Chapter 14: Radiation by Moving Charges

converted to Gaussian unit system,
see p.782 for conversion formulae.

Review of Basic Equations : {

I

Vio-L 6 ;@ = 47T/3(€ ) [free-space inhomogeneous | (6.15)
0" | wave equations (SI)
viA-L 6 s A=—=2J(1yd) (6.16)
Vy-bhy=drten SRS 6@
Solution of (6.32) with outgoing-wave b.c.:
w(x,t) = pin (x,0) + [ X [dt'G T (x,t,x,t') f (x/,1), (6.45)
where the retarded Green's function
GH (X, t) = Ot — (t="2)]/[x—x (6.44)
1s the solution of (with outgoing-wave b.c.)
(V2 —%6—2)6 (x,t,X,t") = —475(x —x")S(t -t (6.41)

1

Review of Basic Equations (continued)

Apply (6.45) (assuming y;, =0) to (6.15) & (6.16)

d(x,1)) 3, M p(x',t)
e Y

Note: We need both @ and A to specify E and B, unless the source
has harmonic time dependence (as in Chs. 9 and 10).

A Qualitative Picture of Radiation by an Accelerated Charge:

N2
S

E-field lines surrounding a
stationary charge.

(9.2)

From R. M. Eisberg,
"Fundamentals of
Modern Physics"

A fraction of E-field lines showing
the effect of charge acceleration.
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14.1 Liénard-Wiechert Potentials and Fields
for a Point Charge
Lienard-Wiechert Potentials for a Point Charge :
A(x,t)} _ ([t STt {éJ (f',,t')}
D(x,t) x| (X, 1)
p(x',1"), J(x',t") due to a point charge € (e carries a sign) moving
along the orbit r(t") at the velocity v(t") = dr(t") / dt’ can be written

Rewrite (9.2): {

p(x,t)=es[x' —r(t")] [P(x, 1), A(x, )] at
{J(x',t') _ EV(t')é'[x’ —r(t')] point of observation
o(x,t) =efdt L i
’ R(t")
= L o0 (1)
A(x,t)=e[dt’ R()

where R(t') = [x—r(t")| and B(t’) = v(t')/c.

14.1 Liénard-Wiechert Potentials ... (continued)

olt+RE—t]

D(x,t) = e[ dt’ e[t oLTO]

L R(t) R(t)
Rewrite (1): Bt )5[t’+R(t) 1] O] ,
where f (t') =t' + R(t')/c. @)
Using [ g(x)S[ f(x)—a]dx = 2 ‘d f((i) x;» We obtain
[ ] o X is the solution
O(x,t) = £f(x)=a.
R(t)dt/ e S 3)
Ax=[_ PO

where [ ], implies that quantities in the bracket are to be evaluated
at the retarded time t' [=t—R(t")/c].

Question : What information is needed in order to find t'?




14.1 Liénard-Wiechert Potentials ... (continued)

dx—r(t' 1
dR(T) | dt,( ) S —2xr(t) +r2 (@)

(x is a fixed position indep. of time)
—2x —r(t )+2r(t)-d it r(t )

[x2 2xr(t)+r(t’ )]

_v(t)[x-r(t)]
R()

[D(x, 1), A(x, T)] at
point of observation

=-v(t")-n(t)) (4)
= 4 ia)= L+ "= 1-p) nt) = x> 0) )
Sub. (5) into (3) gives the Lienard-Wiechert potentials
(D(X,t) = |:1_6le
(PR Jret (14.8)

_ ep
A(x,1) —[ (—pm)R }ret

14.1 ... Fields for a Point Charge (continued)

Fields for a Point Charge : Rewrite (1) and (14.8):

P Ay o t:[ e }
OO =efd g S ) FO LR L (14.8)
O S I PN t=[ o } |
At =efdr 0 U= pr |,

To obtain E(x,t) and B(x,t),

we need to differentiate d(x,1) [Px, ), A(x, )] at

point of observation
and A(x,t) with respect to x.

The RHS of (14.8) depends on x
through n and R, but the RHS of
(1) depends on x through R only.

Hence, it is more convenient to
use (1).

