after)cm

m m
M

  


v v

     The total momentum before 
the collision is 0.
So the collision occurs in the  frame, i.e. thecenter-of-momentum (CM)

m m  v v

frame in which the sum of the momentum of all particle v ns a ishes. For
later comparison with the result in problem 2, we denote the mass of 
the new particle by  to indicate that it is created in the CM frame.

Conservation of momentum The new particle is sta
cmM

 tionary.


Conservation of momentum The new particle is sta
  

 tionary.
Conservation of energy        2  cm cmm m M M m  

      24



11.2 Relativistic Mechanics (continued)

(b f )Discussion: In this problem, we
find Mcm= 2m > 2m, i.e. rest mass

2

 ,      ,   (before) 
                               (after)cm

m m
M

  


v v

has been created from the kinetic energy [(γ-1)mc2] of the colliding
particles. There is no need to know what’s inside the new particle. We

l d k i d h h i d i honly need to know its rest mass and hence the energy associated with
it. A hot object has a rest mass greater than when it’s cold. The
diff i t d t i i t t idifference in rest mass due to an increase in temperature can in
principle be measured by its acceleration under a known force, and we
know that at least some of the added mass is in the form of thermalknow that at least some of the added mass is in the form of thermal
energy. In many other cases, it’s not possible to know what’s inside.

Nuclear fusion and fission reactions are examples of nonNuclear fusion and fission reactions are examples of non-
conservation of rest mass. The total rest mass is reduced after the
reaction and the mass deficit appears as kinetic energies and radiationreaction and the mass deficit appears as kinetic energies and radiation.
In fact, all reactions (chemical or nuclear) in which energy is absorbed
(e g photosynthesis) or released (e g digestion of food) involve a(e.g. photosynthesis) or released (e.g. digestion of food) involve a
corresponding change of the reactants’ total rest mass.

25

11.2 Relativistic Mechanics (continued)

2 : A particle of rest mass and velocity collides withProblem m v     2 :  A particle of rest mass  and velocity  collides with
a stationary particle of the same rest mass and is absorbed by it. Find 
the rest mass and velocity of the new particle

Problem m v

the rest mass and velocity of the new particle. 
     Solut : The collision occurs in the  frame. So,
we denote the new particle mass by velocity by and Lorentz

stationary-target (ST)ion
M V

1/ 22 2
we denote the new particle mass by , velocity by , and Lorentz
factor by  [ (1 / ) ]. ( , ,  are also ST frame quanti it

st st

st st

M
V c m  

V
v es.)

Conservation of momentum (31)m M  v V

(31)

Conservation of momentum                    (31)
    

Conservation of energy        ( 1)                   (32)
st

st

st st

st

m M
m M

 
 

 
   

v V

1
1

(31)
(32)      

(32)

st

M







 V v  ,          (before) 
(after)

m m
M



 


v

V

 2

1

12 2

    (32) 
ststM m

M m










 


2 2 22 2 2 2 2( 1) (1 ) ( 1) 1[ ]stV vm m   

 ,       (after)st st stM  V

 
st

stM m


 
 2 2 22

2 2
2 2

1
2 2 2 2 2 2 2

( 1) (1 ) ( 1) 1

( 2 1 ) (1 ) 2 1 2 ( 1)

[ ]

[ ]

st
c c

v v

m m

m m m




 

     


     

         2 2    ( 2 1 ) (1 ) 2 1 2 ( 1)

 2( 1)

[ ]
c c

st

m m m

M m

     



    

   26

11.2 Relativistic Mechanics (continued)

:Discussion     :
     In problem 1 (CM frame), the new 
particle's mass is 2 . (33)

Discussion

M m
 ,      ,   (before) 

(after)cm

m m
M

  


v v

 

particle s mass is 2 .         (33)
     In problem 2 (ST frame), the new 

ti l ' i 2 1 (34)

cmM m

M




 ,          (before) 

(after)
m m
M



 


v

V

                               (after)cmM

 particle's mass is 2 1 . (34)
     Note that  is the Lorentz fa

stM m


 

2 2
ctor of the particle(s) before collision.

 ,       (after)st st stM  V

2 2

2
     In particle physics experiments,  or  is the energy 
available for the creation of new particles (why not ?). 

cm st

st st

M c M c
M c

     The rest energy of the 2

2
 electron or positron is 0.511 MeV. If

2 TeV of energy is needed for particle creation (i.e. 2 TeVcm

mc
M c



2

2 2

gy p (
or 2 TeV), then the required  of the colliding particle(s) is 

by (33) 2 2 T

cm

stM c

M c mc







  6eV [CM frame]1 957 10   by (33), 2 2 TcmM c mc 

 2 2 12

eV          [CM frame]
.

by (34), 2 1 2 TeV  [ST frame]

1.957 10

7.66 10stM c mc





 




 

    
     The energy associated with  is to be obtained in an accelerator.


27

11.2 Relativistic Mechanics (continued)

6

12
72 (1.957 10 1)kinetic energy needed in CM frame

ki i d d i ST f 5 10

    Thus, 
     12 17.66 10kinetic energy needed in ST frame 5 10   

    This shows that far less kinetic energy is needed in the CM


 

frame than in the ST fra
6

me. In fact, all the kinetic energy of the
two colliding particles [2 (1.957 10 1) 0.511 MeV 2 TeV]    
is put in use in the CM frame, while in the ST frame, 99.99995%
of the kinetic energy of the incident particle is wasted! This is whygy p y
the International Linear Collider (ILC) project plans to accelerate
both electrons and positirons to energies up to 1 TeV so that theboth electrons and positirons to energies up to 1 TeV so that the
the collision occurs in the CM frame.

: Why use a long linear accelerator instead of a moreQuestion     : Why use a long linear accelerator instead of a more
                      compact circular accelerator?

Question

28



Section 3: Covariance of Electrodynamics
Newton's law has been radicallyIn the special theory of relativity Newton s law has been radically

modified The electromagnet
      In the special theory of relativity, 

.  do not need any modiic laws
are already covarian

fication 
because they However thet ofcovariance theseare already covarianbecause they . However, the  t ofcovariance  these 
laws (such as Maxwell equations) is not immediately clear from the 
equations by which they are usually representedequations by which they are usually represented.
     Our purpose in this section is to prove that the EM laws are indeed 
covariant by casting them into relations between 4 tensors of the samecovariant by casting them into relations between 4-tensors of the same 
rank [see (19) and (20)]. We will do this by first defining 4-tensors in 
terms of known EM quantities and forming equations with 4 tensorsterms of known EM quantities and forming equations with 4-tensors 
of the same rank, then show that one or more existing EM laws are 
implicit in each equation This will prove that the laws are convariantimplicit in each equation. This will prove that the laws are convariant 
and justify the defined quantities to be legitimate 4-tensors. 

Furthermore Lorentz transformations of these tensors will yield     Furthermore, Lorentz transformations of these tensors will yield 
the tranformation equations for various EM quantities.

