1.3
Using Dirac delta functions in the appropriate coordinates, express the following charge distributions
as three-dimensional charge densities p(X).
(a) In spherical coordinates, a charge Q uniformly distributed over a spherical shell of radius R.
(b) In cylindrical coordinates, a charge A per unit length uniformly distributed over a cylindrical
surface of radius b.
(¢) In cylindrical coordinates, a charge Q spread uniformly over a flat circular disc of negligible
thickness and radius R.
(d) The same as part (c), but using spherical coordinates.
Solution :
(a)
f p(r)d’r=Q
p=aé(r—R)
d’x =r’sinfdrddd
fp(r)d3r = 47rf r’drp(r)=4rR’a=Q

=p Q §(r—R)

4R’
(b)
p(r)=as(r—b)
)\:fp(r)l’dl’d9=2ﬂ'ba:>p:ﬁé(l‘—b)
(©)
p(r)=as(2)o(R-r)
where
o[22
= pl)=-2:5(2R-1)
(d) When ,

p(r)=cé(z)0(R—r)=cé(rcosd)d(R—r) zgé(cose)H(R —r)

_ 2 _ Ocl )2 0 _ 2
Q= [ p(r)r*sinfdrdod, =2 | “O(R-r)r dr [ 5(cos0)d (cos§) = mcR

;»c:%:»p(r): Wszré(cose)H(Rr)

1.4

Each of three charged spheres of radius a, one conducting, one having a uniform charge density within
its volume, and one having a spherically symmetric charge density that varies radially as r" (n>-3) , has
a total charge Q. Use Gauss’s theorem to obtain the electric fields both inside and outside each sphere.

Sketch the behavior of the fields as a function of radius for the first two spheres, and for the third with

n=-2,+2.



Solution :
1.

0,ifr<a

fE-dazg:E: Q

c —— ifr>a
0 dre,r’

Q 47y’

iﬂas 3¢,

fE-da:fwrzsinedrd0d¢:>47rrzE(r): ,ifr<a
€o

r .
Q —3,1fr<a
4me, a

= E(r)=

p(r)=Cr"

n+3

Q= faCr”r247rdr =47C
0

(n+3)Q
4ra"t?

rn+3 1 r rn+3
C2 = 2f Cr’”(47rr’2)dr’: CZ -9 3
gl N+3  AdmegrJo gf N+3  dmer

n+3

=C=

r n+3
a

where r < a, E(r)

,whenn—=-2
4me, ra

Qr’

4re @’ ’

=E(r)=
whenn=2

1.5

The time-averaged potential of an neutral hydrogen atom is given by

g [1 + O‘—r]
dre, I 2

Where q is the magnitude of the electronic charge, and , ag being the Bohr radius. Find the distribution

of charge (both continuous and discrete) that will give this potential and interpret your result
physically.
Solution :
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1| ,0[,0(1 0/ a0l 0 or 0 . [0 ,)ae™ L 0a%e"
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2
_i e—arﬁ rZQ[l] _|_ae—ar _ae—ar +a2re—ar _a2re—ar +r2 Oé3e7ar _e—ar lg rZQ[l] o€
e orl orlr 2 Il ol orlr 2
3 —ar 3—ar 34—ar
—eoryrl  2F = —dme (1) + = — = —dmo(1) +
r
= (—4me '§(F) =—4md(F) = 6(F) =0,when r=0)
3 —ar 3

p=—e, Vb= — | _ams(F) + 5| = g(F) - I e

A 8T
1.6

A simple capacitor is a device formed by two insulated conductors adjacent to each other. If equal and
opposite charges are placed on the conductors, there will be a certain difference of potential between
them. The ratio of the magnitude of the charge on one conductor to the magnitude of the potential
difference is called the capacitance (in SI unit it is measured in farads). Using Gauss’s law, calculate
the capacitance of
(a) Two large, flat, conducting sheets of area A, separated by a small distance d;
(b) Two concentric conducting spheres with radii a, b (b>a);
(c) Two concentric conducting cylinders of length L, large compared to their radii a, b(b>a).
(d) What is the inner diameter of the outer conductor in an air-filled coaxial cable

whose center conductor is a cylindrical wire of diameter | mm and whose

capacitance is 3x10™"!' F/m? 3x10"*  F/m?