14.1 ... Fields for a Point Charge (continued)

LR
O(x,t)=ef dt'u
. R(t)
Rewrite (1): R(t") 0
Bt )5[t'+ ~t]

Let F(R) be any function of R, then
V.FR) =EV R=EV [x—rt)=nt)9
%/—J
/:n(t)

[P(x, 1), A(x, )] at
point of observation

e (att)
orbit of e

(6)

Use V, |x—x'|"=n|x—x' "2 (x—x).
See Sec. 1.3 of lecture notes.

o[RS RU

R (1)

VO(x,t) =€ n(t’){
(1) & (6)=

o (Bt )5[t'+R(” ] 4o

c }d«
cR(t)

14.1 ... Fields for a Point Charge (continued)

Thus, f(t)_t+R(t):>dt'—df(t) n=Ldf ),
E(x,t) =-V® _%%A where x=1-p(t")-n(t"). Use (5)

_offn o R B-n RAY 1] b

_ej[Rz5[t+C—t]+RC STt + RO ]}dt

= e,[ [lsll:zz 5[ f (t’) _t]+lfR;(l)15,[ f (t’) _t]J df (tr) [see note below]
n e \ : __
B A ) I e

2
xR ret

ek 8 (o el d - &

e[KR2+KCdt, ( » df (t) ~ df (t") dt’ — x dt’ (7)
Note: Because of the o[ f (t") —t] factor in the integrand, integration

over f (t') demands f (t')=t ort' =t —R(Tt,). But n, B, R, and x in the

integrand are all functions of t' [not f (t")]. Hnece, n, B, R, and « are to
be evaluated at the retarded time t’ [not t].




14.1 ... Fields for a Point Charge (Contlnued)

dn(t’)

To put E in a simpler form, we need to evaluate ==

and dt’ (xR).

OGO O RO 6O g1y -p) 6
oty —Chn CB(t) [E(x, 1), B(x, 1)] at
R(t) by (4) point of observation

LRy =S A1-p) n)IR)

=(1- Bn)dt,R R (B0
—CBn

= —c(1-B-n)(B-n)~Rp-n—Rp-8

<~1Sub. (8) for Eﬂ

=—¢(1-B-n)(B-n)~Rp-n—c[ (n-p)° - 5* |

14.1 ... Fields for a Point Charge (continued)

Hh e[ R o)
[ [n(B-m)—B1-B]- "5 [cﬂ “eBm-RE et

—e{ M+
e[l +"PasP _ePpe 1+§[;+%ﬂret
KK
:n—|23 (np)[1-(pm)
3R2[(" B)(1—p-n)—(n—B)(S° Bn)}
T[—B(l—ﬁ-n)ﬂn—ﬁ)(ﬁ-n)]

=e{ s [(m=B)(1= )1+ L [n(-n)—B—[BB-n)—B-(B-n)]]}rer

1/}/2 nx(nxp) nx(pxP)
=—c(B-n)(1-p-n+p-n)+cB>—Rp-n ~ B )xf
) . e - nx[(nﬁlxﬂ (14.14)
=cf”—c(p-n)—R(p-n) 9) yo(1-pn)'R* | (I-Bn)'R |
9 10
14.1 ... Fields for a Point Charge (continued) 14.1 ... Fields for a Point Charge (continued)
To derive B(x,t), we Write (7) .
E(xt)—e[ ™ ( )] E(x,t) = ({n_ﬁ} +e{n><[(n—|3)><|3q (14.14)
R ret xLCD) U P(1-pny'R? o S| (-pn)’R |,
= n(t)xE(x,t)= e[— ddt’ (n P )]ret = % (KR B) — g—{l X ﬂ Rewrite velocity field (océ) accelﬂ_eration field
= e[i— (n><|3) an ] nx[i) c[n(n- B [3] ' (ocz and Ln)

KC dt’ ret K‘R B(x,t) =n(t') x E(x,t) (14.13)
piopcratcsloniR(Efonl ) Tt (an) CHXB Discussion: [E(x, t), B(x, t)] at
[only R(t") depends on x] B+ R o] (1) The velocity fields are essentially pointjof,obse’rvation

B(x,t) = A =efdt'Vx[ R(T) ] static fields falling off as 1/ R>.
(1) .. .
 STE+R(t) /ot ' v v " (11) For the acceleration fields,
=efdt [V[R(t')]]XB(t) 1 W:(t') yxatyvxal (14.13) and (14.14) show that
S[t+R()/c—t] | St+RE)/ ol Eorms o E(x,1), B(x,1), and n(t’) are
- ej dt- R2 cR IVR®)=B(t) mutually orthogonal, as is typical
[ (an) nxp } ~ following the of radiation fields.
KC dt' xR KR2 ret same steps as Note: (i) Unit vector n(t") points from the retarded position to x.
= B(x,t) =n(t") xE(x,1) inderiving (7) | (14.13) (ii) t and t" are quantities in the same reference frame. 12




14.1 ... Fields for a Point Charge (continued)

E(x,t):e[n_ﬁ} +e{“x[(“_w} (14.14)
ret

72(1_5'“)3R2 ret ¢ (1—B-n)3R

Rewrite velocity field (ociz) accel;:raﬁon field
R (ocg and 1n)
B(x,t) =n(t")x E(x,t) (14.13)