: Jackson sw Gausian unit systeitches to the starting fr mm oNote     : Jackson sw Gausian unit systeitches to the  starting fr mm o
Ch

Note
. 11. From here on, we also adopt the Gaussian unit system. 29

    1 Define a as4-current
11.3 Covariance of Electrodynamics (continued)

( ) Griffithsc J J J 1. Define a  as 
                  ( ,  ,  ,  ) ( ,  )                         (35)

d it t f l ti

4-current

x y zJ J J ic ic   JJ
( ,  ,  ,  ,  ) Griffithsx y zc J J J 

    and use it to form a relation
                 0                                          J

th l f ti f
                         (36)

Th (36) i h
( )
( )

the law of conservation of c         Then, (36) gives 

0   0        (5.2)

harge

x y zx y z
ic

tictJ J J    
  

 
       J( )

         Thus, the definition of  in (35) as a 4-vec
yx y z tict   

J tor leads to the
covariant representation [(36)] of the EM law in (5 2) This    covariant representation [(36)] of the EM law in (5.2). This 

    in turn justifies the definition of  as a 4-vector. The Lorentz 
transformation of then gives

J
J

K z
 ,    ,  ,  x y zJ J J 

    transformation of  then gives 
x xJ J

J J
 
 

J


 K  z

 ,  ,  ,  x y zJ J J    
y y

z

J J
J


 0 0

      (37)( )z
v

J v 


  


K 
0v

 z0
20( )z

v
c

J  


   30

2 D fi ( ) (38)4 t ti l A A A iA
11.3 Covariance of Electrodynamics (continued) ( ,  ,  ,  ,  ) Griffithsx y z

V A A A
c



2 4

2. Define a  as ( ,  ,  ,  )                         (38)

                    (39)
d it th i t l ti

 4-potential x y z

c

A A A i


 

  



A

A J
    and write the covariant relations: 

                             (40)0
c

   A
22 41 ( )

    (39)  

2
2 2

2

2 41

2 1

                                            (6.15)

4 (6 16)
cc t








   

     

A A J

V2 2

1

4                                              (6.16)

    (40)  0  [Lorenz condition]               
c t

c t







     
    A           (6.14)

0 0 0 GriffithsV
t  
   A

c t
  This again shows the consistency of  being a 4-vector and 

(6.14)-(6.16) being covariant laws. The Lorentz transformation
A

K z
 ,  ,  ,    x y zA A A 

    (6.14) (6.16) being covariant laws. The Lorentz transformation 
x xA A

A A
 
 



 K  z

 ,  ,  ,    x y zA A A   
0

0
    of  then gives  ( )

y y

z z
v
c

A A

A A



   A                                        (41)





K 
0v

 z
, , ,x y z

0(    0 )z
v
c A


 31

Th f ti b di tl t i t thN
11.3 Covariance of Electrodynamics (continued)

2
2 2

2 21
    : The source-free wave equation can be directly put into the 
              covariant form: 0  0.     (42)

c t

Note
  


    

4-wav3. Define a  asenumber
( ) ( )i i

c t

k k k  



  kk (43),  ,  ,  , ( ) ( )             x y z c ck k k  kk (43)
         Then, 

                 
t t              k x k xk x k x   

           
   By the same argument, we find that  defined in (43) is a

Invariance of the phase
k

    legitimate 4-vector. Thus, its Lorentz transformation gives

x xk k 

K  z
 ,  ,  ,  x y zk k k 

0                                                 (44)( )

x x

y y
v

k k

k k


  
 

K  z
 ,  ,  ,  x y zk k k    

0
20

0 0

( )

( )
( )z z

z
c

k k
v k

 

  

   
                                    K

0v
 z

relativistic Doppler shift

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4 Define a field strength tensor of the second rank [Marion (14 62)]:

F

11.3 Covariance of Electrodynamics (continued)

0

4. Define a field strength tensor of the second rank [Marion, (14.62)]:

z y xB B iE  
 

F 

0
                                       

0
  (45)z x yB B iE

B B iE

  
   


F

0

0
y x z

x y z

B B iE

iE iE iE

  
 
  





  
   D

D
H J

4         Then,  c



 F 41  

4





  
  

 E
E
B JJ

SI
0

0

t




  
 B

H J
B
E

         In the covariant set of equations [see (16)]
' l t

c ct

F

 

 

B J 0t

  
BE

's are elements
        0  ( 1- 4) ,  

of  in (45).

FF F
x x x

F  
 

  
 

  
 

     
 

  
F ( )

    set ( ) 0(1,2,3) 
 

    B
1set ( ) (1 2 4) (1 3 4) and (2 3 4) 0      BE    set ( ) (1,2, 4),  (1,3,4),  and (2,3,4) 0.tc        E
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4 FF F 
11.3 Covariance of Electrodynamics (continued)

4     The covariant equations, and ,

give the set of Maxwell equations in free space This shows that

 0
FF F

c x x x
  

 
  

    


 J F
give the set of Maxwell equations in free space. This shows that 
Maxwell equatins are covariant as well as justifies the definition of 

as a tensor of the second rank Thus givesF a a F

F

,
 as a tensor of the second rank. Thus,  gives

the transformation equations for  and  (see Marion, Sec. 14.6.)

F a a F   
 


E B

F

K

   ,  , , E E B B 
 0

 



v

E E 

K    
   ,  , ,    E E B B 

 0
0

            (
c     

  

vE E B

B B 
46)

K 
0 v

   
, , ,  

 0
0 c  


    

vB B E
 

 
0

0

     In (46),  is the velocity of frame  relative to frame ,  and
" " and " " refer to the direction of . 

K K

v

v 0
     See Appendix C for a summary of transformation equations.

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5. The covariant equation*, ( ),  is a Lorentz sc ralaed
d d  


P F P 

11.3 Covariance of Electrodynamics (continued)

q ( )
    gives (Marion, p.439)

where ( ) andiE

d mc

ed d p p p md d



    p v
P F P p

0

0

     ,   where ( , , , ) and 

z y x

x y z c
B B iE

B B iE

p p p mdt dt mc 
 

  p vF P p
 
 0

0
           z x y

y x z

B B iE

B B iE

 

 


F

 
 
 
 

x yiE iE i 0
1(( )) ( )

zE
Ed ep E m v B v B e

 
  
    E v B       (

relativistic equation1

( )) ( )

( )

x x y z z y xp E m v B v Bdt mc cc

d

e    

 

 E v B



2

relativistic equation 1  (47)of  motion
        

This equation is

( )             d edt c
d

      
p E v B

E





  2 q          implicit in (47).
dmc edt   v E

the charge  must 

                      

    *In order for this equation to be covariant, be e

    

      . This has been experimentally establisa hed Lo
      (see Jackson, p.554).  

rentz invariant
 35

11.3 Covariance of Electrodynamics (continued)

the
conservation laws for field/mechanical energy field/

6. In a similar manner, we can demonstrate the covariance of 
and    conservation laws for field/mechanical energy field/

    mechanica
 and 

, as given by Jackson (6.111) and (6.122): l momentum
d   me

    
d Edt  
 

ch field

h fi ld

(6.111)