Solution :
@
mE=R e 7 L F _p_Zv_pdoc-2_-%
EO 2A€0 280 60 d
(b)
b
E 47rr2:2:>E: Q =V = Q dr= Q l_ll C_47T€oab
& 4me,r a 4me,r 4re,la b b—a
(©)
E-27TI’L:2:>E: Q
E0 27Tr€0|_
V= f Q In|— :>C:9:27r50—|_
27rr50 27r50L a V In b]
a

N | D



1.8

(a) For the three capacitor geometries in Problem 1.6 calculate the total electrostatic energy and
express it alternatively in terms of the equal and opposite charges Q and —Q placed on the
conductors and the potential difference between them.

(b) Sketch the energy density of the electrostatic filed in each case as a function of the appropriate
linear coordinate.
Solution :
(a)

Plane plates:

2 2 2
w =22 [l dx=2Z pd=QAd_Qd_QV_1g.
2 2\s, A2e, 2A 2 2

Spherical:
2
b 2 2 2
W:&f Lz 47rr2dr:Q— bd_!:Q_u:Q_:lCV2
2 Ja | dmer 8me,Jarm 8mg, ab  2C 2
Cylindrical:
b 2 2 2
W :€—°f [L] arbrdr= - 2 _ Loy
2 Ja (27lr me,L a 2C 2
(b)
Plane plates:
2
W(r):%% when 0<r<d , and W(r)=0 , otherwise
0

Concentric spheres:

2
W(r):i Q ~| when a<r<b , and W(r)=0 , otherwise
2 | 4me,r

Concentric cylinders:
2

when a<r<b , and W(r)=0 , otherwise

_5|_Q
wir)= 2[27rr50L

1.9

Calculate the attractive force between conductors in the parallel plate capacitor (Problem 1.6a) and the
parallel cylinder capacitor (Problem 1.7) for

(a) Fixed charges on each conductor;

(b) Fixed potential difference between conductors.

Solution :

(a) Plane plate capacitor:

2 2 2 2
W:if|E|2d3x:5—° z Ad:Q—2AOI _Qd _Qz
2 2 g A" 2ey  2¢,A  2gA

— - Q’z Q|
= We choose the z direction = F = —-VW =-V =— €,
2e,A 2e,A




(b) Parallel cylinder capacitor

C= W—Edo , the capacitance per unit length
ln[]
a
)
oo U, e, 62 0)
| [d] \ Lre, la) mg, la
n J—
a
2 2 2
W = l)‘—: A ln[g] = A ln[i = We choose the z direction
2C 2mg \a 2mwe, (a
2 2 2 2
lfszW:fVZA ln[i]_ézz/\_ :fz)‘_dézzf&z:
a z
TE, TEL|,_4 TE, 2dlIn d
a
the force per unit length
(c) Plane plate capacitor:
c—2_fa_y _—cv2 LELTVERE W IVE
vV d 2 d 2z
=-We choose the z dlrectlon
Fo—vw——vifyr_g li :ézlizov2
2z ‘2 7 —d 2
2 2
—6— [ﬁ] viog 2
2As, | d 2¢,A

Parallel cylinder capacitor

C= 7r€3 , the capacitance per unit length
In []
a
w=leveol ™o oo L™ o we choose the 2 direction
2 2. (d 2. [z
In|— In|—
a a
2 2
Fo_ VW= 1 e, 2 _ g me, V meN
z

the force per unit length

1.12

Prove Green’s reciprocation theorem: If @ is the potential due to a volume-charge density p within a
volume V and a surface-charge density ¢ on the conducting surface S bounding the volume V, while @'
is the potential due to another charge distribution p' and ¢', then

IV pd'd X + Lacb'da = IV P'Od X + ch'CDda

Solution :



or 0
f\‘/(govz\lf—\IJV24p>d3X:¢;[g0%—\Ila—(§]da

ob o 8@’_0/

A g, on g o g

/ !/
oo
v & s & &

60
fvp’<I>d3x+9§Sa’cI>da = fvpCID’d3x+9§Sa¢’da

)

1.14

Consider the electrostatic Green functions of Section 1.10 for Dirichlet and Neumann boundary

conditions on the surface S bounding the volume V. Apply Green’s theorem (1.35) with integration

variable y and ®=G(x,y) , 0= G(x',y), with szG(z,y)=-4n8(y-z) Find an expression for the

difference [ G(x,x')- G(x',x)] in terms of an integral over the boundary surface S.