(ii1) E and B in general have a [E(x, t), B(x, t)] at

broad frequency spectrum. Since we point of observation
have derived (14.13) and (14.14)
from (9.2), which applies to a non-
dispersive medium (in this case, the
vacuum), singals at all frequencies
travel at speed c. Hence, E and B

at t depend only on the instantaneous

motion of the point charge at a single retarded position r(t").

orbit of e

14.1 ... Fields for a Point Charge (continued)

E(x,t)=e[“‘B } +§{nx[(n_ﬁ)xﬂ} (14.14)
ret

7/2(1—[3~n)3 R? ret (I—B‘n)3 R

Rewrite acceleration field

(ocg and 1n)

B(x,t) =n(t")x E(x,t) (14.13)
[E(x, 1), B(x, )] at
point of observation

velocity field (océ)

(iv) Quantities in the brackets are
to be evaluated at the retarded time t',
which is the solution of

t'+x—r(t')/c=t,

where the orbit r(t') is a specified
function of t'. Thus, t" depends on x
and t. This makes the final expression
for E a function of x and t, as shown on the LHS of (14.14). For the
same reason, the unit vector n(t") in (14.13), hence the final expression
for B, also depends on x and t [see (14.17a) below]. »

14.1 ... Fields for a Point Charge (continued)

(v) The relation between observer's time and the retarded time,
t'=t—|[x—r(t")/c, indicates that a signal from the charge travels
at speed C toward the observer, independent of the motion of the
charge (Einstein's postulate 2).

An Illustration of Time Retardation and Length Contraction:
Computer generated graphics show the visual appearance of a three-
dimensional lattice of rods and balls moving toward you at various
speeds. (from Benson, “University Physics”)

At 0.99c, the
At 0.5¢c, therods At 0.95c, the rods lattice appears
severely distorted.

The normal
view at rest

appear straight.  appear bent.

14.1 ... Fields for a Point Charge (continued)

Charge in Uniform Motion : v =const. 3 ool
' i int P’ : . | observati
P'P = distance between point P" and point P | } servation
_yR_ & se,
=V c= ﬂR 3

P'Q=/fRcosd=p-nR
0Q=R-P'Q=R(1-§-n)
(0Q)* =[R(1-p-m)]

-1’ —(PQ)’ t 1/ ; =0
242 b2

b2+v
—~= —
= r? —p*R%sin’@
2 22 P22 2, .2,2:2
=b* +vt* - g%b :ﬁ(b +rovit?)
In the above expressions, R and n are retarded quantities (P is a

constant). Hence, [R(1-8- n)]Iret = %(b2 +y2vt)l2




14.1 ... Fields for a Point Charge (continued)

v=const. > E = e[ ]ret [velocity field]

1 B : point of

2{& ,_9_ \ ;bsr::r\-'ation
ne,—f-e g
=E,=E-e, = e[(zp)z]ret / e

~eL g e oo (AT
eyb AT !
=" — 3 | i3 (14.17a)
(b2+7/2vzt2) eatt & eatt e t=0
\.
[same as (11. 1592) , [R(I_B'n)]ret :%(bz +32v22)2 last page
COoS
R e - Bel _ o[ _CosO-p _ eyvy
By =E-e =¢[; (1-pn)'R 3 Iret e[yz(l_p'n)st]ret (0247222

E; =0 by symmetry.
3 y sy ry Cosg_ﬁzﬂRgv\t\_ﬂZQ.
t < 0 on the left side of the origin (t = 0).

14.1 ... Fields for a Point Charge (continued)
B =n(t") xE(x,t) = (cos fe, +sinbe, ) x(E,e, + Ee, )
=(E, cos@—E;sin0)e;
So, the only nonvanishing component of B is By

B, =E, cosd —E,sinf = 5[ (BR+VIt) -Vt 2] = BE,

LR+V b (b2+)/2v2 2)
R R .
Discussion: (i) Rewrite the E- and B-fields  pomtol
eyvit - A (}/—m
(bz +y2v2t2)
eyb b
B, = 2 27/2 22
(b +y°v4t ) !
M
B; = SE,

As expected, the final expressions for E and B are functions of
the observer's position (x = be,) and time (t), although the fields are

generated by the charge at the retarded position (P) and time (t"). s

14.1 ... Fields for a Point Charge (continued)

B ) ) point of
(i1) Rewrite the E-field at point O . ;bservation
_ e / e,
= 32
(b2+}/2V2t2)
eyb b
5= 2,222\
(b +y°vit ) ,
i \ ul
E _ vt BRI
E, b eatt' eatt t=0

= If e > 0, E is directed from the charge's present position P (i.e.
position at the time of observation) to the observation point O,
although E is generated by the charge at the retarded position P'.