(6 122)

                               sE da
d T n da 

    
  





n S

p p

 mech field                               (6.122)s T n dadt  


 

p p 
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Consider the general form of the relativistic equation of motion in
11.3 Covariance of Electrodynamics (continued)

     Consider the general form of the relativistic equation of motion in
(47), ,  where  is any force, such as the gravitational force.d

dt  Fp F

one-dimensional prob: l ( )em
d

Specia     

F

l case 1



F v
2
2

2 3( ) 1 (48)( )d d d d
d d d d d

v v v vmv mv m m m               F  2( ) 1       (48)( )dt dt dt dt dtc
mv mv m m m     


2 222 /1 1v cv  

2
2

1/ 21( )vd d  
2 2 2

2 2 2 2 2

1 /
/ 1 / 1

1 1v
c v c

v c v c






 

  

  

2
2
2 2 2

3/ 2 31
2

2

1

1

( )

( ) ( )
c

v v v
c c c

dt dt
dv dv
dt dt



   

3 Constant force does not cause constant accelerati .onF ma  
2 2 2 21 / 1 /v c v c


 

  c c cdt dt

     :  ( as in uniform circular motion)S conpecia st., 
d d
l case 2   

  

F v

F p (Undulator & Wiggler)( ) (49)dm m v v dt d  F p (Undulator & Wiggler)( )             (49)

 

m mt dt v v

Questions: (i) It is sometimes said that a particle has two masses,
3 d h ? (ii) h l i i il 3m and  m. Why? (ii) The acceleration is not necessarily

parallel to the force. Give an example. (iii) Relate (48) to (A.23). 37

: A police radar operates on a frequency of What isProblem 1 
11.3 Covariance of Electrodynamics (continued)


0v0

:  A police radar operates on a frequency of . What is
the frequency received by the police after the signal is reflected from
a car moving at the velocity ?

Problem 1     

v
 k

0v
 car

      
police
 ,  k 

0a car moving at the velocity ?
     :  We do it in 2 Solu onti

v
steps.

Step 1 In the police frame the
shown in police frame

p     Step 1. In the police frame, the
radar sends a wave ( ,  ) toward
the hi h i i t el it (di e ti h i the fi e)

 k
0the car, which is moving at velocity (direction shown in the figure). 

Transformming  to the car frame by (44), we obtain
v

  0 0

0

      ( ),     
where  is the component of  along , i.e. cos  (see figure.)

z

z z

v k
k k k

  


  
k v

     Thus,


/k c 2 2 1/ 2

0 01( )v c  

  0
0 0 0 0 0

cos

This is the Dopper

        (

shifted frequency detect

) cos 1

ed

( )z
v

ck v kv              

It is alsoby the carThis is the Dopper-shifted frequency detect     ed  It is also
the frequency of the wave reflected by the car as seen in the

 by 
 car

the ca
 fr

r.
ame. 38

In the car frame (see figure) the car sends the reflectedStep 2
11.3 Covariance of Electrodynamics (continued)

0 cos

     . In the car frame (see figure), the car sends the reflected
wave ( ,  ) back to the car at the frequency 

Step 2

( )v 
 



k
li0

0
cos    1

     In the car frame, the police is
( )v

c
     ,       k 

car  k 
v

  police
 

0moving at velocity  (div rection 
shown in the fugure) relative to

0 v
shown in car frameg )

the car. Tranformming  to the police frame by (44), we obta
Doppler shifted again

in the
frequency observed by the police ( )



0 0 0 0

pp gq y y p ( )

   ( ) ( cos )zk v k v               0
0

cos1( )v
c


 
 

0 02 2
0 0

9

cos cos 1 1 2 since .

If the radar frequency is ( / 2 ) 10 Hz and the car moves

( ) ( )   v v
c c v c

f

   

 

   

 



0

    If  the radar frequency is ( / 2 ) 10  Hz and the car moves
away from the police ( 0) at 150 km/hr, the police would
d f

f
v
 


 

 
02( / 2 ) hif d b 278 Hvf f f  detect a frequen 02cy ( / 2 ) shifted by 278 Hz.v

cf f f       
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11.3 Covariance of Electrodynamics (continued)

Problem 2: An observer in the laboratory sees an infinite electronProblem 2: An observer in the laboratory sees an infinite electron
beam of radius a and uniform charge density  moving axially at
velocity v0 What force does he see on an electron at a distance r (≤ a)

: The problem can be readily solved in the lab frame HereSolution

velocity v0. What force does he see on an electron at a distance r (≤ a)
from the axis? Assume the electron moves axially at the velocity v0.
    : The problem can be readily solved in the lab frame. Here,
we will take a long route for an exercise on some of the transformation 
equations just derived.

Solution

a
0,  ,  ( )     z zJ v v  

K z

equations just derived. 
     The current density  in tzJ

0

he lab frame is 
. [ has a negative value.]J v 

a

a
0( / ),  0 z zJ v      

K  z

 

0

0 0

    .   [  has a negative value.]
     By (37), we have, in the beam frame

0

zJ v

J J v

 

    
a

0( ), z z  

K 
0v

 z
 

0

2
0 0
2 2

0 0

0 0

    0,

    1 .( ) ( )
z z

z
v v
c c

J J v

J 


 

    

 

     
0

     We see that the lab frame  is greater than 
c c 


0

the beam frame  by
the factor . This is because every unit length of the beam in its rest





0 y g

frame is contracted by this factor when viewed in the lab frame.

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11.3 Covariance of Electrodynamics (continued)

I th b f 0 h th i l di lJ  

K
,  ( 0)    E B E B 

0
3

In the beam frame, 0, ; hence, there is only a radial 
electric field. Gauss law, 4 ,

z

s v

J
d d x
  

  

  
     E a

K 

K    

( 0)      E E B B 

2

2
then gives  2 4 ( ),  for 

2 [ ]
r

s v
r E r r a

E r r rr
  

   

     

     K
0 v

   00
    2 .  [ ,  ]

     We
rE r r r

       

 now transform ( ) into lab-frame  and  by usingr rE   E e E B

0

0 0

0

the reverse transformation equations in (46), in which we set . 

(
zv

  



   v
v e

E E B 0 0
2 2) r r    E e e

 0
      

( c   E E B
00 0

0

2)

(
r rr  





 

  



E e e
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     Thus, the force  on an electron (in the lab frame) is 
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Homework of Chap. 11Homework of Chap. 11

Problems: 3 4 5 6 9Problems: 3, 4, 5, 6, 9
16, 19, 23, 30
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Appendix A: Relativity in College Physics
(R f H llid R i k d W lk “F d l f Ph i ”)(Ref. Halliday, Resnick, and Walker, “Fundamentals of Physics”)

Section 1: The Lorentz Transformation

0

: Consider 2   and
. Frame  moves along the common -axis* with constant speed 

inertial frames S
S S x v 
     The Galilean Transformation

relative to frame . At 0, the coordinates coincide and, at time S t t , 
the position of point  is ( ,  ,  ) in  and ( ,  ,  ) in . Then theP x y z S x y z S   

0

Galilean transformation gives  
 is unchanged in       ,  ,  ,         (A.1)the transformation.

tx x v t y y z z t t            

S S
y y



the transformation.
* In t

  he main text, the -axis is the
   direction of relative motion. To

z

S Sx


x

P

   be consistent with the references
   cited in this appendix, here we                    

y
P

y
   assume that the relative motion 
   is along the -axis

i
.