(a) For Dirichlet boundary conditions one the potential and the associated boundary condition on the
Green function, show that Gp(x,x") must be symmetric in x and x'.

(b) For Neumann boundary conditions, use the boundary condition (1.45) for Gn(X,x') to show that

Gn(x',x) is not symmetric in general, but that Gn(x,x')-F(x) is symmetric in x and X', where
1
X) = §£GN (X: y)day

(c) Show that the addition of F(x) to the Green function does not affect the potential ®(x). See
problem 3.36 for an example of the Neumann Green function.

Solution :

fv(¢v2¢_wv2¢)d3x:§[¢_¢_¢8¢]da let ¢ =G(x,y) & 1 =G(X,y)

= [ (G yVIG(K.Y) ~G(X.y) ViG(x.y)d'y = 96[G(x y)aG(X -,y P2 y)}
on on

[ (GOy(~4m8(¢ — )~ GOy (~4ms(x - y)))d’y = gE[G(x 2D _gx.y)

GO )y
on

0GOY) )y
on

G X') = G(X, x)———g§ [G(x V)~ G(X, )

(a)
For Dirichlet boundary conditions we domand (1.43):
Gy (X,y)=0 foryonS

G, (x,X) — Gy (X, x)_——§[G (x,y) L2022 Y)

G, (X.,y) aGD(X,) _
= . [ y y]day =0

9G(X',y)
on

aG (X y) 8GD(Xay) da

-G, (X,
o (X5 Y) an

on on
= G, (x,x") is clearly symmetric in x and x’



(b)
!
Eq.(1.45) w _ T o ons
n

/
8(3N (X s y) _ G (X/, y) 8(3N (X7 y) da

! / _ L
GN(X:X)_GN(Xax)__47_‘_£[GN(Xay) an N on y

1 1
< $Gu(x.ya, — < Gy(X'.y)a, F (x) - F(x) =0
G, (X, X') is not symmetric in x and x’
But G, (x,X") — G (X',x) = F(x) = F(x") = G, (X, X") = F(x) = G, (X', x) — F(X)

let G),(x,X') =G (x,X)—F(X) & Gy (X,X) =G, (X,x) = F(X') = G}, (x,x") = G|, (X', X)
= G} (%,X") =G, (x,X") — F(x) is clearly symmetric in x and x’

(©)
Eq.(1.46) , B(x) = (), +# f p(x')Gy (x,X)d X’ +ﬁ fﬁ 8§r§f<)GN(x, x")da’
G, (x,X) = Gy (x,X') — F(X) , F(X) = 1 9§ Gy (X, y)da,

8<I>(x )

= @'(x) = +—fp [Gy (%, X') — F(x)d3’+ 99

=(®), +— f (X )Gy (%, x’)d3x’+— f aq)(f()GN(x, x’)da’—ﬁ ) p(x’)F(x)dﬁ’—ﬁ § 020D yda’

Gy (x,X') — F(x)|da’

a /
=P(x) — F(X)f d3x’ F;;() s%da <I)(X)—|—F(X)fvl V(X )> RN F(X)ggsa(b(x)
—d(x) + F(X)ggsé‘@(x) F4(7>T<) Sazﬁx )da — ()

the addition of F( ) to the Green function doesnot affect the potential <I>(x)

1.16

Prove the following theorem: If a number of surfaces are fixed in position with a given total charge on
each, the introduction of an uncharged, insulated conductor into the region bounded by the surfaces
lowers the electrostatic energy.

Solution :

the introduction of an uncharged, insulated

conductor into the region



g . I ooy .
Initial electrostatic energy : W 2550 j\; EEd'x =V & ﬁ'ﬁﬂ IJEEJ%?