= Since b and t can be given arbitrary (positive or negative) values,
this direction relation applies to all observation points around the
charge. Thus, E-field lines around the charge are straight lines
emanating from (or, if € <0, converging to) the present position P. |

14.1 ... Fields for a Point Charge (continued)

. . \  point of
(ii1) Rewrite the E-field at point O observation
E = e]/V"[‘ O——e,
LT 5 52
(b +y-v4t )
2 ) AV
o %

E-field
lines — y=1 € v e v
7=3 y =2600

20




14.1 ... Fields for a Point Charge (continued) e

. . . z point of
(iv) Rewrite the E-field at point O \ T observation
E}/V‘t‘ / \O—?el
By = 2., ,222)2
(b +y-v4t ) g
E — eyb )
2= 3/2
2, .,2,2:2
(b +yovat ) L

E, has a maximum
value at t =0, when e
passes through point M.
€
E;™ =Ey(t=0)=1;
: 1 pmax _b
E, is down to 53 E, ™ att= W
EZ (t:%) 1
Emax 5 /5 same as (11.153)
2 o

= Duration of appeciable E,: At = % 21

14.1 ... Fields for a Point Charge (continued)

Electrodynamics in a Cavity : As shown in the figure, an electron
bunch moving uniformly on the axis with y = 2600 is about to enter

a cavity. Since E| = (2600)3 E,, the E-field lines of every electron are
concentrated in a flat disk with the electron at the center (velocity
field). As a result, the electrons hardly "see" each other, because the
(axial) electric forces between these electrons are negligible®. Then, as
the bunch enters the cavity, the acceleration fields emerge (next page).

- | - v
electron bunch cavit E-fleld
Vz._c) y hnes \ y= 2600

*Question: The negligible electric force betwen any 2 electrons
implies that the axial acceleration of either electron is negligible.
However, the acceleration will be non-negligible when it is viewed

in the lab frame. Why? [See lecture notes, Ch. 11, Eq. (A.23).] »

14.1 ... Fields for a Point Charge (continued)

Fields in the cavity produced by a y = 2600 electron bunch

(1

2

Combined "velocity" and "acceleration”
fields formed by a single electron bunch
(from Ch. Wang, NSRRC). Fields behind
the bunch are called the wake fields.

Question: How do the electrons get decelerated in the cavity? 23

14.1 ... Fields for a Point Charge (continued)

The lowest order (TM,,,) mode_ E-field lines of several cavity modes
is excited by the injection of high (from L. H. Chang, NSRRC)
power microwaves from a klystron.
The axial electric field of this
mode is used to accelerate the
electrons.

Wake fields left in the cavity by
the electron bunch can be viewed
as the superposition of the
complete set of cavity eigenmodes.

One or more of the higher-order |

I=t longitudngl mode Ist tronfverse made
1502551 MHs {+TA3ETS Miz

2nd Irensverse mode
121294.065 Mz

— % E FlELD LINES

mOdeS may thus be I'GSOl’lal’lﬂy 3rd longitudngl meds 3rd l[runweise Jauin

F= 1551295 WH; =TT 079
reinforced by a succession of 7
electron bunches to grow to —=J — =%\ —

significant amplitude and interfere — —
with the acceleration process. | 2




14.2 Total Power Radiated by an Accelerated Charge

nx[(n—]})xlﬂ:|
(I-pn)’R o

acceleration field

= S [Ex, D n(t)

. : —e| "B g
Rewrite (14.14) : E(x,t) = e|:;/2(1—[5~n)3 R2:| + C|:

velocity field
S Ex D x[n(t) < E(x,1)]

S(x,1)
Larmor's Formula : Neglect the velocity field and take the limit
p — 0 (= retarded y, R, B, n = present , R, B, n). Then,

_C _
_EExB_

lim E(x, t)~ nx(nx[}) n

p—0 el |V

limS-n = e ‘HX(nXB)‘Z o \nxﬂ‘ztsm@
= =0 R’ ) ‘B

dP

= M 46 = 4m:‘“x(“x|3)‘ = onxB (14.20)

power radiated
unit solid angle”’

:?M sin? © [ peak at@zg} (14.21)
T
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14.2 Total Power Radiated by... (continued)

2 '
= 2 _ 2¢? |dp~ | Larmor's
= }lﬂlop [dPda= 3\ T=%0 e [formula } (14.23)
Note that all quantities in Secs. 14.1-14.4 are real. Hence,
%—It) ?jlt) ((jjlt) [In Jackson, this is denoted by( )2 }

Relativistic Generalization : The expression in (14.23) can be
generalized to a relativistic form in which P is a Lorentz invariant
and applicable to all electron energies. The procedure is as follows.