Q
x

H d d i
0v t

 x  x
0v 0v

tiQues  How do you determine
   a reference frame is iner

on:
tial? 44



11.A.1 The Lorentz Transformation (continued)

: The laws of classical mehanics do not varyEinstein's Postulates: The laws of classical mehanics do not vary
in form under the Galilean transformation. For example, (A.1) shows

= in frame transforms to = in frame However wm S m S 

     Einstein s Postulates

F a F a hen =  in frame  transforms to  =  in frame . However, wm S m SF a F a

22 1

hen
the same transformation is applied to the wave equation in vacuum,

0 its form changes completely (see Jackson p 516 )  2 2 0,  its form changes completely (see Jackson, p. 516.)
           So, when Einstein began his work on relativity, there

c t
 


  

 were two
approaches to make  the laws of physics invariant in form in all 
inertial frames: (1) Modify the theory of electromagnetism so that it is
i i i f d h lil f i

all

( ) dif hinvariant in form under the Galilean transformation; or (2) Modify the
Galilean transformation and the laws of mechanics so that the laws of
b th h i d l t ti i i t i f d thboth mechanics and electromagnetism are invariant in form under the
new transformation. Einstein took the second approach. His special 
th f l ti it i b d 2 t l ttheory of relativity is based on 2 postulates: 
     1. Laws of physics are invariant in form in all inertial frames. 

2 The speed of light in vacuum has the same value c in all inertial     2. The speed of light in vacuum has the same value c in all inertial
         frames, independent of the motion of the source. 45

11.A.1 The Lorentz Transformation (continued)

Event and Simultaneity: An event is something (such as theve d S u e y: eve t s so et g (suc as t e
emission of a light pulse by a source) which happens at position (x, y,
z) and time t. An event [described collectively as (x, y, z, t) in a given) [ y ( , y, , ) g
frame] will have different coordinates in different frames. The
frames mentioned here and later are all inertial frames.

The time of an event can be measured by methods we normally
think of. But, in relativity, time measurement often requires high
precision (which can at least be done in a thought experiment) and
we must bear in mind the frame in which the time is measured. The
simplest way to measure time is to read the clock at the position of
the event. If the clock is away from the event, the time of the event
is the time shown on the clock (at the instant the light signal of the
event reaches the clock) minus the time delay due to the travel of the
i l ( d ) f h ’ i i h l k’ i isignal (at speed c) from the event’s position to the clock’s position.

The position of the event and the measured time of the event all refer
t th f i hi h th b d th l k b th t t (b tto the frame in which the observer and the clock are both at rest (but
the source which generates the event is not necessarily at rest.) 46

11.A.1 The Lorentz Transformation (continued)

Two events are simultaneous in a reference frame if they have theTwo events are simultaneous in a reference frame if they have the
same time coordinate in that frame, whether or not they have the same
spatial coordinates Simultaneity can be experimentally tested asspatial coordinates. Simultaneity can be experimentally tested as
follows. If two events are detected at the same instant by an observer
located midway they are simultaneous in the observer’s framelocated midway, they are simultaneous in the observer s frame.

Within a given frame, the concept of space and time in the special
theory of relativity is not different from our usual concept of spacetheory of relativity is not different from our usual concept of space
and time. However, radical differences arise when space and time
coordinates of an event measured in one frame are compared withcoordinates of an event measured in one frame are compared with
those measured in another frame. In making the comparison, we find
that space and time are entangled with each other in relativity Forthat space and time are entangled with each other in relativity. For
example, two simultaneous events occurring at different positions in
frame S will no longer be simultaneous in frame S’ and their timeframe S will no longer be simultaneous in frame S , and their time
difference in S’ depends upon their spatial separation in S. In relativity,
space and time coordinates transform according to the Lorentzspace and time coordinates transform according to the Lorentz
transformation, which is derived below from postulate 2. 47

: Consider a pulse of light emitted by a source on aTime Dilation
11.A.1 The Lorentz Transformation (continued)

: Consider a pulse of light emitted by a source on a 
train (event 1). It travels vertically upward for a distance , then is
reflected back by a mirror and later detected at the sour

D
     Time Dilation

ce (event 2)

mirror

reflected back by a mirror, and later detected at the sour

2

ce (event 2).
     In the train frame (Fig. 1), the time interval between the 2 events is

(A 2)Dt  mirror

D Fig. 1

0                  .                 (A.2) 
     In the lab frame (Fig. 2), the train, mirror,
and source ar

ct 

e all moving at speed but thev
Event 1

Event 2 (at the same 
location as event 1)

D Fig. 1and source ar 0e all moving at speed , but the
light still travels at speed  (by postulate 2).
So the time interval of the 2 events is

v
c

source

mirror
2

2 2 1/ 21

So, the time interval of the 2 events is 
                 ,                    (A.3)L

ct 

  DL L
  Fig. 2   

2 2 1/ 21
02where [( ) ]    (L v t D   A.4)

     Eliminating  and  from D L
      Event 1 Event 2    

   

source source
       

0 0

g
(A.2)-(A.4), we obtain
                ,                 (A.5)  t t  

0 tv 
source source

       
0 0
2 2 1/ 2

0 0

, ( )
where [1 / ] .       (A.6)v c


  

       
48



11.A.1 The Lorentz Transformation (continued)

: Why is D the same in both frames?Question     : Why is D the same in both frames?     
     Lengths perpendicular to the direction of motion are the same in
both frames i e the and coordinates transform as:y z

Question

The proof of this is by contradiction

both frames, i.e. the  and  coordinates transform as:  
                   

y z
y ,                                                       (A.7)y z z 

The proof of this is by contradiction.
Suppose that we have two identically

manufactured pieces of pipe (see figure)
 xv

manufactured pieces of pipe (see figure).
They cannot fit inside each other because
they have identical radius Imagine that one

 xv 

they have identical radius. Imagine that one
pipe is at rest on the ground and the other
is at rest on the train If the motion of the train relative to the ground

from H. C. Ohanian, "Physics"

is at rest on the train. If the motion of the train relative to the ground
were to bring about a transverse contraction of the train pipe, then by
symmetry the motion of the ground pipe relative to the train wouldsymmetry, the motion of the ground pipe relative to the train would
have to bring about a contraction of the ground pipe. But these two
ff t t di t i i th t i i ld fiteffects are contradictory, since in one case the train pipe would fit

inside the ground pipe, and in the other case it would fit outside. 49

11.A.1 The Lorentz Transformation (continued)

Going back to (A.5): Δt = Δt0. In this equation, Δt0 is the timeGoing back to (A.5): Δt Δt0. In this equation, Δt0 is the time
interval of 2 events measured in a special frame in which the 2 events
occur at the same position. It is called the proper time. Viewed in anyoccur at the same position. It is called the proper time. Viewed in any
other frame, these 2 events will occur at different positions and, by
(A.5), their time interval (Δt) will be greater than the proper time by a(A.5), their time interval (Δt) will be greater than the proper time by a
factor of . This is known as the effect of time dilation.