Final electrostatic energy: W’ —%aofvf’-lg/d3x =V Aﬁl’ﬁ‘ﬁ'p gia
V, s Fp g‘;ﬁgp@ﬁg%ﬁ

Prove:W' —W <0

V=V'+V,

zgo(fv,.sa( —E)d x)_?o[f%\qd [
[
fVE'.(E'—E)d3x:—ﬁ/v¢’-(é'—E)d&:—fv/v-(gb’(é’—E))d3x+fv/¢’v-(é’—é)d3x
——¢ ¢/(E'—E)-'da’+ | ¢'V-(E'~Ejd’x=A+B

=

E’—E‘ d3x]

A=, o (E'-E)-toa' == f (B~ ioa/ =D _olf (1) o

equal potential on Ionductor surface S,

n+1

:_Z;QSESI(E E,)-nida) = 2¢9§ o/ —0,)da) = Z¢(q. g)=0

d/ =, , equal charge on each conductor

B——f QSV( )d X = fqb dx 0 (No charge inside V')

:,_9%(@ 3 'da+f ¢>V~( = )d X=A+B=0
- —go(f E/-(E/- ——60[
g

The insulated conductor into the region lowers the electrostatic energy

—ﬁ2d3x]

E/




1.17
A volume V in vacuum is bounded by a surface S consisting of several separate conducting surfaces Si.
One conductor is held at unit potential and all the other conductors at zero potential.

(a) Show that the capacitance of the one conductor is given by
C=gf [Voldx

where ®(x) is the solution for the potential.

(b) Show that the true capacitance C is always less than or equal to the quantity
Ci¥]=¢,[ [V¥ d’x

where W is any trial function satisfying the boundary conditions on the conductors. This is a

variation principle for the capacitance that yields an upper bound.

(a)
W= %Zn: En:CuViVj

=1 j=I

& S 1 O 1 1
=3 Vel v == [IVef av =335 Scuy, =5 e =3¢

i—1 j=1

=C=¢, | Vel dv

Because there is only one conductor ,so V, =0,1=1

(b)

Let U(x,\) =@ (X)+ A (X), f(x) is arbitrary function
U(x,A) & ¢(x) have same B.C.
(XN = o) = ¢ +AF(X)] = AT X))y =0

Clw]=¢, [[|V(6()+Af(x) [d'
= 50L|V¢(X)|2d3x +250)\fv Vé(x)- Vf (X)d3x+€0>\2fv|vf (X)|2 .
=C+2e\ [ V600 VE0d )+’ [ [V 0of d*x

fvw(x)-Vf(x)d3x:fvv-(f(x)v¢(x))d3x—fv(f(x)v2¢(x))d3x
= §.0-(F0Ve0da— [ (FO0Ve00)dx =3 ¢ - (F0Ve00da — [ (FOVe(x)d’x

=3, o f0oda — [ 10OV 00018 x 5 [ (FOV 6000

= B.C. f(x)=0, on conductor surface S,

c[v]=c —fv(f(X)V2¢(x))d3x+eo)\2];|Vf(x)|2d3x: C +eo)\2fV|Vf(x)|2d3x
[V’¢(x)=0 (No charge on V)|
8C—£\\I/]: 250)\fV|Vf(X)|2d3er =0=XA=0, C[¥]=C is minimun

—cC[v]=C +50)\2fv|Vf(x)|2d3x2C



1.19

For the cylindrical capacitor of Problem 1.6¢, evaluate the variation upper bound of Problem 1.17b
with the naive trial function ,(p)=(b-p)/(b-a). Compare the variation result with the exact result for
b/a=1.5,2,3. Explain the trend of your results in terms of the functional form of ;. An improved trial
function is treated by Collin(pp. 275-277).

C=47r€°ab,whereb>a
b—a
b—p v . 1 .
U(p)=——=VV¥(p)=—p=—-p,By 1.17(b
(p)=g =g = VUlo)=7 p=5 5By 11T0)
b 2 47(5 b 47780 <b3 — a3)
ClU]=¢ A\VAV 4rridr=——— | rldr=———
[¥)=a [ 0ief dnriar =7, 3(b—a)
3
Hs
Cl¥]_ la
C 3b[b_1
ala
b/a=1.5

clw]  (1.5) -1

= =1.05556

C  3x15(15-1)
b/a=2

3
CM: 21 ) 16667
C  3x2(2-1)
b/a=3

3
Cly]__ -1 =1.44444

C  3x3(3-1)