P=(p, E) (4-vect 2
p— (p, ;) (4-vector) — dt N gP —~P-= 2e223 EITP (14.24)
tor (Lorentz scalar) 3 - 3
— 2e dj _1(dE
Interms of pand E: P = dr| "2 (d ) (14.25)

2
dp _1(dE)2 (10)
dt| ¢2\dt
(10) agrees with results derived directly from (14.14) (See Sec. 14.3)%

. _ i 2e2 2
Convert to lab time by dz = x P= s {

14.2 Total Power Radiated by... (continued)

- 2e2C3 Y { ((jj? - —(%%) } in (10) can be put in different forms:
2. -1 2 2.1 )
:(l—vi) =y :(l—gj) :(I_W)
|O2 p2 \!
= 7’ _1+m2C2:>7 (1+m02)
48 =me® 4y =mc? (1+ 2)2 "
2P dp Note: dit) expresses both
= CZ M - Ldj £ di : d litud
- T~ ymdt Vit irection and amp mé €
2(1+m202)2 variations of p, but dit)
dp dE only expresses the
Sub. Vg for ‘g in (10) / amplitude variation of p.
2
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14.2 Total Power Radiated by... (continued)

il LN
:mzczﬂ%—y m% (‘(’j{)— > (1-pB)
-t () v 2w o0 ()|
=m2c2_ ) (B B 27 (BB 47

rme?| (B-B) +(1-47 B | = im’c | B () - 5
- yimic?| p —\Bxﬁ\ ?| —@xb)-exa) (12)

=(a-c)(b-d)—(a-d)(b-c)

Sub. (12) into (10

=P =2 7°|[B’ - pxp’

(14.26)

28




14.2 Total Power Radiated by... (continued)

Example 1: Linear accelerator (p || accelerating force F)

p (P )2}
d =(‘3?)2:’ P- 25 (%) 0a)

3\ dt
=P 2 () dp:th}

2
Rewrite (11): P = 3%6%3 7/2

For linear acceleration,

m
do _dE _p| (14.28)

3m2c3 \ dX dE = Fdx/ — dt = dx
2¢*> dE1d 5 e
P _3m2c3 dxv A4t _ 2¢2 1dE ~ \mc2) dE
(dj) d 3m2cdV X ~ 3me?2 dx
dt t V~C —

3.7x10~1° m/MeV

AN
dE

P: radiated power. 3= externally supplied power

: dE Radiation losses are completely
Typically, dx < S0 MeV/m = [negligible in linear accelerators.

14.2 Total Power Radiated by... (continued)

Example 2: Circular accelerator (e. g. synchrotron)

gk

: .p—_2e
Rewrite (11): P = Il

For circular accelerators, LIPS p . Thus,
2

. 2e2 2/dp

T 3m2c3/ | dt
dp _ d(pep) _ do _ . degdg
at = ot = Pdieo+es dt = Pde dt = 7P

1 ible -€,
_ dp| _ negligible o
dt| P (=Y p= ;/mv
2e2 2 2 2 l

Note that (14.31) is an exact expression for P if the particle is in

uniform circular motion, i.e. if ?TI? =0. 30

14.2 Total Power Radiated by... (continued)
- .p . 2e%c p4 4
Rewrite (14.31): P = ?ﬂ y

= OE =radiation loss per revolution
_ 2Lp P

B~
~A4r e2 3.4 7 ~2 [E(in GeV)]*
3 p By =~ 8.85x10 po(in meters) MeV

1 keV, for early synchrontrons (accelerators)
~<72keV, forthe 1.3 GeV NSRRC synchrontron} storage

8.85 MeV, for the 10 GeV Cornell synchrontron
Total power radiated in circular electron accelerators:
P(in watts) =10° x SE(in MeV)x J (in amp)

rings

31

14.2 Total Power Radiated by... (continued)

Problem: If a charge is in uniform circular motion, (14.31) is an
exact expression for the total power it radiates. Show that the total
power has the same value as viewed in the rest frame of the particle.

Solution: Consider an instantaneous position of the charge located
at the bottom of its orbit, where the charge moves horizontally to the
right at velocity v, (upper figure) and the acceleration a; points
vertically upward with a; = vg / p ( p 1s the radius of the circle).
Viewed in the rest frame of the charge (lower figure), we have
[see Eq. (A.22) in Ch. 11 of lecture notes]

al= 1L 4 2
70( - c2 ) 0 . .at vo
1 Vo e
"o 1 Yo (o K
a| = Yo [aL—C—zx(axv)]
2 MAAY !
70 (1_ (():2 ) al(l—vg/cz) )gaL

Kl
Thus, a;=0and a’, = 7ia,. -V, .