The muon has an average lifetime of 2 2 sec (between birth andThe muon has an average lifetime of 2.2 sec (between birth and
decay) in its rest frame. In a 1977 experiment at CERN, muons were
accelerated to a speed of 0 9994c corresponding to a  value of 28 87accelerated to a speed of 0.9994c, corresponding to a  value of 28.87.
Within experimental error, the measured average lifetime of these
muons was indeed 28 87x2 2 = 63 5 sec In another experiment twomuons was indeed 28.87x2.2 63.5 sec. In another experiment, two
synchronized clocks with near perfect precision showed slightly
different readings after one had been flown around the world Thedifferent readings after one had been flown around the world. The
difference was again in agreement with (A.5).

Time dilation runs counter to our intuition because it is rooted in aTime dilation runs counter to our intuition, because it is rooted in a
postulate which also runs counter to our intuition. 50

11.A.1 The Lorentz Transformation (continued)

The Twin Paradox: Suppose someone travels on a spaceship withThe Twin Paradox: Suppose someone travels on a spaceship with
a Lorentz factor of  = 20 (in the earth frame) and his twin brother
stays on earth. Then, by time dilation, every day measured by thestays on earth. Then, by time dilation, every day measured by the
traveling twin in the spaceship frame (this is his proper time) will be
20 days when measured by the earth twin in the earth frame. So they y
earth twin ages faster and his traveling brother will be 19 years
younger when he returns to earth after an 1-year journey (neglect they g y j y ( g
spaceship’s acceleration/deceleration periods). The paradox is: if the
traveling twin measures the age of his earth twin, will he conclude thatg g
he himself ages faster by the same argument of time dilation?

There is no paradox at all. Only the earth twin’s measurement is
correct because he is always in an inertial frame. The traveling twin
will have to be accelerated and decelerated in the spaceship. During
these periods, he cannot use the special theory of relativity (Einstein’s
2 postulates refer to inertial frames.) In fact, he will confirm the

f hi h i if h i i l h fmeasurement of his earth twin if he uses Einstein’s general theory of
relativity, which deals with accelerating reference frames. 51

: Assume that planet neptune is stationary in      Length Contraction
11.A.1 The Lorentz Transformation (continued)

0
0

p p y
the earth frame and at a distance  from earth (Fig. 1). A spaceship is
traveling at speed  to neptune. The duration of the trip,

L
v

g C

 measured on0g p p p
0 0earth, is                             / .                                         (A.8)

In the spaceship's frame
t L v 

0

    In the spaceship s frame 
(Fig. 2), both earth and neptune 
move at speed . The duration v earth neptune          spaceship0

v Fig. 1

0p
of 0 the trip, , is the interval
between the departure of the

t 0v Fig. 20v
from Giancoli, "Physics for Scientists and Engineers"p

earth and the arrival of the neptune. This is the "proper time" of the 
spaceship because both events occur at the same position. Thus, 
by (A. 0 0

0

5)                          / , (A.9)
      can be used to calculate the earth-naptune distance as viewed

                                         t t
t

  


0 0on the spaceship    .                  tL v 

0

                                     (A.10)
     Eliminating  and  from (A.8)-(A.10), we obtaint t 

                           

0
0

0

                                                                                           (A.1LL  1)
52



11.A.1 The Lorentz Transformation (continued)

In (A 11) L = L0/ L0 is the length of an object (or in the aboveIn (A.11), L L0/, L0 is the length of an object (or, in the above
example, the earth-neptune distance) measured in the rest frame of the
object (i.e. the frame in which the object is at rest). Length measuredobject (i.e. the frame in which the object is at rest). Length measured
in this special frame is called the proper length. Viewed in any other
frame, the object will be moving and, by (A.11), its length will be less, j g , y ( ), g
than the proper length by a factor of . This is known as the effect of
length contraction. Note that the contraction effect applies only tog pp y
lengths along the direction of motion.

Length contraction is a direct consequence of time dilation [seeLength contraction is a direct consequence of time dilation [see
(A.9)]. It is therefore not surprising that time dilation can be inferred
from length contraction. If, for example, the spaceship has a  valueg , p , p p 
of 2. The earth-neptune distance, as measured in the spaceship, would
be half of that measured on earth. But the speed of earth/neptunep p
relative to the spaceship is still v0. So, to the spaceship, the journey’s
duration is only half of that measured on earth. Hence, one minute
elapsed in the spaceship will be 2 minutes elapsed on earth.
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    : Assume frames  and  coincide at S S The Lorentz Transformation
11.A.1 The Lorentz Transformation (continued)

00 and  moves along the common -axis with speed  relative to 
(see figure). A point  has coordinates ( , , , ) in  and (
t S x v S

P x y z t S x


, , , ) y z t  

0

0 0 0

in . The length , when measured in ,  is  (length contraction). So, 
                   or  ( ).                                   (A.12)

x

x
S x S

x v t x x v t


 




 

   
00 0 0( ) ( )

     By symmetry or by s
 

 
2 2 2 2

0 0imilar argument,            (A.13)
li i i f (A ) d (A ) [ i ]

x x v t   

0
2

2 2 2 2
0 0 0

0

     Eliminating  from (A.12) and (A.13) [using 1 ],
           (A.14)( )                                                       

c

x v c
vt t x

 


 
  

y y
   

c

 
  (A.7), (A.12), and (A.14) give the Lorentz transformation:

x x v t 
S S

y y
x

x

 0 0

                                                                      (A.15)   

x x v t
y y
z z

 
  
                      

y
P

y
0
20

( )

( )
c

z z
vt t x

 
   

0v t
 x  x

y

0v

y

0v
     See Appendix B for a more 
formal derivation. 54

     Transformation of Coordinate Difference between 2 Events :
11.A.1 The Lorentz Transformation (continued)

     Since the Lorentz transformation is linear, the coordinate differences
between 2 events:

2 1 2 1 2 1     in :  ,   ,   ,   S x x x y y y z z z          2 1

2 1 2 1 2 1 2 1

 (A.16)
in : , , , (A.17)

t t t
S x x x y y y z z z t t t

 
                       2 1 2 1 2 1 2 1     in : ,  ,  ,    (A.17)

transform in the same manner. Thus,
( )

S x x x y y y z z z t t t

t

   

   0 0( )x x v t
y y

    
 
 (A 18)






0
0 2

                                        

(
c

z z
vt t

 
    

                          (A.18)  

)x


 2c

2 1x x x  
1 1 1 1

 Event 1
  ( ,  ,  ,  )x y z t
 2 1x x x    

  1 1 1 1

 Event 1
  ( ,  ,  ,  )x y z t   


2 1

2 1

y y y
z z z

  
  


1 1 1 1

2 2 2 2

( , , , )

     Event 2
             ( ,  ,  ,  )       

y

x y z t


2 1

2 1

y y y
z z z

  
    
  

1 1 1 1

2 2 2 2

        Event 2
             ( ,  ,  ,  )       x y z t   


2 1t t t  
S  x 2 1t t t    

0vS 
x
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: Consider the transformation equationDiscussion on simultaneity
11.A.1 The Lorentz Transformation (continued)

0

    : Consider the transformation equation
for the time interval between two events

[f (A 18)]( )

Discussion on simultaneity

v  

        S     x

                                                
                                                 A B
  c

 source
  c0

0 2    [from (A.18)]

    It indicates that 2 simultaneous

( )   
c
vt t x    

                 
 x

source
0 0                            

                                             A B
v v   c c events in frame  ( 0) which

occur at different positions ( 0)
S t

x
 

 

0         v
               S      x

occur at different positions ( 0)
will not be simultaneous in frame  
( 0) This can be explained on the basis of postulate 2 through the

x
S

t

 


 ( 0). This can be explained on the basis of postulate 2 through the 
following example.

In frame a pulse

t

S

 

of light emitted midway between points andA    In frame , a pulse S of light emitted midway between points  and
 (see figure) will reach  and  at the same time, i.e. the two events 

(arrivals of the signals at and ) are simultaneous in frame In

A
B A B

A B S(arrivals of the signals at  and ) are simultaneous in frame . In
frame , the si

A B S
S  gnal still travels at speed  in both directions, but  is 

moving toward the light and away from it So the signal will reach
c B

Amoving toward the light and  away from it. So, the signal will reach
 first and the two events are no longer simultaneous.

A
B 56



x xThe example discussed above
11.A.1 The Lorentz Transformation (continued)

                                               
A B
  c  c
  2

x
2
x     The example discussed above

can be examined quantitatively as
follows

        S      x
                                                A B

 source

  xx

follows.
     Assume that, in frame , the
two events are spatially separated

S
                 

source
0 0                            

                                            A B
v v   cc 

  
02
x



02
x

two events are spatially separated

by a distance . Observed in ,
the distance is shorter by 

x S 
a factor

0         v
                 S      x

sourcey
0of  due to length contraction, i.e. 

xx


 
0

         .

     Thus, in frame ,  the signals reach  and  with a time

x

S A B
 



0 0 0 0 0
2 2 2

2 2
difference of

         B A

x x
v vx

c v c vt t t   


 


          .x2 20 0 0 0
2B A c v c v c v c  

     This is precisely the prediction of (A.18),
v v0 0 0

220        .   [ 0 in frame ]( )v
cc
vt t x x t S        
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11.A.1 The Lorentz Transformation (continued)

: In frame events and occur at different positionsProblem 1 S A B

0

      : In frame , events  and  occur at different positions,
and event  occurs after event . Is it posible for event  to precede
event in another frame moving at speed relative to

Problem 1 S A B
B A B

A S v frame ?S0event  in another frame  moving at speed  relative toA S v  frame ?
If so, does this mean that an effect can precede its cause? 

: In frame let the 2 events have a spatial interval

S

Solution S     : In frame ,  let the 2 events have a spatial interval 
 and time interval . Then the time interval

in f
B A B A

Solution S
x x x t t t     

0rame is given in (A 18): ( )vS t t t t t x       in f 0
20

2
0

rame ,  ,  is given in (A.18): 
     We see that if / , then 0, which means that the

( ).B A c
S t t t t t x

t v x c t
       

    
order of  events in frame  may be reversed in frame . 

Suppose
independent S S 

, however, that the events are connected, i.e. event  is B

0
20

caused by event . This would require a body, or a signal, to travel
from  to . Rewrite (A.18) as (1 ). Since the fastestv x

t

A
A B t t 

    20( ) ( )

spee
c t 

0d for a signal to travel from  to  is , we must have 
in order for 0 This is not possible [see (A 6)] and th s the order

x
tA B c v c

t


  

 in order for 0. This is not possible [see (A.6)] and thus the order 
of connected events (cause and effect) cannot be reversed.

t 
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11.A.1 The Lorentz Transformation (continued)

: Show that the effects of time dilation and lengthProblem 2     : Show that the effects of time dilation and length 
contraction are implicit in the Lorentz transformation.

: The time interval between 2 events transform as

Problem 2

Solution
0
20

     :  The time interval between 2 events transform as 
(

c
v

Solution
t t x     0

20or . If  is the proper )  ( )
c
vt t x t        

time in , then the 2 events occur at the same position ( 0). 
So we use the latter equation and obtain 

S x  

0                          (time dilatiot t    n).
     The difference in the  coordinates of the 2 events transform asx

 0 0 0 0 or ( ). Again, the question is
which equation to use. If  is the "proper length" in ,  then the

x x v t x x v t
x S

            
 q p p g

two end points are at rest and their coordinates do not have to be
measured simultaneously (i.e. we do not know .) But since thet
rod is moving in ,  its end points must be measured simultaneously 
in  (

S
S 0). So we use the former equation and obtaint (

0
 

) q
                        (length contraction).xx 

  
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The velocity of a particle is given byTransformation of Velocity :
11.A.1 The Lorentz Transformation (continued)

0 0

     The velocity of a particle is given by
            lim  (in frame ); lim  (in frame ).     (A.19) 

t tt tS S
   

  
    x x

Transformation of Velocity :  
v v

vv

     Let 0,t 
( ) 

xx v t  
   v


S 


0v

   v


S


 x  x

0 0( )x x v t
y y

    
 

00 0
0 0

0 2 2

( )
1( )

x
x

x
v
c

v
c

v vx v tx
t t x v

v 


   
     


     

0v

y y
z z
t 

 
 


0 0
0 0

0 2 21
    (A.20)( ) ( )

( )

y
y

x
v
c

v
c

vy y
t t x vv

v

t x
 

 
     

      
   t   0

0 0
0 02 2

20

1( ) ( )
( )

zc z
x

c

v
c

c

v
c

vz z
t t x v

t x
v

 
 
     

       


     : A spaceship move
c c

Problem


0s away from the earth at speed . 
A pulse of light is emitted from the earth in the direction toward the

v

0

A pulse of light is emitted from the earth in the direction toward the 
sapceship. What is the speed of light measured on the spaceship?

xv vS l i  0c v0     :   x x
xv vSolution v c v   0

0 0
21 1x

v
c

c v
vv c

c
 

 
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11.A.1 The Lorentz Transformation (continued)

      For simplicity, we first
consider the transformation of  acceleration in the direction of

d

Transformation of Acceleration : 

xdv0

relative motion (i.e. ) 

[ from (A 20)]x

xdv
dt

v vv      , x
x

dtv
S  x

0
0
21

           [ from (A.20)]x
x

x
v
c

v
v




0
0( )( )x x

vv v dvd d 
    , x

xd
dt
vv 


S  x
dv

0

0 0 0

2
2 2
02 2 2

2

( )( )