14.2 Total Power Radiated by... (continued)

Thus, the acceleration of the charge is vertically upward in both
frames and they are related by
' 2
a, =ya
Since the charge is at rest in frame K’,
Larmor's formula in (14.23) becomes exact,

which gives K €
22 2 2 2e¢2 4.2
Pr=2e |y = 28]y 2 = 287,45 ,
3C3 ‘V ‘ 3C3 ‘ L‘ 3C3 v 2l TaL
,l e
:E7/4£:72e20ﬂ47/4 a :ﬁ K
303 pz 3,02 L P —> VO

This is the same power as viewed in the lab frame [see (14.31)].
The result here, P = P’, is consistent with the fact the total radiated
power is a Lorentz invariant [see (14.24)]. However, the angular
distribution of radiation will be different in the two frames. We will
show later in (14.44) that for the same acceleration, the angular

distribution depends sensitively on particle's velocity. “

14.3 Angular Distribution of Radiation Emitted
by an Accelerated Charge

{nx[(n—ﬁ)XB]}

(1-pn)’R

O|m

: , _ n—f
Rewrite (14.14) : E(x,1) = e{ﬁ(l_ﬂ'“)w}ret +

power per unit area
at observation point

A
S(x,1) = 2 E(x,t) x B(x, 1)
= 2 EGDx[n(t") < E(x,1)]

velocity field acceleration field

[E(x, 1), B(x, )] at
point of observation

= S [E(x,0) n(t")
= S(x,t)-n(t) = S E(x,t)]
(Neglect the velocity field)
.12
nx[(n—ﬁ)xﬁ}
(1-np)

_ e’ )1

=Sl (14.35)

ret
34

14.3 Angular Distribution of Radiation... (continued)

In this section (as in Sec. 14.2), we are interested in the angular
distribution of power radiated by the charge. But S(x,t)-n(t") =
&\E(x,t)\z in (14.35) gives the power per unit area received at the

observation point. Power radiated by the charge into a unit solid angle
[dP(t")/dQ] is in general different from the power received over the
area subtending the solid angle [dP(t)/dQ]. The reason is that motion
of the charge toward (away from) the observation point will shorten
(Iengthen) the radiated pulse, which results in increased (decreased)
power at the observation point because the total energy received must
equal the total energy radiated (conservation of energy).

Thus, to express the power radiated
in terms of the power received, we need
to determine the ratio of dt (received
pulse length) to dt’ (radiated pulse
length).
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14.3 Angular Distribution of Radiation... (continued)

Observation time t and radiation time t’ are related by

_¢r R(M) 7
t=t+—¢" Use (4): B = v(t)-n(t)
Thus, 3t =141 R®) 2B ()

= A pulse of duration dt received at x and t is radiated by the charge
at r(t") and t’ for a duration of dt' = dt/[1-B(t") -n(t")]. Note that
dt and dt’ are quantities in the same reference frame (lab frame).

R*(t)S(x,t)-n(t) dt = R*(t)S(x,t)-n(t) &L dt’

dP(t)/dQ dP(t')/dQ
power received | | power radiated by
atx and t charge at r(t') and t'

unit solid angle

unit solid angle

In both dzg) and d(l;’g()t)’ dQ is

with respect to the charge.




14.3 Angular Distribution of Radiation... (continued)

Rewrite R%(t)S(x,t)-n(t")dt =

R*(t)S(x,t)-n(t") &L dt’

dP(t)/dQ dP(t)/dQ
dP(t) _dP() dt _ o2 v : A
= %o —W@_R (t")S(x,t)-n(t)[1-B(t)-n(t")]
2
=1-p(t") n(t") ) nx (n—[})x'}
=L g by (14.35)
ret
2 B 27 dP(t
) _ nx[(n—p)xp] ' (14.38)

dQ " 4zc (1--nY " elatr) X

where n, B, B are to be evaluated

at the retarded time t'. (14.38) gives r
the power radiated into a unit solid

14.3 Angular Distribution of Radiation... (continued)

Case L B||p 2 ‘ o ]‘
n x ><B
~4re (1-B- n % .8,B

Rewrite (14.38): dp(t )