( ) ( )1 1 1
x xx x

x
x x x

c
v v v
c c c

v v dvdv dv
v v v  

  
S

0v
x

0
20        ( )    [from (A.15)]

c

v

v

t t x  

xdx v dt0
20

1 1

 ( )

H (A 21)x xx

c
v

dv

dt dt dx
dv dv

  


0 0 0
0 2

2 3
0 02 2

2 3( ) ( ) ( )
1 1

1 1
     Hence,    (A.21)x xx

x xc
v v v

c c
dt dx v vdt dt    

 
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11.A.1 The Lorentz Transformation (continued)

     By the same method, we may obtain the transformation equations
for acceleration in arbitrary directions (see Jackson Problem 11.5).

     a
          v      3

1

y ( )

 
 a a 

      S
     a

     0
2

3
3
0 1

   
c

  
 
 



 

v v 

                                    (A.22)




S 
     

          v   
    

 
0

0
2

2

3
2
0

1

1
c

c
 

 
 
 


     v v

va a a v
( )





0 v   2c 

0where " " and " " refer to the direction of .



 v 0     
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: A rocket is launched from the earth into outer space.Problem
11.A.1 The Lorentz Transformation (continued)

:  A rocket is launched from the earth into outer space.
It moves on a straight line with a constant acceleration ( ) with 
respect to its rest frame (Why is  specified in the rocket's fra

     Problem
a

a


 me?)p ( y p )
Calculate the time required for the rocket to accelerate from zero
speed to the final speed , according to earth and rocket clocks.fv
     :  Let  be the earth frame,  be the rocket rest f

f
Solution S S  rame,

and the one-dimensional motion be along the -axis. The inverse x

30

   
, dv a

dtv v 

 


23 3( )
1

1 /

transformation of (A.21) gives (omitting subscript " "): 
                 .

x
dv dva dt dt

  

   
d 



3
0

0, dt 
S x

23 3
0 0( )1 /

     Lorentz transformation
v v cdt dt   

s apply to two inertial 
f S i th t f fS i t t 0, dv

dtv a
  

S
v

  x
frames. So,  is the rest frame of 
the rocket, but  does not accelerate with the
rocket In we have 0 and /

S instantaneous 
S

S v dv dt a




     0vrocket. In , we have 0 and / .
This gives  (acceleration in ) /

S v dv dt a
a S a

 
 3

0 . Since  is the rest frame of
the rocket for the transformation equals of the rocket in Thus

S
S


 



3 3
0

2 2 1/2
0

the rocket,  for the transformation equals  of the rocket in . Thus,
    / / ,  where (1 / )   [ :  ]

S
a a a v c Note a a

 
          63

From the expression of the acceleration in the earth frame ( ),S
11.A.1 The Lorentz Transformation (continued)

3 2 2 3/2
     From the expression of the acceleration in the earth frame ( ),
           / (1 / ) ,                                        (A.23)
we may evaluate the total acceleration time as measur

S
a a a v c   

ed on earthwe may evaluate the total acceleration time as measur
3

2 2 2 23/2 1/20 0 0 0
11

(1 / ) (1 / )

ed on earth 

   .ff f f

f

T vv v
a a

vdv
a v c a v c

T dt dv dv
   

       0 (1 / ) (1 / )
     The rocket frame is accelerating. So, to find the total acceleration 
time as measured on the rocket we must sti

fv c a v c

ll work in the earth frametime as measured on the rocket, we must sti

11 1 /1

ll work in the earth frame 
by using the relation / .

( )f f fT T v v v cdv c
dt dt

d d d


 

 

     2 20 0 0 0
1

2
1 1

1 /1 /   .

We find that, in the limit / 0, both

( )f f f

f

T T

f

v v dv c
a a a v cv cT dt dt dv In

v c
    

     



   

f

     We find that, in the limit / 0, both 
 and  approach the expect

fv c
T T


 ed value of 

/ . However, / increases rapidly asfv a T T  f

/T T 1
22 2

/ . However, /  increases rapidly as 
/ 1 due to the effect of time dilation 

(see figure) In the figure (1 / )

f

f

f

v a T T
v c

v c 


 
/fv c

(see figure). In the figure, (1 / )
is the time dilation factor at the final speed .

f f

f

v c
v

 
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Section 2: Relativistic Momentum and Energy
(Ref : H C Ohanian “Physics ” 2nd ed pp 1013 1014 )

     The law of conservation of momentum states that, for an isolated
system of particles (before collision) (after collision)m m v u

(Ref.: H. C. Ohanian, Physics,  2nd ed., pp.1013-1014.)

system of particles, (before collision) (after collision).
     Under the Galilean transformation, the statement is true i

i i i im m v u
n all 

(i ti l) f H d th L t t f ti (inertial) frames. However, under the Lorentz transformation, ,
though conserved in one frame, will in general not be conserved in

the f e Th t l te 1 i i l ted if e ti e

i im v

t defi eanother frame. Thus, postulate 1 is violated if we continue to define
the momentum as . The theory of relativity takes a major step by 
redefining (or postulating) the momentum and energy as

mv
redefining (or postulating) the momentum and energy as   

                                                            mp v                     (A.24)


2 2 1/ 2: 1 /  is the Lorentz factor
f ti l It i t b di ti i h d f th

( )Note v c   
   

2                                                                                (A.25)

F i li i ill id l di i l i

E mc


 0

of a particle. It is to be distinguished from the
Lorentz factor  for the transformation.
 
 
  

     For simplicity, we will consider only one-dimentional motion 
along the x

2
 axis. The momentum and energy of a particle are then 

mv 2

2 2 2 21 1
  and  

    
x

x x
x

mv mc
v c v c

p E
 

 
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0F (A 20) h l i i f i H hxv vS  

11.A.2 Relativistic Momentum and Energy (continued)

0
2

01
     From (A.20), the velocity in frame  is . Hence, the

momentum of the particle is (assuming has the same value in )

x
x

x

v v
v v c

S v

m S


  


0

0
2 2 2

1
2 2 1 1 (1 )[( ) (1 )]1

momentum of the particle is (assuming  has the same value in )
( )

x
x

xx
v v c v v v v cv c c

m S
m v vmvp
 

  
2

 ,  ,  x xv p E

0 2 2
0 01 (1 )[( ) (1 )]1 x x xx v v c v v v v cv c c   2

22 2 2
0( )xm v v , ,x xp

S  x 
 0

0 0
2 2 2 2

0

22 2 21( )

     Since (1 )
x x

xx

v v c v v

c

c

v vv v c
  

 

S 
 ,  ,  x xv p E  

v
 x

 00

0
0

2 2 2 2

1

( )

(1 )(1 ),   becomes   
xx

x x
vmv

v c v c p  

0v
2 2 2 2 2 2

0

0
2 2
0

1
1 1 11

 
x x

x m
x v c v c v c

v
v c

mv

v

p
  

  

0
20     ( )                                             x

v
cp E            (A.26)

Similarly, we derive the Lorentz transformation equation for energy:

0 0

     Similarly, we derive the Lorentz transformation equation for energy:
 ( )                                                         (A.27)xE E v p   66

By the same method we can extend the motion to 3 dimensions and
11.A.2 Relativistic Momentum and Energy (continued)

E0

     By the same method, we can extend the motion to 3 dimensions and
derive the Lorentz transformation equations for  and . The result is

( )v
E

E 
p

 ,           Ep
S  x

0
20 ( )

= 
x x

y y

v
cp p E

p p
   




 (A.28)

S
 ,         E p

x0 0

            

( )
z z

x

p p
E E v p


 

   

                                                  (A.28)

0v
0 0( )xp

     (A.28) shows that  and  in  is a  combination of  and 
in with constant coefficients (i e the coefficients are independent

E S linear E
S

  p p
of

 ,           Ep

S 

S

 ,         E p

0v

in , with constant coefficients (i.e. the coefficients are independentS

j

 of 
 and  of the particle). The same equations will therefore hold true for

the momentum and energy ( ) of a system of particlesj

E
total E 

p
p

0
2

j

0

the momentum and energy ( , ) of a system of  particles,
( )

j

jx jx j
v
c

total E
p p E

 

    


p


 = 

         jy jy

jz jz

p p
p p

 

 


 

                                        (A.29)

 j j

jE  0 0( )j jxE v p  

   67

11.A.2 Relativistic Momentum and Energy (continued)

0( )v E    0
20 ( )

= 
Rewrite (A 29)

jx jx j

jy jy

v
cp p E

p p
  

 

   





0 0

      Rewrite (A.29)    .

( )

jy jy

jz jz

j j j

p p
E E v p

 

  

  
    0 0( )

     Form this set of equations, we see that if (and only if) the total 
momentum ( ) and total energy (

j j jxE E v p

E

  





p ) of a system of particlesmomentum ( ) and total energy (j Ep ) of a system of particles 
are  conserved in , the total momentum and total energy will
be both conserved in

j
both S

S





2

be both conserved in .
     : (i) This shows that the postulation of  and 

will pre

S
Discussion m

E mc






p v 

serve the conservation law under the Lorentz will preE mc serve the conservation law under the Lorentz 
transformation. However, the conservation law must now be 
extended to include both the momentum and energy.

2 2 2
extended to include both the momentum and energy. 
(ii) Writing ( 1) ,  we may divideE mc mc mc    

2
 the total

energy into the kinetic enery ( 1) (due to motion) and a newmc
2

energy into the kinetic enery ( 1)  (due to motion) and a new
form energy  (an intrinsic energy) called the rest-mass energy.

mc
mc

 
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     : A particle of rest mass  moves on the -axis is attractedProblem m x
11.A.2 Relativistic Momentum and Energy (continued)

2
p

to the origin by a force  ( ). It performs oscillations of
amplitude . Express the  oscillation period as 

m x const
a relativistic

  
a definitep p p

integral, and obtain the 2 leading terms of this integral for small . 
: The period is given by 4 (A 30)a dx

a
Solution    0     : The period  is given by   4 ,           (A.30) 

where the velocity  can be calculated from the 
vSolution

v
  

2 2 2 1/2 2 2 2 2 21 1
energy equation 

( / ) (A )2 2 2 1/2 2 2 2 2 21 1
2 2(1 / )          (A.31)

     Substituting  from (A.31) into (A.30), we obtain
mc v c m x mc m a

v
    

2 2 2 2

1/21/2 2 2 2 22 20
1 ( )/2

1 ( )/(4 )( )
4     a a x c

a x ca x
dx 


 
 

 

 
 

1 ( )/(4 )( )

     Expanding t

a x ca x  

2 2 2 2he integrand in powers of ( )/  and using
b b

a x c 

2 1/2 2 1/20 0 2
1

( ) ( )
 and  (for 0),  we obtainb b by

by y by y
bdy dy 

 
   

2 2
2

2 3
16

     1 a
c

 
    
 


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Appendix B: A Formal Derivation of 
the Lorentz Transformation

     In Appendix A, we begin with the derivation of "time dilation" and
"length contraction" from post late 2 follo ed b a deri ation of the

the Lorentz Transformation

"length contraction" from postulate 2, followed by a derivation of the 
Lorentz transformation. Here, we present a more formal (but physically 
less transparent) approach whereby the Lorentz transformation isless transparent) approach, whereby the Lorentz transformation is 
derived directly from postulate 2. The following paragraphs are taken 
from Alonso & Finn "Physics " p 92from Alonso & Finn Physics,  p.92.      
     Referring to the figure to the right, 
suppose that at 0 a flash of light ist  suppose that at 0 a flash of light is 
emitted at the common position of the 
two observers After a time observer

t

t



0v

two observers. After a time , observer 
 will note that the light has reached 

point an

t
O

A d will write , wherer ct c 0vpoint  anA
2 2 2

2

d will write , where  
is the speed of light. Since  

, we may also write

r ct c
x y z

r
 


2 2 2 2 2

, we may also write 
                           (B.1)

r
x y z c t   70

Similarly observer whose positionO
11.B A Formal Derivation… (continued)


Similarly, observer , whose position 

is no longer coincident with that of , will  
note that the light arrives at the same point

O
O

0v

note that the light arrives at the same point  
 in a time , but also with velocity c. 

     Therefore he writes 
A t

 , or r ct
0v

2 2 2 2 2
,

                                                          (B.2)
Our next task is to obtain a transformation relating (B 1) and (B 2)

x y z c t     
     Our next task is to obtain a transformation relating (B.1) and (B.2). 
The symmetry of the problem sugges

0 0

ts that  and . Also since 
for observer it must be that for 0 (point )

y y z z
OO v t O x v t x O

  
    0 0

0

 for observer , it must be that  for 0 (point ).
This suggests making ( ), where  is a constant to be deter-
mined Since is different we

OO v t O x v t x O
x k x v t k

t

  
  

 may also assume that ( ) wheret a t bx  mined. Since  is different, wet  may also assume that ( ), where
 and  are constants to be determined (for the Galilean transformation,

1 and 0) Making all these substitutions in (B 2) we have

t a t bx
a b
k a b

 

  
2 2 2 2 2

0 0

1 and 0). Making all these substitutions in (B.2), we have 
   2( )
k a b

k x v xt v t y
  

   2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2   or( )z c a t bxt b x   

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0 0  2 / .( ) ( ) ( )k b a c x k v ba c xt y z a k v c c t      
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11.B A Formal Derivation… (continued)

Thi lt t b id ti l t (B 1) Th f
2 2 2 2

2 2 2

     This result must be identical to (B.1). Therefore
0k b a c 

2 2 2
0

2 2 2 2
0

0
/ 1

k v ba c
a k v c

 
 0

21
0

     Solving this set of equations, for , , and , we have 
and /

k a b
k a b v c  

2 2
0

01 /
 and /

     Inserting these val
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