Bxp=0 dP(t):eV sin” 0 14.39
{nx (nx |3)‘2 = “3‘2 sin’ 9} - dQ 4z’ (1-Bcos 49)5 (1439

g ith (14.26
= p)=[d0 ~3650% [0 14y

For f « 1, (14.39) reduces to Larmor's result (14.21), with the
radiation peaking at € =90°. But as # — 1, the angular distribution
is tipped forward more and more s<1
and increases in magnitude, with
the maximum intensity at

angle in the directio.n of n in terms : . 0 1 =COS~ [w(, 1+154% - 1)} (14.40)
of the charge e and instantaneous  and f of the particle. 37 38
14.3 Angular Distribution of Radiation... (continued) 14.3 Angular Distribution of Radiation... (continued)
! 2 — 3 2 :
As /1, we have 0 < 1. Hence, Case2: p Lp. In D) ° nx[(n ")XSB] , 1 (14.38)
_ ~1— _1p2 ] 4zC  (1-B-n) n
1-fcosf =1 ,8(1 291) let{B”ez’B”ex 0 |
~ ! =sind +sin @si +cos 6 '
1] e (1-p)1+ ) +6£ n =sin cos¢ezx sin @sin ge,, + cos Oe, i
2 2 dP(t) _ g2 v sin? @cos? ¢ é > b7
2 = 40 3 L= 5 s S 1 (14.44)
—i+9——i(l+ 292) 47’ (1-fcosb) y (l—ﬁcose) P AN
T2 T2 207 A
2 e 2 e’c ,B agree with (14.31)]
o 2 = P(t)= dQ =2 [ " =
= gim PO st sel? 5 (70) (14.41) Pan 00255 "] *TZQ/ (14.47)
p-1 47¢ (1-Bcosb) c (1+7292) v 3 %
1 . . . 1
Orrax = 27 [angle of maximum intensity] (14.40) lim dg(t ) 2(% 6 “;‘ . [1 ~ 472922002822 q » g y> (14.45)
dP(t po1 9T 120 (14707 g
= 2> 16’2 ( )dQ 1 _mc2 | root mean J
<" >2= W =y T E [square angle} (14.42) O,0x =0 [angle of maximum intensity] 7

39

<> ; [= narrow cone like a searchlight] 40




14.4 Radiation Emitted by a Charge in Arbitrary,
Extremely Relativistic Motion

In Secs. 14.2 and 14.3, we examined the radiation problem from
the viewpoint of the charged particle and expresssed the radiated
power in terms of the instantaneous B and p of the particle.

From here on, we will switch our viewpoint to the observer.

The emphasis will also be switched from the power of radiation to
the frequency spectrum of the signal received at the observervation
point.

To find the spectrum, we need to first know the time history of the
observed ratiation. Hence, we can no longer stick to instantaneous
quantities as in Secs. 14.2 and 14.3. We must now follow the particle's
orbit. As the particle travels along its orbit, it continuously radiates
toward the observer. A Fourier transform of the time-dependent signal
received then reveals its sprectral contents.

We will be interested only in perpendicular acceleration (B L p).
The reason is as follows. 4l

14.4 Radiation Emitted by a Charge with y>>1 (continued)

2
P(t')= 262 (f;‘?) , forBlIp (14.27)

Rewrite

P(t) = , forpLp (14.47)

i
which implies P(f L B) = ;/2 P(BIIB) for the same accelerating force.

Hence, for a charge with > 1 in arbitrary motion, we may
neglect P(t) due to f || p and consider only P(t") due to p L p. The
instantaneous radius of curvature p can be expressed in terms of the
perpendicular component of the acceleration (V| ) as follows.

2
FL = 7”/1) =ymv,
) ) For acceleration L to v, the
=p=V" ~ O effective mass is ym. See (14.48)
VisaVe lecture notes, Ch. 11, Eq. (49).
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The Spectral Width for § Lp: 1
Angular distribution of radiation: < 6% >2~
= The observer is illuminated by light emitted

observer

in an arc of length d ~ % corresponding to a
(retarded time) interval of emission At’ ~ %
In the interval At’, the front edge of the pulse

travels a distance D = cAt' = 2, while the rear

edge of pulse is behind the front edge by a distance 1
_D_d=(L_nL=1Bp (=AW p
L=b d_(ﬂ 1)7_/3’7 28 v~
= Pulse duration (to the observer): T =L/cC
= A broad spectrum ranging from near O up to a
1
critical frequency of @ ~ 1~ E ~5 7/ , (14.50)

where @, 1s the maximum frequency of appreciable radiation.

14.4 Radiation Emitted by a Charge with y>>1 (continued)

Synchrotron Radiation-A Qualitative Discussion : If the charge
is in circular motion with rotation frequency @, then w,p = ¢ and

e ,07 ~ ay” T To=Lo/c

The pulses occur at the P(t) M (L = 27p)
observation point at regular T=Lic,

intervals of %(L =p/2y7)

t——-——»

T, = 2% = 27 270
@ v ¢ Pulses of synchrotron
Eexample: Cornell 10 GeV synchrotron  radiation propagating

4 radially outward
y=2x10
6 ?\/‘”‘*‘
@y =3x10° /sec %L
@, ~2.4x10" /sec (16 keV x-ra , ] LO?
c~ < ys) \)/«\—, ;
S
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Discussion: In (14.50), @, ~ 27/3 the critical frequency
@, (maximum frequency of appreciable radiation)
scales as 73 , which explains the extremely high v y>1
frequency radiation from a synchrotron. The factor
7/3 1s due to the short duration of the pluse seen by
the observer. The pulse is shortened by two effects: v
1. Because the angular width (1/y) of the radiation
is very narrow, only the radiation emitted by an electron

over an arc of length d (= p/y) can reach the obser\?efﬁ " observer

Thus, to the electron, the emission interval is At’ ~ W

2. The electron is "chasing" its radiation. Hence,
to the observer, the received pulse length is not At'.
Instead, it is At" compressed by a factor of

1-4)(1+5)
$=1-pyny=1-p= AL
Effect 2 is exploited in a device called the free electron laser (FEL)#

\4

Id=

<R

14.4 Radiation Emitted by a Charge with y>>1 (continued)

Example: As a practical example of the pulse duration to the
observer, consider again the Cornell 10 GeV synchrotron, for
which we have

W, = 2.4x10" /sec.

Since @, ~ Tl’ the pulse duration T of a single electron is
incredibly short,

1 - -20
T~5c~4.2><10 sec

This explains the broad spectrum. However, the actual pluse in
a synchrotron does not come from a single electron, but from an
electron bunch of finite length (typically a few mm). Electrons in
the bunch radiate incoherently. So the spectrum of the bunch is the
same as that of a single electron, but the pulse duration (7) equals
the passage time of the electron bunch (7 = bunch length/c). For

example, for a bunch length of 6 mm, we have 7 = 2 x 107 sec.
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The Synchrotron as a Light Source : The synchrotron emits
intense radiation with a very broad frequency spectrum in a beam
of extremely small angular spread (1/y). It is a unique research tool
and can also be used for micro-fabrication and other applications.
The photo below shows the light source facility at the National
Synchrotron Radiation Research Center (N SRRC) in Taiwan.

- storage ring

g
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Electron bunches are first accelerated to an energy of 1.3 GeV
in the booster synchrotron, and then sent to the storage ring (also
a synchrotron), where the energy is maintaind at 1.3 GeV while the
electrons provide synchrotron radiation to users around the ring.
The electrons are powered by microwaves from the RF systems.

RF SYSTEMS FOR THE
BOOSTER SYNCHROTRON AND STORAGE RING

Synchr en- Rodiation Reseorch Center
Nainehy, Taiwan, R.O.C

storage ring

booster i
synchrotron s

SYNCHROTRON STORAGE RING

(

KEY PARAMETERS
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

The RF system 500 MHz microwave

coupling
low level structure

RF systems J | l/

— ]

E-field lines

—

electron bunches:
S e -

acceleration cavit

line
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Photo of the NSRRC booster synchrotron showing
some key components of the accelerator

coaxial acceleration

cavity magnet

vacuum electron channel
pump (in high vacuum)
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14.4 Radiation Emitted by a Charge with y>>1 (continued)

Research stations around the NSRRC storage ring
: =2 M

51

14.7 Undulators and Wigglers
for Synchrotron Light Sources

The broad spectrum of radiation emitted by relativistic electrons
bent by the magnetic fields of synchrotron storage rings provides

a useful source of energetic photons.

As application grew, the need for brighter sources with the radiation
more concentrated in frequency led to the magnetic "insertion devices"

called wigglers and undulators to be placed in the synchrotron ring.

The magnetic properties of these devices cause the electrons to undergo
special motion that results in the concentration of the radiation into a

much more monochromatic spectrum or series of seperated peaks.
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Essential Idea of Undulators and Wigglers

The essential idea of undulators and wigglers is that a charge

particle, usually an electron and usually moving relativistically

(¥ >1), is caused to move transversely to its general forward

motion by magnetic fields that alternate periodically.

5

DDDDD |

#
#
-

a
Vo ¥

~ i #

DTS

Mv

(b)

The external magnetic fields induce small transverse oscillations in

the motion; the associated accelerations cause radiation to be emitted.
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Classification of Undulators and Wigglers
(a) Wiggler (v > A@): An observer detectors a series of flicks

of the searchlight beam. A#: angular width of the radiation about the path.

(b) Undulator (yy < A@): The searchlight beam of radiation
moves negligibly compared to its own angular width. The radiation
detected by the observer is an almost coherent superposition of the

contributions from all the oscillations of the trojectory.

-
Se—
—_— -

F .,
W08 # N N Y
0 F 15 G unduistr' 7 GeV undulato \\undulatOI
\ \ ]
1

—
1017

E W]ggler 7 GeV wiggler

7 GeV
bending magnet

bending magnet
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Homework of Chap. 14

Problems: 1,4, 5,9
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